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• XC functional
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Materials
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• Kinetic
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• Would like to go from DFT to properties within few days.

➜ Efficient workflow management is critical.

c.f. talks Jörg Neugebauer and Jan Janssen www.pyiron.org
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Locality

i
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Naïve body-ordered expansion
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N
|j�i

=
X

k�l�

Hi↵k�Hk�l�Hl�... . . . H...j� (126)

ni↵j�(EF ) =
d⇢i↵j�

dE
(EF ) (127)

�µ
(1)
i =

X

↵

�Hi↵i↵ (128)

�v(rrr) ! �v(rrr,mmm) (129)

x1, x2, x3, . . . , xN (130)

y = f(x) (131)

f(x1, x2) (132)

f(x1, x2, x3) (133)

D (134)

D
2 (135)

D
N (136)

10 (137)

102 (138)

10N (139)

1010
6

(140)

103000000 (141)

1080 (142)

NX

i=1

NX

j=1

NX

k=1

NX

l=1

�i�j�k�l =

 
NX

i=1

�i

!4

(143)

x (144)

cijnm =
X

k

�kv
(k)
j v

(k)
j v

(k)
n v

(k)
m (145)

+ (146)

Ei = (147)

5

X

v

|�v(i)ih�v(i
0)| = �(i� i

0) (118)

�v(���) = �v1(i1)�v2(i2)�v3(i3) . . . (119)

h�v|�ui = �vu (120)

X

v

|�v(���)ih�v(���
0)| = �(��� � ���

0) (121)

 =
X

v1<v2<···<vN

cv1v2...vNDv1v2...vN (122)

��� = (i1, i2, i3, . . . ) (123)

v = (v1, v2, v3, . . . ) (124)

Ei =
X

v

cvAv +
X

v1v2

cv1v2Av1Av2 + . . . (125)

Z
E

N
ni↵j�(E) dE = hi↵|Ĥ

N
|j�i

=
X

k�l�

Hi↵k�Hk�l�Hl�... . . . H...j� (126)

ni↵j�(EF ) =
d⇢i↵j�

dE
(EF ) (127)

�µ
(1)
i =

X

↵

�Hi↵i↵ (128)

�v(rrr) ! �v(rrr,mmm) (129)

x1, x2, x3, . . . , xN (130)

y = f(x) (131)

f(x1, x2) (132)

f(x1, x2, x3) (133)

D (134)

D
2 (135)

D
N (136)

10 (137)

102 (138)

10N (139)

1010
6

(140)

103000000 (141)

1080 (142)

NX

i=1

NX

j=1

NX

k=1

NX

l=1

�i�j�k�l =

 
NX

i=1

�i

!4

(143)

x (144)

cijnm =
X

k

�kv
(k)
j v

(k)
j v

(k)
n v

(k)
m (145)

+ (146)

Ei = (147)

5

X

v

|�v(i)ih�v(i
0)| = �(i� i

0) (118)

�v(���) = �v1(i1)�v2(i2)�v3(i3) . . . (119)

h�v|�ui = �vu (120)

X

v

|�v(���)ih�v(���
0)| = �(��� � ���

0) (121)

 =
X

v1<v2<···<vN

cv1v2...vNDv1v2...vN (122)

��� = (i1, i2, i3, . . . ) (123)

v = (v1, v2, v3, . . . ) (124)

Ei =
X

v

cvAv +
X

v1v2

cv1v2Av1Av2 + . . . (125)

Z
E

N
ni↵j�(E) dE = hi↵|Ĥ
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Example: 100 neighboring atoms

• Number of terms/operations:

3-body 4-body 5-body2-body

➜ Computationally not efficient/feasible
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Neural network potentials solution

• Limit to 2-body and 3-body contributions

• Determine higher order terms from HDNN
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Atomic Cluster Expansion

• Atomic energy is fully characterized by vectors to all other atoms

➜ Atomic energy

with

i

2

su�cient data is available for methods from statistical
learning for the interpolation of high-dimensional data
sets. This has led to the adoption of machine learn-
ing to the development of interatomic potentials, such as
neural networks potentials25 or Gaussian process regres-
sion for the Gaussian approximation potentials.26 The
resulting potentials are generally called machine learn-
ing potentials, the field is very active with many recent
developments.27–41 The machine learning potentials em-
ploy a descriptor that quantifies the local atomic envi-
ronment. The atomic energy or other atomic properties
are then learned as a non-trivial function of the descrip-
tor by training with a reference data set. The machine
learning potentials reproduce DFT reference data sets
with excellent accuracy and are currently considered to
be significantly more accurate than cluster functionals.
As machine learning potentials are not derived or mo-
tivated by physical or chemical intuition, the excellent
accuracy of the machine learning potentials comes at the
cost of interpretability, and the machine learning poten-
tials are generally regarded as black box models.

In this paper I show how to obtain a cluster functional
with an accuracy that rivals machine learning potentials
but with a simple functional form that is amenable to
physical and chemical interpretation. To this end I will
first introduce the atomic cluster expansion as a general
and complete descriptor of the local atomic environment
in Sec. II. I will further show that the expansion scales
linearly with the number of neighbors Nc and therefore

overcomes the poor N (K�1)
c scaling of general many-atom

potentials. Popular descriptors are then discussed in the
light of this expansion in Sec. III and it is shown that
these descriptors may be understood as subsets of the
atomic cluster expansion. By combining a physically mo-
tivated functional form with a relatively low dimensional
atomic cluster expansion, the curse of dimensionality, i.e.
the impossibility to sample a high-dimensional space uni-
formly, that is immanent to general methods from ma-
chine/statistical learning, is overcome.

The parameterization of the non linear atomic clus-
ter expansion is demonstrated for copper and validated
against a comprehensive dataset of DFT calculations in
Sec. IV and Sec. V. The completeness of the atomic
cluster expansion means that in principle it is possible to
converge the cluster functional to arbitrary accuracy. In
Sec. VI I conclude.

