From electrons to the simulation of materials

Ralf Drautz ICAMS, Ruhr-Universität Bochum, Germany

Workshop: Complex Scientific Workflows at Extreme Computational Scales Part of Long Program: New Mathematics for the Exascale: Applications to Materials Science IPAM, UCLA, Los Angeles, 3 May 2023

INTERDISCIPLINARY CENTRE FOR ADVANCED MATERIALS SIMULATION

ICAMS Team

- Yury Lysogorskiy
- Matous Mrovec
- Anton Bochkarev
- Minaam Qamar
- Matteo Rinaldi
- Yanyan Liang
- Eslam Ibrahim

Related presentations at program

- Michele Ceriotti
- Jan Janssen
- Jörg Neugebauer
- Gábor Csányi
- James Kermode
- Boris Kozinsky
- Ivan Oleynik
- Christoph Ortner
- Aidan Thompson

- Would like to go from DFT to properties within few days.
- → Efficient workflow management is critical.

- Would like to go from DFT to properties within few days.
- → Efficient workflow management is critical.

From DFT to Potentials

From DFT to Potentials

1. Interatomic potentials: Atomic Cluster Expansion

Locality

→ Focus on atomic energies

ICAMS

RUB

11

Naïve body-ordered expansion

Naïve body-ordered expansion

Example: 100 neighboring atoms

• Number of terms/operations:

Neural network potentials solution

- Limit to 2-body and 3-body contributions
- Determine higher order terms from HDNN

(•

Behler and Parrinello, PRL 98 (2007) 146401

14

RUB

Atomic Cluster Expansion

• Atomic energy is fully characterized by vectors to all other atoms

$$\boldsymbol{\sigma} = \{\boldsymbol{r}_{1i}, \boldsymbol{r}_{2i}, \dots, \boldsymbol{r}_{Ni}\}$$

→ Atomic energy

$$E_i(\boldsymbol{\sigma}) = E_i(\boldsymbol{r}_{1i}, \boldsymbol{r}_{2i}, \dots, \boldsymbol{r}_{Ni})$$

with $m{r}_{ji}=m{r}_j-m{r}_i$

Basis

• Inner product

$$\langle f|g\rangle = \int f^*(\boldsymbol{\sigma})g(\boldsymbol{\sigma})\,d\boldsymbol{\sigma}$$

- Choose single-particle basis functions
- Orthonormal and complete

$$\langle \phi_v | \phi_u \rangle = \delta_{vu}$$

$$\sum_{v} |\phi_{v}\rangle \langle \phi_{v}| = \delta(\boldsymbol{r} - \boldsymbol{r'})$$

16

RUB

Cluster Expansion

Cluster basis function

 $\Phi_{\boldsymbol{v}} = \phi_{v_1}(\boldsymbol{r}_{j_1i})\phi_{v_2}(\boldsymbol{r}_{j_2i})\phi_{v_3}(\boldsymbol{r}_{j_3i})\dots$

- Orthogonality and completeness follow $\langle \Phi_{\pmb{v}} | \Phi_{\pmb{u}} \rangle = \delta_{\pmb{vu}}$

$$\sum_{\boldsymbol{v}} |\Phi_{\boldsymbol{v}}\rangle \langle \Phi_{\boldsymbol{v}}| = \delta(\boldsymbol{\sigma} - \boldsymbol{\sigma'})$$

Cluster expansion

$$E_i(\boldsymbol{\sigma}) = \sum_{\boldsymbol{v}} J_{\boldsymbol{v}} \Phi_{\boldsymbol{v}}$$

Expansion coefficients by projection

Complexity

• Cluster basis function can be computed efficiently

$$\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} \sum_{l=1}^{N} \phi_i \phi_j \phi_k \phi_l = \left(\sum_{i=1}^{N} \phi_i\right)^4$$

100000000 operations 100 operations

- High body order is no longer a problem
- Recursive evaluation: one operation → one basis function

→ fast and accurate representations possible ICAMS

18

Density trick, recursive evaluation

TRIP covariance

• Employ LCAO basis (as irreducible basis of rotation group)

 $\phi_v(\boldsymbol{r}) = R_{nl}(r) Y_l^m(\hat{\boldsymbol{r}})$

Atomic base as before

$$A_v = \langle \rho_i | \phi_v \rangle = \sum \phi_v(\mathbf{r}_{ji})$$

• Rotationally covariant basis functions

$$B = \mathcal{C}A$$

Generalized Clebsch-Gordan coefficients

Atomic cluster expansion

$$E_i(\boldsymbol{\sigma}) = \sum_{\boldsymbol{v}} c_{\boldsymbol{v}} \boldsymbol{B}_{\boldsymbol{v}}$$

→ Complete expansion for scalar, vectorial or tensorial properties

Drautz, PRB 99 (2019) 014104; Dusson, et al, arXiv 1911.03550 (2020)

