From electrons to the simulation of materials

Ralf Drautz
ICAMS, Ruhr-Universität Bochum, Germany

Workshop: Complex Scientific Workflows at Extreme Computational Scales Part of Long Program: New Mathematics for the Exascale: Applications to Materials Science

IPAM, UCLA, Los Angeles, 3 May 2023

ICAMS Team

- Yury Lysogorskiy
- Matous Mrovec
- Anton Bochkarev
- Minaam Qamar
- Matteo Rinaldi
- Yanyan Liang
- Eslam Ibrahim

Related presentations at program

- Michele Ceriotti
- Jan Janssen
- Jörg Neugebauer
- Gábor Csányi
- James Kermode
- Boris Kozinsky
- Ivan Oleynik
- Christoph Ortner
- Aidan Thompson

Outline

Fundamental

Theory \longrightarrow| Properties of |
| :---: |
| Materials |

Outline

\square DFT \longrightarrow| Properties of
 Materials |
| :---: |

Outline

\rightarrow DFT \rightarrow| Interatomic |
| :---: |
| Potentials |\rightarrow Simulation \rightarrow| Properties of
 Materials |
| :---: |

Outline

- Would like to go from DFT to properties within few days.
\rightarrow Efficient workflow management is critical.

\qquad
c.f. talks Jörg Neugebauer and Jan Janssen

Outline

- Would like to go from DFT to properties within few days.
\rightarrow Efficient workflow management is critical.

c.f. talks Jörg Neugebauer and Jan Janssen

From DFT to Potentials

From DFT to Potentials

1. Interatomic potentials: Atomic Cluster Expansion

Locality

Naïve body-ordered expansion

Naïve body-ordered expansion

Example: 100 neighboring atoms

- Number of terms/operations:
100100001000000100000000
\rightarrow Computationally not efficient/feasible

Neural network potentials solution

- Limit to 2-body and 3-body contributions
- Determine higher order terms from HDNN

Behler and Parrinello, PRL 98 (2007) 146401

Atomic Cluster Expansion

- Atomic energy is fully characterized by vectors to all other atoms

$$
\boldsymbol{\sigma}=\left\{\boldsymbol{r}_{1 i}, \boldsymbol{r}_{2 i}, \ldots, \boldsymbol{r}_{N i}\right\}
$$

\rightarrow Atomic energy

$$
\begin{aligned}
& E_{i}(\boldsymbol{\sigma})=E_{i}\left(\boldsymbol{r}_{1 i}, \boldsymbol{r}_{2 i}, \ldots, \boldsymbol{r}_{N i}\right) \\
& \text { with } \quad \boldsymbol{r}_{j i}=\boldsymbol{r}_{j}-\boldsymbol{r}_{i}
\end{aligned}
$$

Basis

- Inner product

$$
\langle f \mid g\rangle=\int f^{*}(\boldsymbol{\sigma}) g(\boldsymbol{\sigma}) d \boldsymbol{\sigma}
$$

- Choose single-particle basis functions
- Orthonormal and complete

$$
\begin{aligned}
\left\langle\phi_{v} \mid \phi_{u}\right\rangle & =\delta_{v u} \\
\sum_{v}\left|\phi_{v}\right\rangle\left\langle\phi_{v}\right| & =\delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)
\end{aligned}
$$

- Each basis function $\phi_{v}\left(\boldsymbol{r}_{j i}\right)$ depends only on single bond vector

Cluster Expansion

- Cluster basis function

$$
\Phi_{\boldsymbol{v}}=\phi_{v_{1}}\left(\boldsymbol{r}_{j_{1} i}\right) \phi_{v_{2}}\left(\boldsymbol{r}_{j_{2} i}\right) \phi_{v_{3}}\left(\boldsymbol{r}_{j_{3} i}\right) \ldots
$$