II. ATOMIC CLUSTER EXPANSION

I extend the spin cluster expansion42 to a complete de-
scriptor of local atomic environments. The spin cluster
expansion was obtained as a generalization of the lat-
tice cluster expansion43 to continuous degrees of freedom,
such as the direction of magnetic moments.44 The cluster
expansion is related to Hadamard and multi-dimensional
discrete Fourier and wavelet transforms.45

Here our interest is in the energy (or another property)

of atom i,

Ei(���) = Ei(rrr1i, rrr2i, . . . , rrrNi) , (4)

which is completely characterized by the N � 1 vectors
from atom i to all other atoms, rrrji = rrrj �rrri. The collec-
tion of the N � 1 vectors is abbreviated as the configura-
tion ��� = {rrr1i, rrr2i, . . . , rrrNi} of atom i and it is clear that
the order of the entries in ��� may not matter. The in-
ner product between two functions f(���) and g(���) is then
defined as

hf |gi =
Z

f⇤(���)g(���)w(���) d��� . (5)

Next a set of orthogonal and complete basis functions
�v(rrr) with v = 0, 1, 2, . . . that depend only on a single
bond rrr are introduced,

Z
�⇤

v(rrr)�u(rrr) drrr = �vu , (6)

X

v

�⇤
v(rrr)�v(rrr

0) = �(rrr � rrr0) . (7)

The basis functions for the expansion of the atomic en-
ergy Eq.(4) are obtained from the product of single-bond
basis functions. By choosing �0 = 1 a hierarchical ex-
pansion is obtained.
A cluster ↵ with K elements contains K bonds ↵ =

(j1i, j2i, . . . , jKi), where the order of entries in ↵ does
not matter, and the vector ⌫ = (v1, v2, . . . , vK) contains
the list of single-bond basis functions in the cluster. Only
single-bond basis functions with v > 0 are considered in
⌫. The cluster basis function is given by

�↵⌫ = �v1(rrrj1i)�v2(rrrj2i) . . . �vK (rrrjKi) , (8)

with 0  K  N � 1. The orthogonality and complete-
ness of the one-bond basis functions transfers to the clus-
ter basis functions

h�↵⌫ |��µi = �↵��⌫µ , (9)

1 +
X

�✓↵

X

⌫

�⇤
�⌫(���)��⌫(���

0) = �(��� � ���0) , (10)

where ↵ is an arbitrary cluster and the right hand side of
the completeness relation is the product of the relevant
right hand sides of Eq.(7). A kernel may then be obtained
as

k(���,���0) = 1 +
X

�⌫

�⇤
�⌫(���)��⌫(���

0) , (11)

and the expansion of the atomic energy Eq.(4) may be
written in the form

Ei(���) = hk(���,���0)|Ei(���
0)i = J0 +

X

↵⌫

J↵⌫�↵⌫(���) . (12)

The expansion coe�cients J↵⌫ are obtained by projection

J↵⌫ = h�↵⌫ |Ei(���)i . (13)
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h�↵⌫ |��µi = �↵��⌫µ , (9)

1 +
X

�✓↵

X

⌫

�⇤
�⌫(���)��⌫(���

0) = �(��� � ���0) , (10)

where ↵ is an arbitrary cluster and the right hand side of
the completeness relation is the product of the relevant
right hand sides of Eq.(7). A kernel may then be obtained
as

k(���,���0) = 1 +
X

�⌫

�⇤
�⌫(���)��⌫(���

0) , (11)

and the expansion of the atomic energy Eq.(4) may be
written in the form

Ei(���) = hk(���,���0)|Ei(���
0)i = J0 +

X

↵⌫

J↵⌫�↵⌫(���) . (12)

The expansion coe�cients J↵⌫ are obtained by projection

J↵⌫ = h�↵⌫ |Ei(���)i . (13)
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su�cient data is available for methods from statistical
learning for the interpolation of high-dimensional data
sets. This has led to the adoption of machine learn-
ing to the development of interatomic potentials, such as
neural networks potentials25 or Gaussian process regres-
sion for the Gaussian approximation potentials.26 The
resulting potentials are generally called machine learn-
ing potentials, the field is very active with many recent
developments.27–41 The machine learning potentials em-
ploy a descriptor that quantifies the local atomic envi-
ronment. The atomic energy or other atomic properties
are then learned as a non-trivial function of the descrip-
tor by training with a reference data set. The machine
learning potentials reproduce DFT reference data sets
with excellent accuracy and are currently considered to
be significantly more accurate than cluster functionals.
As machine learning potentials are not derived or mo-
tivated by physical or chemical intuition, the excellent
accuracy of the machine learning potentials comes at the
cost of interpretability, and the machine learning poten-
tials are generally regarded as black box models.

In this paper I show how to obtain a cluster functional
with an accuracy that rivals machine learning potentials
but with a simple functional form that is amenable to
physical and chemical interpretation. To this end I will
first introduce the atomic cluster expansion as a general
and complete descriptor of the local atomic environment
in Sec. II. I will further show that the expansion scales
linearly with the number of neighbors Nc and therefore

overcomes the poor N (K�1)
c scaling of general many-atom

potentials. Popular descriptors are then discussed in the
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The parameterization of the non linear atomic clus-
ter expansion is demonstrated for copper and validated
against a comprehensive dataset of DFT calculations in
Sec. IV and Sec. V. The completeness of the atomic
cluster expansion means that in principle it is possible to
converge the cluster functional to arbitrary accuracy. In
Sec. VI I conclude.

II. ATOMIC CLUSTER EXPANSION

I extend the spin cluster expansion42 to a complete de-
scriptor of local atomic environments. The spin cluster
expansion was obtained as a generalization of the lat-
tice cluster expansion43 to continuous degrees of freedom,
such as the direction of magnetic moments.44 The cluster
expansion is related to Hadamard and multi-dimensional
discrete Fourier and wavelet transforms.45

Here our interest is in the energy (or another property)

of atom i,
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bond rrr are introduced,

Z
�⇤

v(rrr)�u(rrr) drrr = �vu , (6)
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The basis functions for the expansion of the atomic en-
ergy Eq.(4) are obtained from the product of single-bond
basis functions. By choosing �0 = 1 a hierarchical ex-
pansion is obtained.
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(j1i, j2i, . . . , jKi), where the order of entries in ↵ does
not matter, and the vector ⌫ = (v1, v2, . . . , vK) contains
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as
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X

�⌫

�⇤
�⌫(���)��⌫(���

0) , (11)

and the expansion of the atomic energy Eq.(4) may be
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Complexity

• Cluster basis function can be computed efficiently

• High body order is no longer a problem

• Recursive evaluation: one operation ➜ one basis function

5

X

v

|�v(i)ih�v(i
0)| = �(i� i

0) (118)

�v(���) = �v1(i1)�v2(i2)�v3(i3) . . . (119)

h�v|�ui = �vu (120)