TRIP:

- Translation
- Rotation
- Inversion
- Permutation

20

RUB

Other descriptors and potentials

- Many other potentials and descriptors can be cast in the form of ACE
 - Steinhardt parameters

Steinhardt, Nelson, and Ronchetti, PRB 28, 784 (1983)

- Symmetry functions Behler, J. Chem. Phys. 134, 074106 (2011)
- Smooth Overlap of Atomic Positions (SOAP) Bartok, Kondor, and Csanyi, PRB 87, 184115 (2013)
- Spectral Neighbor Analysis Potential (SNAP) Thompson, et al., J. Comp. Phys. 285, 316 (2015)
- Moment Tensor Potential
 Shapeev, Multiscale Model. Simul. 14, 1153 (2016)

Representation of energy

• Use several atomic properties

$$\varphi_i^{(p)} = \sum_{\boldsymbol{v}} c_{\boldsymbol{v}}^{(p)} \boldsymbol{B}_{i\boldsymbol{v}}$$

• Energy from non-linear function

$$E_i = \mathcal{F}(\varphi_i^{(1)}, \dots, \varphi_i^{(P)})$$

- Choice of non-linear function \mathcal{F} : double convergence

SUB:

- Scale
- Universal
- Basis TRIP:
- Translation
- Rotation
- Inversion
- Permutation

→ SUB-TRIP covariant representation of energy

Representation of energy

$$E_i = \varphi_i^{(1)} + \sqrt{\varphi_i^{(2)}}$$

Extension of Finnis-Sinclair/ Embedded Atom Method Potential

Atomic Cluster Expansion

- Two complete ACE descriptors
- Physics-motivated mild non-linearity
- Universal and scale-invariant

Drautz, PRB 99 (2019) 014104

 $\odot AMS$

2. Training: PACEmaker

Training: PACEmaker workflow

Training: feature curve

RUB

Accuracy – Efficiency Pareto Front

Chemical Complexity

• Assume different chemical species in multi-body interactions

For five elements $5^5 = 3125$ times more effort than for a single element

Decompose into low-rank tensors (exact decomposition)

$$c_{ijnm} = \sum_{k} \lambda_{k} v_{j}^{(k)} v_{j}^{(k)} v_{n}^{(k)} v_{m}^{(k)}$$
Darby et al.,arXiv:2210.01705
$$\rightarrow \text{ multiple chemical elements possible}$$
AMS

Multi-element parameterization

tSNE of ACE embeddings with 38 elements

Dataset from Takamoto et al., HME21 (2022)

29

3. Testing and validation

Testing and validation

- Level I: comparison to DFT energies and forces
- Level II: comparison to DFT predicted properties
- Level III: validation by application

Testing and validation: phonons in copper

 $(\cdot \land)$

Lysogorskiy et al., npj Comput. Mater. 7 (2021) 97

32

Testing and validation: phonons in 2d structure

 $(\cdot \land)$

RUB

Testing and validation: Pt-Rh alloy

4. Active learning

Active learning

Uncertainty prediction based on D-optimality •

36

RUB
Active learning

RUB

Active learning: Pt-Rh clusters

• Extrapolation grade

(• /

Before active learning using active learning

Extrapolation grade for robust uncertainties

RUB

38

Updated reference data

Active learning: training from large simulations

Workflow for training from large simulations

- (a) Detection of atom with large extrapolation grade
- (b) Cutting out relevant atom
- (c) Padding for DFT calculations

→ Simulations with on-the-fly uncertainty prediction (available with LAMMPS) $I\odot \land MS$ ³⁹