- Orthogonality and completeness follow

$$
\begin{aligned}
\left\langle\Phi_{\boldsymbol{v}} \mid \Phi_{\boldsymbol{u}}\right\rangle & =\delta_{\boldsymbol{v} \boldsymbol{u}} \\
\sum_{\boldsymbol{v}}\left|\Phi_{\boldsymbol{v}}\right\rangle\left\langle\Phi_{\boldsymbol{v}}\right| & =\delta\left(\boldsymbol{\sigma}-\boldsymbol{\sigma}^{\prime}\right)
\end{aligned}
$$

- Cluster expansion

$$
E_{i}(\boldsymbol{\sigma})=\sum_{\boldsymbol{v}} J_{\boldsymbol{v}} \Phi_{\boldsymbol{v}}
$$

- Expansion coefficients by projection

$$
J_{\boldsymbol{v}}=\left\langle\Phi_{\boldsymbol{v}} \mid E_{i}\right\rangle
$$

Complexity

- Cluster basis function can be computed efficiently

$$
\begin{array}{cc}
\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} \sum_{l=1}^{N} \phi_{i} \phi_{j} \phi_{k} \phi_{l}= & \left(\sum_{i=1}^{N} \phi_{i}\right)^{4} \\
100000000 & 100 \\
\text { operations } & \text { operations }
\end{array}
$$

- High body order is no longer a problem
- Recursive evaluation: one operation \rightarrow one basis function
\rightarrow fast and accurate representations possible

Density trick, recursive evaluation

- Atomic base

$$
A_{v}=\sum_{j} \phi_{v}\left(\boldsymbol{r}_{j i}\right)
$$

- Cluster expansion \rightarrow polynomial
$E_{i}(\boldsymbol{\sigma})=\sum_{\mathbf{v}} \tilde{c}_{\mathbf{v}} A_{\mathbf{v}}$ with $A_{\mathbf{v}}=A_{v_{1}} \ldots A_{v_{N}}$

CPU time $\propto N_{\leftarrow}^{|\boldsymbol{v}|}$ number of neighbors

TRIP covariance

- Employ LCAO basis (as irreducible basis of rotation group)

$$
\phi_{v}(\boldsymbol{r})=R_{n l}(r) Y_{l}^{m}(\hat{\boldsymbol{r}})
$$

- Atomic base as before

$$
A_{v}=\left\langle\rho_{i} \mid \phi_{v}\right\rangle=\sum_{i} \phi_{v}\left(\boldsymbol{r}_{j i}\right)
$$

- Rotationally covariant basis functions

$$
B=\mathcal{C} A
$$

Generalized Clebsch-Gordan coefficients

TRIP:

- Translation
- Rotation
- Inversion
- Permutation
- Atomic cluster expansion

$$
E_{i}(\boldsymbol{\sigma})=\sum_{\boldsymbol{v}} c_{\boldsymbol{v}} \boldsymbol{B}_{\boldsymbol{v}}
$$

\rightarrow Complete expansion for scalar, vectorial or tensorial properties
Drautz, PRB 99 (2019) 014104; Dusson, et al, arXiv 1911.03550 (2020)

Other descriptors and potentials

- Many other potentials and descriptors can be cast in the form of ACE
- Steinhardt parameters

Steinhardt, Nelson, and Ronchetti, PRB 28, 784 (1983)

- Symmetry functions

Behler, J. Chem. Phys. 134, 074106 (2011)

- Smooth Overlap of Atomic Positions (SOAP)

Bartok, Kondor, and Csanyi, PRB 87, 184115 (2013)

- Spectral Neighbor Analysis Potential (SNAP)

Thompson, et al., J. Comp. Phys. 285, 316 (2015)

- Moment Tensor Potential

Shapeev, Multiscale Model. Simul. 14, 1153 (2016)

Representation of energy

- Use several atomic properties

$$
\varphi_{i}^{(p)}=\sum_{\boldsymbol{v}} c_{\boldsymbol{v}}^{(p)} \boldsymbol{B}_{i \boldsymbol{v}}
$$