X

v

|�v(���)ih�v(���
0)| = �(��� � ���

0) (121)
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Z
E

N
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|j�i

=
X

k�l�
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dE
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↵
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f(x1, x2) (132)

f(x1, x2, x3) (133)

D (134)

D
2 (135)

D
N (136)
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102 (138)

10N (139)

1010
6

(140)
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1080 (142)
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�i�j�k�l =
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k

�kv
(k)
j v

(k)
j v

(k)
n v

(k)
m (145)

+ (146)

Ei = (147)

. . . (148)

100
operations

100000000
operations

➜ fast and accurate representations possible
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Density trick, recursive evaluation 

E =         +...+         +...+         +...+         +...
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• Employ LCAO basis (as irreducible basis of rotation group)

• Atomic base as before

• Rotationally covariant basis functions

• Atomic cluster expansion

➔ Complete expansion for scalar, vectorial or tensorial properties
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TRIP covariance

3

and higher order tensors accordingly26. The relation be-
tween Cartesian and spherical tensors and their represen-
tation in irreducible representations of the rotation group
is discussed further in Sec. IVC.

An irreducible representation l of the rotation group
comprises 2l + 1 basis functions. I assume that the ba-
sis functions �v are chosen as belonging to a particular
irreducible representation and denote the basis functions
with v = (n, l,m). The index l specifies the irreducible
representation, n di↵erentiates between basis functions of
the same irreducible representation and m takes values
m = �l,�l + 1, . . . , l � 1, l. Typically one takes prod-
uct basis functions with a distance dependent only radial
function Rnl(r) and spherical harmonics Y m

l (r̂) that are
basis functions for the irreducible representation l and
depend only on the direction r̂rr = rrr/r,

�v(rrr) = Rnl(r)Y
m
l (r̂rr) . (10)

A product of two irreducible representations l1 and l2
may be decomposed into a sum of irreducible represen-
tations D(L) with exactly one representation L between
l1 + l2 � L � |l1 � l2|. I denote the decomposition of
the product of the representations l1 and l2 into L by
(l1l2)L. With Clebsch-Gordan coe�cients CMm1m2

Ll1l2
, the

matrix elements of the transformation are given by

{(l1l2)L}Mm1m2 = CMm1m2
Ll1l2

. (11)

If more than two irreducible representations are multi-
plied, the extraction of the resulting irreducible represen-
tations may be achieved by iterativly decomposing pair-
wise products. The resulting transformations are termed
generalized Clebsch-Gordan coe�cients or the general-
ized Wigner symbols from products of the Wigner 3j
symbol and were developed for the coupling of angular
momenta27.

The analysis for the coupling of angular momenta is
immediately transferable to the products of the atomic
base in Eq.(8) and the product basis functions Eq.(A6).
When products of three or more basis functions are
reduced to their irreducible representation, the itera-
tive decomposition may proceed along di↵erent coupling
schemes, i.e., one may first couple the first and the sec-
ond basis function and then couple the result to the third
basis function, or one may start by coupling the first and
third basis function and then couple to the second basis
function, see Refs. 27, 28, 29 for a detailed discussion.
Di↵erent coupling schemes in general lead to di↵erent
irreducible product basis functions that are related by
unitary transformations, c.f. recoupling with the Wigner
6j symbols or the Racah W coe�cients for three angular
momenta and the Wigner 9j symbols or Fano X coe�-
cients for four angular momenta26,30–33.

As the resulting irreducible basis functions from di↵er-
ent coupling schemes are connected by unitary transfor-
mations, for the purpose of extracting a set of irreducible
basis functions di↵erent coupling schemes are equiva-
lent. One is therefore free to select a particular coupling

scheme. I choose a pairwise iterative coupling scheme of
the angular momenta lll = (l1, l2, . . . , lN ) as follows,

✓
lll
LLL

L1...N

◆

N

=

✓
l1 l2 l3 . . . lN
L12 L34 . . .

L1...N

◆

= (((l1l2)L12 (l3l4)L34)L1234 (l5l6)L56 . . . lN )L123456...N ,
(12)

with the intermediate angular momenta LLL =
(L12, L34, . . . ) and the resulting angular momentum
L123456...N .
Using Clebsch-Gordan coe�cients the brackets are

written as

((l1l2)L12 (l3l4)L34)L1234 = CL1234L12L34CL12l1l2CL34l3l4 ,
(13)

with summation over the intermediate M12,M34 implied
and m1,m2,m3,m4,M1234 suppressed. Explicit expres-
sions for coupling up to eight angular momenta are given
in App. B. The parity of the product representation is
given by (�1)(l1+l2+···+lN ), therefore invariance with re-
spect to inversion requires that l1 + l2 + · · · + lN is an
even number.

For obtaining a complete set of basis functions
with specified properties under rotation and inversion
one extracts the irreducible content of representation
L123456...N from products �n1l1m1�n2l2m2�n3l3m3 . . . by
transforming with Eq.(12). This is followed by a singular
value decomposition when two or more of the basis func-
tions nili are pairwise identical to remove functions that
are linearly dependent due to permutation invariance29.
The procedure is identical for scalar, vectorial or tenso-
rial properties and di↵ers only in the resulting irreducible
representation L123456...N . For a rotationally invariant
scalar, such as an interatomic potential, one requires
L12...N = 0. For a vector-valued quantity one requires
L12...N = 1 and for the symmetric D(2) contribution to a
rank two tensor L12...N = 2, etc.