5. Simulation

Simulation

- Molecular dynamics
- Monte Carlo and combined MD/MC
- Free energy computation

- Heavily rely on LAMMPS
- CALPHY for free energy and phase diagrams

CALPHY workflow for non-²/₂ equilibrium free energy computation²/₂

Menon et al, Phys. Rev. Mater 5 (2021) 103801

1:	if constant V then
2:	$F(N, V, T_i)$ from Algorithm 1
3:	else if constant P
4:	$F(N, V, T_i)$ from Algorithm 1
5:	calculate $G(N, P, T_i) = F(N, V, T_i) + PV_i$
6:	if <i>n</i> independent runs then
7:	constant V
8:	equilibrate for time t_{eq} in NVT ensemble
9:	switch $\lambda : 1 \to T_i/T_f$ over time t_{sw}
10	calculate work $W_{i \to f}^s$ [Eq. (C3)]
11:	equilibrate for time t_{eq} in NVT ensemble
12:	switch $\lambda : T_i/T_f \to 1$ over time t_{sw}
13:	calculate work $W_{f \to i}^s$ [Eq. (C3)]
14:	else if constant P then
15:	equilibrate for time t_{eq} in NPT ensemble
16:	switch $\lambda : 1 \to T_i/T_f$ over time t_{sw}
17:	calculate work $W_{i \to f}^s$ [Eq. (C6)]
18:	equilibrate for time t_{eq} in NPT ensemble
19:	switch $\lambda : T_i/T_f \to 1$ over time t_{sw}
20:	calculate work $W_{f \to i}^s$ [Eq. (C6)]
21:	if constant V
22:	average over <i>n</i> independent runs $\Delta F = \frac{1}{2}(W_{i \to f}^s - W_{f \to i}^s)$
23:	calculate $F(N, V, T_f) = F(N, V, T_i) - \frac{3}{2}k_{\rm B}T_f N \ln \frac{T_f}{T_i} + \frac{T_f}{T_i}\Delta F$
24:	else if constant P then
25:	average over <i>n</i> independent runs $\Delta G = \frac{1}{2}(W_{i \to f}^s - W_{f \to i}^s)$
26:	calculate $G(N, P, T_f) = G(N, P, T_i) - \frac{3}{2}k_{\rm B}T_f N \ln \frac{T_f}{T_i} + \frac{T_f}{T_i} \Delta G$
27:	calculate S and C_P using Eqs. (13) and (14)

41

Simulation: ACE Mg phase diagram

Carbon

Carbon – structural stability

Carbon – timing

GAP20: Rowe, et al., J. Chem. Phys. 153 (2020) 034702 TurboGAP: Wang, et al., Chem. Mater. 34 (2022) 617

RUB

Carbon – quench at different densities

 $\rho = 1.4 \text{ g/cc}$

 $\rho = 2.2 \text{ g/cc}$

111.2 ps

4140 K

Carbon – diamond fracture

Carbon – diamond fracture

ACE

Carbon – diamond fracture

Graphene flake cracking

Carbon in argon atmosphere

0 ps

ICAMS :::

With Romain Perriot (LANL), Simulation setup: Pineau et al., J. Chem. Phys. 129 (2008) 024708

55 **RU**B

Merging of buckyballs

1CAMS

Nanoclusters

Initial:

- Pt core •
- Rh shell

www.ovito.org

Pt-Rh clusters

← 30% Pt

 $45\% \text{ Pt} \rightarrow$

Pt-Rh clusters

• MD simulation at 1000 K for 2 ns

Ag-Pd

T = 900K

Water

Water

63 RUB

Water – Active exploration

- Three generations active learning
- In total 311 DFT computations with 64 water molecules each
- Energy RMSE = 6.07 meV/atom, force RMSE = 55.91 meV/Å

Water – DFT and MP2

Fluorine in Water

DFT reference data: Schran, Thiemann, Rowe, Müller, Marsalek, Michaelides, PNAS 118 (2021) e2110077118

Water in BN tube

• Fit to reference DFT data

DFT reference data: Schran, Thiemann, Rowe, Müller, Marsalek, Michaelides, PNAS 118 (2021) e2110077118

Melting

Molten salt

2KF-NaF

• Fit to DFT, RMSE 0.3 meV/at, 10 meV/Å

Ferroelectrics

BTO phase diagram

72

BTO polarization switching

Extensions

Charges, magnetism, tensors, messages

- Include further degrees of freedom • (charge, magnetism, ...)
- Expand vectorial or tensorial properties ٠
- Extend single particle basis functions ٠

 $\phi_v(\boldsymbol{r}) \rightarrow \phi_v(\boldsymbol{r}, \boldsymbol{m})$

→ Atomic cluster expansion unchanged

$$E_i(\boldsymbol{\sigma}) = \sum_{\mathbf{v}} \tilde{c}_{\mathbf{v}} \boldsymbol{A}_{\mathbf{v}}$$

But more parameters ٠

Stoner ferromagnetism

Magnetism in iron

- Hamiltonian Monte Carlo combining atomic and spin dynamics
- Including longitudinal fluctuations

Equivariant Message Passing Networks

- ACE can be used to generalize message passing networks
- Example: semi-local interactions
- Different flavors: mIACE, multi ACE, MACE

Bochkarev, et al, Phys. Rev. Res. Lett. (2022), Batatia, et al, arXiv:2205.06643/arXiv:2206.07697

78

Software

PACE LAMMPS

PACEmaker (TF)

parameterization

f calphy

phase diagrams

ACE.jl

79

RUB

github.com/ICAMS, pyiron.org, calphy.org, github.com/ACEsuit/ACE.jl, github.com/FitSNAP/FitSNAP Lysogorskiy et al., npj Comput. Mater. 7 (2021) 97 Bochkarev et al., Phys. Rev. Mat. 6 (2022) 103804 Janssen et al., Comput. Mat. Sci. 163 (2019) 24 Menon, Lysogorskiy, Rogal, Drautz, Phys. Rev. Mat. 5 (2021) 103801

Conclusions

• Robust workflows from DFT to properties

Tutorial

http://pyiron.org/potentials-workshop-2022/intro.html