- Energy from non-linear function

$$
E_{i}=\mathcal{F}\left(\varphi_{i}^{(1)}, \ldots, \varphi_{i}^{(P)}\right)
$$

- Choice of non-linear function \mathcal{F} : double convergence

SUB:

- Scale
- Universal
- Basis TRIP:
- Translation
- Rotation
- Inversion
- Permutation
\rightarrow SUB-TRIP covariant representation of energy

Representation of energy

- Two complete ACE descriptors
- Physics-motivated mild non-linearity
- Universal and scale-invariant

Drautz, PRB 99 (2019) 014104

2. Training: PACEmaker

Training: PACEmaker workflow

trainable parameters: $\Theta=\left\{c_{n l k}^{\mu_{i} \mu_{j}}, c_{\mu \mathrm{nlL}}^{(p)}\right\}$

automatic gradients

Training: feature curve

Ethanol

Accuracy - Efficiency Pareto Front

Zuo, et al., J. Phys. Chem. A 124 (2020) 731
Lysogorskiy et al., npj Comput. Mater. 7 (2021) 97
-○○○○○○••••••

Chemical Complexity

- Assume different chemical species in multi-body interactions

For five elements

$$
5^{5}=3125
$$

times more effort than
for a single element

- Decompose into low-rank tensors (exact decomposition)

$$
c_{i j n m}=\sum_{k} \lambda_{k} v_{j}^{(k)} v_{j}^{(k)} v_{n}^{(k)} v_{m}^{(k)}
$$

Darby et al.,arXiv:2210.01705
\rightarrow multiple chemical elements possible

Multi-element parameterization

3. Testing and validation

Testing and validation

- Level I: comparison to DFT energies and forces
- Level II: comparison to DFT predicted properties
- Level III: validation by application
- On-the-fly validation of stacking fault energies in Cu during training

Testing and validation: phonons in copper

Lysogorskiy et al., npj Comput. Mater. 7 (2021) 97

Testing and validation: phonons in 2d structure

Testing and validation: Pt-Rh alloy

4. Active learning

Active learning

- Uncertainty prediction based on D-optimality

Lysogorskiy et al., Phys. Rev. Mater. 7 (2023) 043801

Active learning

Generation: 0

Active learning: Pt-Rh clusters

- Extrapolation grade

Before active learning

Updated reference data using active learning

\rightarrow Extrapolation grade for robust uncertainties

Active learning: training from large simulations

Workflow for training from large simulations
(a) Detection of atom with large extrapolation grade
(b) Cutting out relevant atom
(c) Padding for DFT calculations

\rightarrow Simulations with on-the-fly uncertainty prediction (available with LAMMPS)