C. Relation to Cartesian tensors and expansions in
hyperspherical harmonics

The transformation between Cartesian and spherical
tensors is well established26,34–37. Here I illustrate the
relation for tensor products of unit length vectors r̂rr⌦ r̂rr⌦
r̂rr ⌦ . . . with matrix elements r̂n1 r̂n2 r̂n3 . . . . A tensor of
order N may be represented as a linear combination of
spherical harmonics up to angular momentum N ,

r̂n1 r̂n2 . . . r̂nN =
NX

l=0

lX

m=�l

X lm
n1n2n3...nN

Y m
l . (14)

The transformation matrix X is given in App. C. The
expansion of the Cartesian tensor in spherical harmonics
provides a sparse representation: the number of matrix
elements of the Cartesian tensor of order N is formally
given by 3N in three dimensions, while the number of
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Other descriptors and potentials

• Many other potentials and descriptors can be cast in the form of ACE

• Steinhardt parameters 

• Symmetry functions

• Smooth Overlap of Atomic Positions (SOAP)

• Spectral Neighbor Analysis Potential (SNAP)

• Moment Tensor Potential

• …

Behler, J. Chem. Phys. 134, 074106 (2011) 

Steinhardt, Nelson, and Ronchetti, PRB 28, 784 (1983) 

Thompson, et al., J. Comp. Phys. 285, 316 (2015) 

Shapeev, Multiscale Model. Simul. 14, 1153 (2016) 

Bartok, Kondor, and Csanyi, PRB 87, 184115 (2013) 
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Representation of energy

• Use several atomic properties

• Energy from non-linear function 

• Choice of non-linear function      : double convergence
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FIG. 1: ACE Pareto front. Test RMSE versus
computational cost for Cu (top) and Si (bottom) for
ACE potentials compared to a recent benchmark
study14. The timings from Zuo et al. 14 were reduced by
constant factors 0.55 (Cu) and 0.60 (Si) to correct for
hardware di↵erences and the new ACE timings then
overlaid.

density
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on atomic basis functions, �v(r), resulting in

Aiv =
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and (ii) choosing a tensor product basis

�v(r1i, . . . , r⌫i) =
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�vt(rti) , (4)

which leads to1

X

j1,...,jr

�v(rj1i, . . . , rjri) =
⌫Y

t=1

Aivt . (5)

We call this reformulation the “density trick” (also used
by Bartók et al. 17 and Shapeev 7 in formulating SOAP

and MTP, respectively) and it results in the computa-
tional cost of an atomic property 'i scaling linearly in N

(due to evaluating the Aik) and also linearly in ⌫ (due to
evaluating the correlations). Furthermore, in Sec. III C
we present an evaluation scheme that avoids the ⌫-scaling
altogether.
An ACE model may be defined in terms of several

atomic properties '
(p)
i , p = 1, . . . , P , for each atom i.

For the simplest linear model of the potential energy one
would use just one property, the atomic energy Ei,

Ei = '
(1)
i . (6)

A more elaborate model may generalize the pairwise re-
pulsion and the pairwise density of the Finnis-Sinclair
potential4 to arbitrary many-atom interactions,

Ei = '
(1)
i �

q
'
(2)
i . (7)

In general, a large number of di↵erent atomic proper-
ties that are regarded as descriptors enter a non-linear
function

Ei = F('(1)
i , . . . ,'

(P )
i ) , (8)

where the non-linearity F may be explicit as in the
Finnis-Sinclair model, or represent a general approxima-
tor such as artificial neural networks, as used by Behler
and Parrinello 18 , or a kernel ridge regression model as
used in the Gaussian Approximation Potential (GAP)17.
Di↵erent non-linearities F may be used to incorporate

physical or chemical insights in bond formation. Since
the d-shell of copper is nearly full, angular contributions
are generally small in the bulk, hence copper is modelled
well by classical central-force functionals with non-linear
EAM or FS type embedding functions that e↵ectively
generate high body-order terms3,4,19. Our parameteriza-
tion for copper therefore starts from the FS representa-
tion of the energy, as in Eq.(7), but with the two atomic
properties not limited to pairwise terms but including
many-atom contributions that capture small angular con-
tributions in the bulk and larger angular contributions in
small clusters or two-dimensional structures.
On the other hand, the diamond structure of silicon

is stabilized by angular contributions over close-packed
structures, which highlights the importance of inter-
actions beyond pairwise terms. Many di↵erent angle-
dependent potentials have been developed for Si. Per-
haps the best known are the Stillinger-Weber potential20

with a linear three-body term and the Terso↵ potential21

which includes non-linear functions of three-body contri-
butions. The most accurate potential for silicon to date,
the SOAP-GAP model of Bartók et al. 22 is an intrinsi-
cally high body-order potential. Here, we present a linear
ACE for Si, which may be viewed as a generalization of
this potential that includes all body-order interactions up
to some maximum. In this way, ACE is employed in its
basic form shown in Eq. (6), which simplifies the param-
eterization considerably and avoids implicit assumptions
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hardware di↵erences and the new ACE timings then
overlaid.
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generate high body-order terms3,4,19. Our parameteriza-
tion for copper therefore starts from the FS representa-
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properties not limited to pairwise terms but including
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tributions in the bulk and larger angular contributions in
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is stabilized by angular contributions over close-packed
structures, which highlights the importance of inter-
actions beyond pairwise terms. Many di↵erent angle-
dependent potentials have been developed for Si. Per-
haps the best known are the Stillinger-Weber potential20

with a linear three-body term and the Terso↵ potential21

which includes non-linear functions of three-body contri-
butions. The most accurate potential for silicon to date,
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➔ SUB-TRIP covariant representation of energy
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Representation of energy

• Two complete ACE descriptors
• Physics-motivated mild non-linearity
• Universal and scale-invariant
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Training: PACEmaker workflow

Bochkarev et al, Phys. Rev. Mater 6 (2022) 013804
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Training: feature curveANTON BOCHKAREV et al. PHYSICAL REVIEW MATERIALS 6, 013804 (2022)

FIG. 8. Convergence of force components for ethanol train and
test datasets. Horizontal lines indicate test results of ML potentials
given in Ref. [72]. See text for details.

The upper panel of Fig. 9 shows the convergence of the
enthalpy of formation when the ten binaries were fitted simul-
taneously. The ACE training error decreases monotonously
with increasing number of basis functions, reaching a value
of less than 2 meV/atom, which lies below the error achieved
by the best performing model (MTP). The ACE test error
converges more slowly, possibly due to the relatively small

FIG. 9. MAE for the enthalpy of formation versus the number of
basis functions per element (only binary interactions were included
in ACE). Horizontal lines indicate results of other ML methods
investigated in Ref. [5] (upper pannel) and RMSE for the enthalpy
of formation for individual binary alloys (lower panel).

FIG. 10. ACE learning curve for the HEA dataset taken from
Ref. [63].

number of reference data. The two single-fit errors illustrate
that for complex models the hierarchical addition of training
parameters is beneficial.

The lower panel of Fig. 9 shows a comparison for indi-
vidual binaries. Also here, ACE and MTP consistently give
similar results and outperform all other methods. As MTP can
be cast in the form of ACE [38], it is not surprising that the
predictions of both methods nearly coincide for most alloys.
Small deviations between the two methods may be attributed
to details of the ACE basis set and pacemaker fitting strategy.
The hierarchical extension of the basis functions in ACE,
Sec. IV D, enables pacemaker to achieve these results with-
out user intervention.

C. High entropy alloy

The HEA dataset [63] is relatively small (cf. Table I) and
appears to be rather inconsistent, possibly due to the numeri-
cal noise or varying magnetic states. This is indicated by the
relatively large RMSE values and the low value of q = 0.07
for the training curve shown in Fig. 10. It is possible that
either the model does not have the required capacity to learn
the data, for example, when the reference data comprises
different magnetic states while the model is nonmagnetic, or
the data is inconsistent and/or insufficient. The low q value
reflects the fact that the improvement is marginal when the
number of basis functions is increased. Furthermore, a clear
overfitting is observed when the model exceeds about 400
functions/element. Nevertheless, the ACE parametrization is
able to reach a better accuracy than the reference DeepPot-SE
model [63]. However, both models have likely exhausted the
capacity of the reference data, as their test errors are similarly
large.

For this dataset, the single fits are of comparable accuracy
as the hierarchical fit. Therefore a larger and more diverse
dataset is necessary to fully benefit from the hierarchical
fitting strategy.

VI. SUMMARY AND CONCLUSIONS

We present a general strategy for obtaining accurate
parametrizations of the atomic cluster expansion for elements,

013804-10
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Accuracy – Efficiency Pareto Front

Zuo, et al., J. Phys. Chem. A 124 (2020) 731 Lysogorskiy et al., npj Comput. Mater. 7 (2021) 97
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Chemical Complexity
• Assume different chemical species in multi-body interactions

• Decompose into low-rank tensors (exact decomposition)

➜ multiple chemical elements possible
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Multi-element parameterization

tSNE of ACE 
embeddings
with 38 elements

Dataset from
Takamoto et al., 
HME21 (2022)
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Testing and validation

• On-the-fly validation of
stacking fault energies in Cu 
during training

EFFICIENT PARAMETRIZATION OF THE ATOMIC … PHYSICAL REVIEW MATERIALS 6, 013804 (2022)

FIG. 5. Energy vs nearest-neighbor distance curves for nonregularized, L1-regularized, and w0-regularized potentials for fcc Cu (left
panels) and diamond C (right panels) structures, trained on the three nested datasets of different sizes. The grey shaded regions in the graphs
mark the energy ranges covered by each training dataset.

sufficiently simple so that the nonlinear optimization problem
with about 1400 parameters converges when all parameters
are initialized from zero.

Our ACE parametrization, employing only ∼1500 func-
tions per element, achieves a test MAE of 0.16 meV/atom for
the energy and 8.7 meV/Å per force component. These values
are very close to 0.13 meV/atom and 7.3 meV/Å reported
by Kovacs et al. [72], and 0.1 meV/atom and 6.2 meV/Å
obtained by Christensen et al. [64], which are the lowest MEA
values reported for the revMD-17 dataset.

FIG. 6. On-the-fly validation: variation of stacking fault energies
in Cu during training [40]. ESF, ISF, and TWIN denote extrinsic,
intrinsic, and twin stacking faults, respectively. Dashed lines mark
the reference DFT values; the order of the ACE predicted energies
matches that of DFT.

The ACE learning curve in Fig. 8 indicates that the accu-
racy of our model can be further improved by adding more
basis functions. However, here we do not aim at reaching the
smallest possible MAE, but to demonstrate that improvements
can be achieved systematically.

B. Binary alloys

Nyshadham et al. [5] recently fitted several state-of-the-art
surrogate ML models to ten binary alloy datasets and com-
pared the predicted enthalpies of formation. In Fig. 9, we
present how ACE parametrizations developed in this work (cf.
Table II) perform in comparison with these models.

FIG. 7. Error in the energy per atom as a function of the reference
energy for the Cu-III test dataset. The red line shows the average
error, the top panel the number of samples, and the right panel
the overall error distribution, including a normal distribution with
identical second moment.

013804-9

• Level I: comparison to DFT energies and forces
• Level II: comparison to DFT predicted properties
• Level III: validation by application collaboration
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Testing and validation: phonons in copper

Lysogorskiy et al., npj Comput. Mater. 7 (2021) 97
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FIG. 1: Phonon properties for fcc Cu: band structure (left) and density of states (right).
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FIG. 2: Phonons in 2D hcp lattice. Comparison of phonon band structure and phonon

DOS for the free-standing hcp Cu monolayer.
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Testing and validation: phonons in 2d structure
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Testing and validation: Pt-Rh alloy

Springer Nature 2021 LATEX template

10 Atomic cluster expansion for Pt-Rh catalysts

(a) (b)

Fig. 7 (a) Lattice constants of Pt-Rh alloys as a function of chemical composition at

di↵erent temperatures. The square symbols represent the experimental values at T = 300 K

[51]. (b) Formation energies of most stable ordered phases from DFT (blue diamonds) [50]

and their ACE predictions (red crosses). ACE predictions for fcc random solid solutions are

marked by red circles.

varied, from being the adjacent subsurface layer, i.e., forming two Pt layers on
the surface to the opposite surface of the slab, i.e., a Rh slab with both surfaces
covered by Pt layers. These calculations confirm that the single Pt layers on
both slab surfaces corresponds to energetically most favorable configuration,
see supplementary Fig. S4. In contrast, the formation of two adjacent Pt sur-
face layers results mostly in configurations with higher energies than when the
Pt layers are farther apart. The energetics of these interactions is described
well by ACE, confirming the reliability of ACE predictions in the large-scale
MD simulations. This analysis shows that in thermodynamic equilibrium a
multilayer segregation of Pt atoms on the surface of the Pt-Rh nanoclusters is
likely not favorable. This suggests that the core-shell morphologies with a Rh
core and a thicker Pt shell observed in some STEM experiments are kinetically
stabilized. This corroborates with the fact that the experimental synthesis
procedure creates the core first followed by the coating of the surface element.

To obtain a complementary view on the stability of the core-shell clusters,
we performed additional MD simulations at elevated temperatures. In contrast
to the hybrid MD-MC simulations presented above, we generated the initial
clusters as spheres with a Rh core and a Pt shell, to mimic real experimental
geometries. The thickness of the shell was set to approximately three Pt layers.
The clusters were then annealed at temperatures of 1000 and 1500 K.