5. Simulation

Simulation

- Molecular dynamics
 - Monte Carlo and combined MD/MC
 - Free energy computation

```
if constant }V\mathrm{ then
    F(N,V,Ti) from Algorithm 1
else if constant P
    F(N,V,Ti) from Algorithm 1
    calculate G(N,P,T}\mp@subsup{T}{i}{})=F(N,V,T\mp@subsup{T}{i}{})+P\mp@subsup{V}{i}{
if }n\mathrm{ independent runs then
    constant V
        equilibrate for time teq in NVT ensemble
        switch \lambda:1 }->\mp@subsup{T}{i}{}/\mp@subsup{T}{f}{}\mathrm{ over time }\mp@subsup{t}{\textrm{sw}}{
        calculate work Wi->f [Eq. (C3)]
        equilibrate for time teq in NVT ensemble
        switch \lambda:T}\mp@subsup{T}{i}{}/\mp@subsup{T}{f}{}->1\mathrm{ over time }\mp@subsup{t}{\textrm{sw}}{
        calculate work W }\mp@subsup{W}{f->i}{s}[\textrm{Eq. (C3)]
else if constant P}\mathrm{ then
        equilibrate for time teq in NPT ensemble
        switch \lambda:1 }->\mp@subsup{T}{i}{}/\mp@subsup{T}{f}{}\mathrm{ over time }\mp@subsup{t}{\textrm{sw}}{
        calculate work Wi->f [Eq. (C6)]
        equilibrate for time teq in NPT ensemble
        switch \lambda:T}\mp@subsup{T}{i}{}/\mp@subsup{T}{f}{}->1\mathrm{ over time }\mp@subsup{t}{\textrm{sw}}{
        calculate work }\mp@subsup{W}{f->i}{s}[Eq. (C6)
if constant V
    average over n independent runs \DeltaF=\frac{1}{2}(\mp@subsup{W}{i->f}{s}-\mp@subsup{W}{f->i}{s})
    calculate F}(N,V,\mp@subsup{T}{f}{})=F(N,V,\mp@subsup{T}{i}{})-\frac{3}{2}\mp@subsup{k}{\textrm{B}}{}\mp@subsup{T}{f}{}N\operatorname{ln}\frac{\mp@subsup{T}{f}{}}{\mp@subsup{T}{i}{}}+\frac{\mp@subsup{T}{f}{}}{\mp@subsup{T}{i}{}}\Delta
else if constant P then
    average over n independent runs \DeltaG=\frac{1}{2}(\mp@subsup{W}{i->f}{s}-\mp@subsup{W}{f->i}{s})
    calculate G(N,P,T}\mp@subsup{T}{f}{})=G(N,P,\mp@subsup{T}{i}{})-\frac{3}{2}\mp@subsup{k}{\textrm{B}}{}\mp@subsup{T}{f}{}N\operatorname{ln}\frac{\mp@subsup{T}{f}{}}{\mp@subsup{T}{i}{}}+\frac{\mp@subsup{T}{f}{}}{\mp@subsup{T}{i}{}}\Delta
    calculate S and C}\mp@subsup{C}{P}{}\mathrm{ using Eqs. (13) and (14)
```

Menon et al, Phys. Rev. Mater 5 (2021) 103801

Simulation: ACE Mg phase diagram

- General purpose ACE
- Fitted to PBE data from FHlaims
- Melting temperature 862 K (ACE) 923 K (EXP)

Moriarty and Althoff, PRB 51 (1995) 5609
GGA/LDA: Mehta, Price, Alfè, J. Chem. Phys. 125 (2006) 194507

Carbon

Carbon - structural stability

GAP20

TurboGAP

ACE: Qamar, et al., arXiv:2210.09161v2
GAP20: Rowe, et al., J. Chem. Phys. 153 (2020) 034702
TurboGAP: Wang, et al., Chem. Mater. 34 (2022) 617

Carbon - timing

GAP20: Rowe, et al., J. Chem. Phys. 153 (2020) 034702
TurboGAP: Wang, et al., Chem. Mater. 34 (2022) 617

Carbon - quench at different densities

111.2 ps

Carbon - diamond fracture

\{111\}

$$
\mathrm{K}_{\mathrm{IC}}=540 \mathrm{GPa} . \mathrm{A}^{1 / 2}
$$

Carbon - diamond fracture

Carbon - diamond fracture

1 ps

Graphene flake cracking

Carbon in argon atmosphere

0 ps

With Romain Perriot (LANL), Simulation setup:
Pineau et al., J. Chem. Phys. 129 (2008) 024708
-

Merging of buckyballs

Nanoclusters

Initial:

- Pt core
- Rh shell

OVITO
 www.ovito.org

Pt-Rh clusters

$\leftarrow 30 \% \mathrm{Pt}$

45\% Pt \rightarrow

Pt-Rh clusters

- MD simulation at 1000 K for 2 ns

\rightarrow Rh core (meta-)stable
Liang et al., arXiv:2303.07465
$\mathrm{Ag}-\mathrm{Pd}$

Water

Water

DFT reference data: Cooper, Kästner, Urban, Artrith, npj Comput. Mater. 6 (2020) 54
| \asymp MS