In Fig. 9, the nanoclusters are visualized after 2 ns of annealing. At the
lower temperature of 1000 K, the cluster undergoes small shape changes but
its core-shell morphology remains intact. When the temperature is increased
to 1500 K, we start observing di↵usion events leading to a gradual intermixing
of the Rh atoms from the core into the Pt shell. The duration of the MD
simulation is too short to reach thermodynamic equilibrium and supports our
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Active learning

• Uncertainty prediction based on D-optimality

Lysogorskiy et al., Phys. Rev. Mater. 7 (2023) 043801 
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Active learning
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Active learning: Pt-Rh clusters 

• Extrapolation grade

➜ Extrapolation grade for robust uncertainties

Springer Nature 2021 LATEX template

Supplementary information 3

Fig. S2 A comparison showing the extrapolation grades for the surface atoms of the

octahedron clusters. The top configuration was evaluated using the initial version of the

ACE parametrization, the bottom configuration was simulated using the retrained ACE

parametrization after the active learning procedure.

(a) Pt30Rh70 (b) [Pt45Rh55

Fig. S3 Visualization of the initial configurations of the octahedron nanoclusters used in

the hybrid MD/MC simulations. Pt (blue) and Rh (green) atoms are randomly distributed

in the nanoclusters.

Updated reference data
using active learningBefore active learning



39

Active learning: training from large simulations 

➜ Simulations with on-the-fly uncertainty prediction (available with LAMMPS)

ACTIVE LEARNING STRATEGIES FOR ATOMIC CLUSTER … PHYSICAL REVIEW MATERIALS 7, 043801 (2023)

FIG. 10. Distribution of extrapolation grade in a Cu-fcc system:
(a) original large cell containing 4000 atoms, (b) an isolated cut-out
cluster around the red atom with large γ ; (c) the same cell as in
(b) but with periodic conditions and optimized atomic positions of
outer-shell atoms (green atoms).

number of atoms due to the quasistochastic optimization.
However, it is possible to incorporate several locally explored
atomic distortions into one supercell to increase the computa-
tional efficiency.

D. Active learning for local atomic environments

One of the common problems encountered in AL schemes
is how to efficiently perform the procedure when the region
of large extrapolation encompasses just a few atoms in an
otherwise large simulation block. Large extrapolation grades
often occur in the cores of extended defects (dislocations,
grain boundaries, crack tips, etc.) embedded in a large bulk en-
vironment containing many hundreds or thousands of atoms.
Such structures are impossible to compute with DFT methods
and add them to the training dataset.

A simple possibility is just to cut out a small, free-standing
cluster about the atom with large γ [56]. However, apart from
dealing with proper surface terminations and relaxations, this
can lead to marked changes of the electronic structure so that
the original bonding environment is not preserved. A viable
option in some cases (usually in metals) is to cut out instead
a suitable rectangular region and impose periodic boundary
conditions. Atoms in the outer shell (typically outside the
cutoff radius of the potential) are then allowed to relax to
minimize their γ , while atoms within the cutoff radius of the
atom(s) of interest with large γ are kept fixed.

We investigated this procedure for a large supercell in
Cu containing 4000 atoms. Figure 10(a) displays the distri-
bution of atomic extrapolation grades for an MD snapshot
at T = 1400 K. The red atom has the largest extrapolation
grade greater than 12. Figure 10(b) shows the results for a

small periodic cell with free surfaces that was cut out about
this atom. As expected, the presence of free surfaces leads
to a significant increase of the extrapolation grades on some
atoms. When we apply periodic boundary conditions and relax
the outer atoms, all atoms show moderate extrapolation grades
except for the central atom of interest, as shown in Fig. 10(c).

Even though it is not universally applicable, this procedure
allows us to extract a specific atomic environment from large-
scale MD simulations that is suitable for DFT calculation
and thus paves the way for learning on-the-fly in very large
systems.

VI. CONCLUSION

In this work, we compared the performance of two ap-
proaches for uncertainty indication of ACE models based on
the D-optimality criterion and ensemble learning. While both
approaches show comparable predictions, the extrapolation
grade based on D-optimality and the MaxVol algorithm is
more computationally efficient since it does not require train-
ing and inference of multiple models.

Both linear and nonlinear extrapolation grades serve as
reliable uncertainty indicators in various practical cases, in-
cluding structural and compositional extrapolation as well
as active learning. These uncertainty indicators enable active
exploration of new structures, which are unlikely to be en-
countered in molecular dynamics. This can be done without
retraining of ACE models, opening the way to the automated
discovery of rare-event configurations. Finally, we demon-
strated that active learning can also be used to explore local
atomic environments from large-scale MD simulations. In
conclusion, some form of the uncertainty indication should be
part of every interatomic potential to ascertain its reliability
and transferability.

The PACEMAKER code and the tensorpotential fitting
backend are available in Refs. [57] and [58], respectively.
Extrapolation grade calculation in LAMMPS is described at
[59].
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APPENDIX A: DEVIATION OF SITE ENERGIES

As shown in Fig. 11, the maximum deviation of atomic
energies dev(Ei ) cannot be used for uncertainty indication
because there exists no correlation between this quantity and
the absolute energy error |dE | for the complete structure.

APPENDIX B: GENERATION OF ENSEMBLES
OF ACE MODELS

For ensemble generation, we employed two levels of
randomization:

043801-9

Workflow for training from large 
simulations

(a) Detection of atom with large 
extrapolation grade

(b) Cutting out relevant atom

(c) Padding for DFT calculations

extrapolation grade
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Simulation

• Molecular dynamics
• Monte Carlo and combined MD/MC
• Free energy computation

• Heavily rely on LAMMPS
• CALPHY for free energy and phase 

diagrams

AUTOMATED FREE-ENERGY CALCULATION FROM … PHYSICAL REVIEW MATERIALS 5, 103801 (2021)

Algorithm 1. Compute free energy at constant T

1: calculate V at (NPT ) for Hf

2: if solid then
3: For all atoms do
4: calculate:
5: average mean squared displacement 〈(!r)2〉
6: spring constant k
7: setup reference Hi = HE (see Appendix B 1)
8: else if liquid then
9: calculate density ρ

10: setup reference Hi = HUF (see Appendix B 2)
11: for n independent runs do
12: equilibrate for time teq

13: switch λ : 0 → 1 over time tsw

14: calculate work W s
i→ f [Eq. (3)]

15: equilibrate for time teq

16: switch λ : 1 → 0 over time tsw

17: calculate work W s
f →i [Eq. (3)]

18: average over n independent runs !F = 1
2 (W s

i→ f − W s
f →i )

19: calculate free energy
20: Ff (N,V, T ) = Fi(N,V, T ) + !F
21: if P is known then
22: Gf (N, P, T ) = Ff (N,V, T ) + PV

free energy at constant temperature from a known reference is
implemented in Algorithm 1.

B. Temperature sweep

Next, the free energy obtained in the previous section is
taken as the initial free energy Fi at the temperature Ti and
volume Vi. We employ reversible scaling [12] to sweep the
temperature at constant volume, constant pressure, or along a
P-T phase boundary.

Apart from F (N,V, T ) and G(N, P, T ), by numerical dif-
ferentiation, entropy

S = −
(

dG
dT

)

P
, (13)

and specific heat

CP = T
(

dS
dT

)

P
, (14)

are obtained.

1. Constant volume

For sweeping the temperature at constant volume, we use
the relation

F (N,V, Tf ) = F (N,V, Ti ) − 3
2

kBTf N ln
Tf

Ti
+ Tf

Ti
!F, (15)

where !F is obtained from scaling the Hamiltonian at con-
stant temperature [Eq. (C3)]. The derivation of this expression
is summarized in Appendix C. The temperature sweep is
implemented in Algorithm 2.

Algorithm 2. T sweep for constant V or P

1: if constant V then
2: F (N,V, Ti ) from Algorithm 1
3: else if constant P
4: F (N,V, Ti ) from Algorithm 1
5: calculate G(N, P, Ti ) = F (N,V, Ti ) + PVi

6: if n independent runs then
7: constant V
8: equilibrate for time teq in NVT ensemble
9: switch λ : 1 → Ti/Tf over time tsw

10 calculate work W s
i→ f [Eq. (C3)]

11: equilibrate for time teq in NVT ensemble
12: switch λ : Ti/Tf → 1 over time tsw

13: calculate work W s
f →i [Eq. (C3)]

14: else if constant P then
15: equilibrate for time teq in NPT ensemble
16: switch λ : 1 → Ti/Tf over time tsw

17: calculate work W s
i→ f [Eq. (C6)]

18: equilibrate for time teq in NPT ensemble
19: switch λ : Ti/Tf → 1 over time tsw

20: calculate work W s
f →i [Eq. (C6)]

21: if constant V
22: average over n independent runs !F = 1

2 (W s
i→ f − W s

f →i )

23: calculate F (N,V, Tf )=F (N,V, Ti )− 3
2 kBTf N ln Tf

Ti
+ Tf

Ti
!F

24: else if constant P then
25: average over n independent runs !G = 1

2 (W s
i→ f − W s

f →i )

26: calculate G(N, P, Tf )=G(N, P, Ti )− 3
2 kBTf N ln Tf

Ti
+ Tf

Ti
!G

27: calculate S and CP using Eqs. (13) and (14)

2. Constant pressure

For calculations at constant pressure, the Gibbs free-energy
reference is obtained as Gi = Fi + PVi, where P is the pres-
sure at volume Vi. We then use

G(N, P, Tf ) = G(N, P, Ti ) − 3
2

kBTf N ln
Tf

Ti
+ Tf

Ti
!G, (16)

where !G is obtained from scaling the Hamiltonian and pres-
sure at constant temperature [Eq. (C6)], see Appendix C. The
temperature sweep is implemented in Algorithm 2.

3. P-T coexistence line

For sweeping temperature T along the coexistence line
P(T ), first, an initial coexistence point between two phases
α and β is established Gα (N, Pi, Ti ) = Gβ (N, Pi, Ti ). Then
scaling temperature and adapting pressure to continuously ful-
fill the Clausius-Clapeyron condition, a series of coexistence
points is obtained. The necessary equations are summarized
in Appendix C. The workflow is detailed in Algorithm 3.

IV. ALCHEMICAL CHANGES AND UPSAMPLING

For efficient defect formation free energies or for the
computation of phase diagrams, alchemical changes and up-
sampling are useful. To this end, we provide Algorithm 4,
which continuously transforms atoms and atomic interac-
tions from an initial system to the final system. Along the
transformation path, each atom may change its chemistry, as

103801-3

CALPHY workflow for non-
equilibrium free energy computation

Menon et al, Phys. Rev. Mater 5 (2021) 103801 
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Simulation: ACE Mg phase diagram

Moriarty and Althoff, PRB 51 (1995) 5609
GGA/LDA: Mehta, Price, Alfè, J. Chem. Phys. 125 (2006) 194507

• General purpose ACE
• Fitted to PBE data
from FHIaims

• Melting temperature
862 K (ACE)
923 K (EXP)
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Carbon
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Carbon – structural stability 

ACE: Qamar, et al., arXiv:2210.09161v2
GAP20: Rowe, et al., J. Chem. Phys. 153 (2020) 034702
TurboGAP:]Wang, et al., Chem. Mater. 34 (2022) 617

ACE TurboGAPGAP20
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Carbon – timing 

GAP20: Rowe, et al., J. Chem. Phys. 153 (2020) 034702
TurboGAP:]Wang, et al., Chem. Mater. 34 (2022) 617

ACE TurboGAP GAP20
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Carbon – quench at different densities 
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Carbon – diamond fracture

{110}

{111} KIC = 540 GPa. A1/2
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Carbon – diamond fracture
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Carbon – diamond fracture
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Graphene flake cracking 
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Carbon in argon atmosphere 

With Romain Perriot (LANL),
Simulation setup:
Pineau et al., J. Chem. Phys. 
129 (2008) 024708
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Merging of buckyballs 
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Nanoclusters
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Pt-Rh clusters 

Initial:
• Pt core
• Rh shell

www.ovito.org
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Pt-Rh clusters 

← 30% Pt

45% Pt →
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Pt-Rh clusters 
• MD simulation at 1000 K for 2 ns

➜ Rh core (meta-)stable

Springer Nature 2021 LATEX template

Atomic cluster expansion for Pt-Rh catalysts 3

(a) (b)

Fig. 1 STEM-HAADF micrograph (a) and corresponding EDS composition map (b) of a

Rh-Pt core shell nanoparticle. Pt is in blue and Rh in green. In (a) the crystallographic

facets are indicated.

there exist, to our best knowledge, no interatomic potentials for the Pt-Rh
binary system that could be applied in large-scale MD or MC studies of
thermodynamic and kinetic phenomena.