Water - Active exploration

- Three generations active learning
- In total 311 DFT computations with 64 water molecules each
- Energy RMSE $=6.07 \mathrm{meV} /$ atom, force $\mathrm{RMSE}=55.91 \mathrm{meV} / \AA \AA$

Water - DFT and MP2

MP2 reference data: Daru, Forbert, Behler, Marx, Phys. Rev. Lett. 129 (2022) 226001

Fluorine in Water

- Fit to reference DFT data
- Energy RMSE = $0.26 \mathrm{meV} / \mathrm{at}$
- Force RMSE = $34.52 \mathrm{meV} / \AA$

DFT reference data: Schran, Thiemann, Rowe, Müller, Marsalek, Michaelides, PNAS 118 (2021) e2110077118 に A MAS

Water in BN tube

- Fit to reference DFT data

DFT reference data: Schran, Thiemann, Rowe, Müller, Marsalek, Michaelides, PNAS 118 (2021) e2110077118 -刦NS 67

Melting

Molten salt

2KF-NaF

- Fit to DFT, RMSE $0.3 \mathrm{meV} / \mathrm{at}$, $10 \mathrm{meV} / \AA \AA$

DFT reference data: Winner, Williams, Scarlat, Asta, J. Mol. Liq. 335 (2021) 116351

Ferroelectrics

BTO phase diagram

BTO polarization switching

Polarization switch, $\mathrm{T}=220 \mathrm{~K}, \mathrm{P}=0, \mathrm{E}=0.01 \mathrm{~V} / \AA \AA$

Extensions

Charges, magnetism, tensors, messages

- Include further degrees of freedom (charge, magnetism, ...)
- Expand vectorial or tensorial properties
- Extend single particle basis functions

$$
\phi_{v}(\boldsymbol{r}) \rightarrow \phi_{v}(\boldsymbol{r}, \boldsymbol{m})
$$

\rightarrow Atomic cluster expansion unchanged

$$
E_{i}(\sigma)=\sum_{\mathbf{v}} \tilde{c}_{\mathbf{v}} A_{\mathbf{v}}
$$

- But more parameters

Stoner ferromagnetism

$$
\delta N=n \Delta
$$

$$
m=N_{\uparrow}-N_{\downarrow}=2(n \Delta)
$$

Magnetism weakens bonds and lowers atomic energies.

$$
\delta E_{k i n}=(n \Delta) \Delta \quad E_{X}=-\frac{1}{4}{I m^{2}}^{2}=-I(n \Delta)^{2}
$$

$$
\delta E=\delta E_{k i n}+E_{X}=n \Delta^{2}(1-I n)
$$

Magnetism in iron

- Hamiltonian Monte Carlo combining atomic and spin dynamics
- Including longitudinal fluctuations

Drautz, PRB (2019)

Equivariant Message Passing Networks

- ACE can be used to generalize message passing networks
- Example: semi-local interactions
- Different flavors: mIACE, multi ACE, MACE

Bochkarev, et al, Phys. Rev. Res. Lett. (2022), Batatia, et al, arXiv:2205.06643/arXiv:2206.07697

Software

PACE LAMMPS

PACEmaker (TF)
parameterization

PACE-al

active learning

ACE.jl

parameterization

FitSNAP

parameterization
github.com/ICAMS, pyiron.org, calphy.org,
github.com/ACEsuit/ACE.jl, github.com/FitSNAP/FitSNAP
Lysogorskiy et al., npj Comput. Mater. 7 (2021) 97
Bochkarev et al., Phys. Rev. Mat. 6 (2022) 103804
Janssen et al., Comput. Mat. Sci. 163 (2019) 24
Menon, Lysogorskiy, Rogal, Drautz, Phys. Rev. Mat. 5 (2021) 103801
© $\wedge M S$

Conclusions

- Robust workflows from DFT to properties

$\triangle \mathrm{DFT} \rightarrow$ ACE \longrightarrow Simulation \rightarrow| Properties of |
| :---: |
| Materials |

- Tutorial
http://pyiron.org/potentials-workshop-2022/intro.html