In this work, we developed an atomic cluster expansion (ACE) parametriza-
tion for Pt-Rh using a semi-automatic workflow consisting of the generation of
a training dataset based on accurate density functional theory (DFT) [13, 14]
calculations, e�cient fitting and validation procedures [15], and uncertainty
indication and active learning (AL) algorithms [16] that can be employed to
improve the model if necessary. ACE has successfully been applied to model
metallic, covalent and ionic materials and was shown to o↵er superior accuracy
and computational e�ciency [15–17].

The ACE methodology combines the advantages of machine-learned (ML)
methods and physically based models of interatomic interactions. We sum-
marize only the essentials of ACE and refer to original publications for more
details [15, 18–22].

One of the key features of ACE is a complete and hierarchical set of basis
functions Biv that span the space of local atomic environments. This enables

to expand an atomic property '(p)
i such as the energy of atom i as

'(p)
i =

nvX

v

c(p)v Biv , (1)

with expansion coe�cients c(p)v where v is composed of several indices. The
basis functions fulfill fundamental translation, rotation, inversion and per-
mutation (TRIP) invariances for the representation of scalar variables, or
equivariances for the expansion of vectorial or tensorial quantities.

In the simplest case, the energy is evaluated linearly as

Ei = '(1)
i , (2)

Springer Nature 2021 LATEX template

Atomic cluster expansion for Pt-Rh catalysts 3

(a) (b)

Fig. 1 STEM-HAADF micrograph (a) and corresponding EDS composition map (b) of a

Rh-Pt core shell nanoparticle. Pt is in blue and Rh in green. In (a) the crystallographic

facets are indicated.

there exist, to our best knowledge, no interatomic potentials for the Pt-Rh
binary system that could be applied in large-scale MD or MC studies of
thermodynamic and kinetic phenomena.

In this work, we developed an atomic cluster expansion (ACE) parametriza-
tion for Pt-Rh using a semi-automatic workflow consisting of the generation of
a training dataset based on accurate density functional theory (DFT) [13, 14]
calculations, e�cient fitting and validation procedures [15], and uncertainty
indication and active learning (AL) algorithms [16] that can be employed to
improve the model if necessary. ACE has successfully been applied to model
metallic, covalent and ionic materials and was shown to o↵er superior accuracy
and computational e�ciency [15–17].

The ACE methodology combines the advantages of machine-learned (ML)
methods and physically based models of interatomic interactions. We sum-
marize only the essentials of ACE and refer to original publications for more
details [15, 18–22].

One of the key features of ACE is a complete and hierarchical set of basis
functions Biv that span the space of local atomic environments. This enables

to expand an atomic property '(p)
i such as the energy of atom i as

'(p)
i =

nvX

v

c(p)v Biv , (1)

with expansion coe�cients c(p)v where v is composed of several indices. The
basis functions fulfill fundamental translation, rotation, inversion and per-
mutation (TRIP) invariances for the representation of scalar variables, or
equivariances for the expansion of vectorial or tensorial quantities.

In the simplest case, the energy is evaluated linearly as

Ei = '(1)
i , (2)

Liang et al., arXiv:2303.07465 
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Ag-Pd  

Ag

Pd

T = 900K
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Water
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Water

DFT reference data: Cooper, Kästner, Urban, Artrith, npj Comput. Mater. 6 (2020) 54
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Water – Active exploration

• Three generations active learning
• In total 311 DFT computations with 64 water molecules each
• Energy RMSE = 6.07 meV/atom, force RMSE = 55.91 meV/Å

Å
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Water – DFT and MP2

MP2 reference data: Daru, Forbert, Behler, Marx, Phys. Rev. Lett. 129 (2022) 226001 
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Fluorine in Water

• Fit to reference DFT data
• Energy RMSE = 0.26 meV/at
• Force RMSE = 34.52 meV/ Å

DFT reference data: Schran, Thiemann, Rowe, Müller, Marsalek, Michaelides, PNAS 118 (2021) e2110077118
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Water in BN tube

• Fit to reference DFT data

DFT reference data: Schran, Thiemann, Rowe, Müller, Marsalek, Michaelides, PNAS 118 (2021) e2110077118
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Melting
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Molten salt
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2KF-NaF

DFT reference data: Winner, Williams, Scarlat, Asta, J. Mol. Liq. 335 (2021) 116351

• Fit to DFT, RMSE 0.3 meV/at, 10 meV/Å
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Ferroelectrics
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BTO phase diagram
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BTO polarization switching
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Extensions
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Charges, magnetism, tensors, messages

• Include further degrees of freedom
(charge, magnetism, …)

• Expand vectorial or tensorial properties

• Extend single particle basis functions

➜ Atomic cluster expansion unchanged

• But more parameters

Formulas

Ralf Drautz
ICAMS, Ruhr-Universität Bochum, Bochum, Germany

(Dated: February 21, 2022)
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Magnetism weakens bonds
and lowers atomic energies.
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Stoner ferromagnetism
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Magnetism in iron
• Hamiltonian Monte Carlo combining atomic and spin dynamics
• Including longitudinal fluctuations

Drautz,
PRB (2019)
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Equivariant Message Passing Networks

• ACE can be used to generalize message passing networks
• Example: semi-local interactions
• Different flavors: mlACE, multi ACE, MACE

Bochkarev, et al, Phys. Rev. Res. Lett. (2022), Batatia, et al, arXiv:2205.06643/arXiv:2206.07697
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Software

PACE-al
active learning

PACE
LAMMPS

workflow
phase diagrams

PACEmaker (TF)
parameterization

Lysogorskiy et al., npj Comput. Mater. 7 (2021) 97
Bochkarev et al., Phys. Rev. Mat. 6 (2022) 103804
Janssen et al., Comput. Mat. Sci. 163 (2019) 24
Menon, Lysogorskiy, Rogal, Drautz, Phys. Rev. Mat. 5 (2021) 103801

github.com/ICAMS, pyiron.org, calphy.org, 
github.com/ACEsuit/ACE.jl, github.com/FitSNAP/FitSNAP

ACE.jl
parameterization

FitSNAP
parameterization



Properties of
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Conclusions

• Robust workflows from DFT to properties

• Tutorial
http://pyiron.org/potentials-workshop-2022/intro.html

E =         +                 +                         +...

DFT ACE Simulation


