High-Throughput DFT and Monte Carlo for Reaction Networks and Machine Learning

Samuel M. Blau Research Scientist Lawrence Berkeley Lab

High-Throughput Molecular DFT Data Generation

High-Throughput Molecular DFT Data Generation

High-Throughput Molecular DFT Workflow Infrastructure

BERKELEY LAB

We Use Workflows to Generate Unique Simulated Datasets

Lithium-Ion Battery Electrolyte 17,190 molecules

E. W. C. Spotte-Smith*, S. M. Blau*, et al., Sci. Data 2021

 ω B97X-V/def2-TZVPPD/SMD

Collaborators:

MADEIRA

MAgnesium Dataset of Electrolyte and Interphase ReAgents: 11,502 molecules

E. W. C. Spotte-Smith, S. M. Blau, et al., JACS (accepted)

ωB97X-V/def2-TZVPPD/SMD

Evan Spotte-Smith

Kristin Persson

ReActants, Products, and Transitionstates of Elementary Reactions: >15,000 complex reactions E. W. C. Spotte-Smith, S. M. Blau, et al., *In preparation*

ωB97X-D/def2-SVPD/PCM

We Use Workflows to Generate Unique Simulated Datasets

Interactions: Lone pairs: perturbation energy, energy hybridization characters, difference, fock matrix element occupancies NBO data **Bond orbitals:** occupancies, hyb. char. Bond-atom: and polarization differences hybridization Atoms: characters, charge, core, polarization valence, total

ESCoMMS

Electronic Structure of Complexeswith Metals of Many Spins:>140,000 complexesωE

ERKELEY LAB

ωB97M-V/def2-SVPD

ORbital Interactions of OrgaNic Species: >230,000 molecules D. Boiko et al., ChemRxiv 2022

ORIONS

Ping Yang

Gabe Gomes

SUNSET

Simulated Upconverting Nanoparticle Spectra for Emissions Tuning: >6,000 spectra (kMC, not DFT)

Eric Sivonxay Emory Chan

Machine Learning Atop Our DFT Datasets

M. Wen, S. M. Blau, E. Spotte-Smith, S. Dwaraknath, K. A. Persson, Chem. Sci. 2021

An orbital-based representation for accurate quantum machine learning

Cite as: J. Chem. Phys. 156, 114101 (2022); doi: 10.1063/5.0083301 Submitted: 23 December 2021 • Accepted: 24 February 2022 • Published Online: 15 March 2022

Konstantin Karandashev^{1,a)} (D) and O. Anatole von Lilienfeld^{1,2,b)} (D)

"The LIBE dataset is of particular interest... [because] it contains species of different charge and spin states, enabling us to test [our model]'s ability to process them..."

D. Boiko*, T. Reschützegger*, B. Sanchez-Lengeling, S. M. Blau, G. d. P. Gomes, In preparation

Introduction to Chemical Reaction Networks (CRNs)

Chemical reaction network (CRN)

Introduction to Chemical Reaction Networks (CRNs)

Chemical reaction network (CRN)

Introduction to Chemical Reaction Networks (CRNs)

A. S. Krishnapriyan, K. A. Persson, Nat. Comp. Sci. 2023

Background: Solid-Electrolyte-Interphase Formation

Background: Solid-Electrolyte-Interphase Formation

Goal: enable next-generation batteries by controlling SEI formation

Big questions:

- 1. What species form?
 - Identify products
- 2. How do those species form?
 - Reaction mechanisms
- 3. How do individual species, pathways compete and interact?

AIMD, by-hand DFT investigations: limited insight

A Data-Driven Approach to Understanding Reactivity

- Rational enumeration of possible species, reactions
- ΔG of each reaction in isolation via HT molecular DFT

- Network analysis: novel mechanistic insight
- Workflows necessary for data generation

High-Throughput Molecular DFT Data Generation

The Challenge of Reaction Generation

- Given e.g. 10k species, how to enumerate connecting reactions?
- Common approach templates:

Our solution: filters

Goals:

• Minimize prescriptive constraints in

order to facilitate discovery

- Want all reactions that:
 - Are likely to be single-step
 - May be kinetically viable
- Enable automated kinetic refinement
- Resolve complex competition
- Prescriptive templates are not well-suited to electron-driven chemistry

D. Barter*, E. W. C. Spotte-Smith*, N. Redkar, S. Dwaraknath, K. A. Persson, S. M. Blau, Dig. Disc. 2023

Input: initial species

LIBE-CHOLi = 8904 species

Output: species, reactions that compose network

After filtering = 5193 species

- Metal-centric complexes
- Li⁰-containing species

H+

KEEP

_____o

KEEP

C3 H3 O3

1. Filter species

OH 0 0 0 0

KEEP

KEEP

DISCARD

DISCARD

> 176

billion

rxns

DISCARD

- **KFFP**
- Too many bonds changing •
- Bond change + redox •
- Coordination + covalent • bond change

C3 H4 O3

_)∕=o

OH 0 0 0 0

 \mathbf{S}_{init}

Input: initial species

LIBE-CHOLi = 8904 species

2. Bucket Species by Composition

H1

H⁺

⊖∕_O HC,___O

KEEP

⊖0--Li , O

DISCARD

DISCARD

After filtering = 5193 species

3. Generate reactions by stoichiometry

Reaction Network Analysis: Graphs vs Kinetic Monte Carlo

S. M. Blau, H. D. Patel, E. Spotte-Smith, X. Xie, S. Dwaraknath, K. A. Persson, Chem. Sci. 2021

- No concept of system state / concentrations ٠
- Pathfinding to a given species scales as $O(N^2)$ ۲
- Must know target of interest a priori ٠

- No, all $\Delta G < 0$ rxns, all same rate
- "Thermodynamically bounded"

- Need initial state, evolve full system stepwise •
- Stochastic sampling scales as O(logN) + parallelizable •
- Target prediction from full system exploration...? •

Reaction Network Monte Carlo: R

- 30 of each x_i
- All ΔG < 0: can run to completion
- 100k trajectories

Reaction Network Monte Carlo: RNMC

github.com/BlauGroup/HiPRGen github.com/BlauGroup/RNMC

Converging RNMC and Identifying Network Products

Can the average trajectory identify network products?

Converging RNMC and Identifying Network Products

Building Up and Picking Apart Complexity

BERKELEY LAB

Predicted Battery Network Products: 36 out of 5139

Predicted Battery Network Products: 36 out of 5139

[EC, Li⁺] and [EC, Li⁺, CO₂] at 0V and +0.5V vs. Li/Li⁺

- Recovered nearly all observed or proposed molecular SEI components
- Only thermodynamics unexpectedly effective!
- So about those particularly weird molecules...

D. Barter*, E. W. C. Spotte-Smith*, N. Redkar, S. Dwaraknath, K. A. Persson, S. M. Blau, Dig. Disc. 2023

Network Path to Refined Mechanism: LFEO

Applied semi-automated TS procedure to 15 shortest thermo. paths – 12th shortest with [Li⁺, EC] at OV vs Li/Li⁺:

From network:

Elementary mechanism:

Mechanistic Model of SEI Formation Derived from CRN

- Pathways derived from CRN, semi-automated ΔG[‡] calcs
- Recovered bi-layer SEI from first principles for first time
- Is this approach limited to just SEI formation? No!

Background: Nanoscale Patterning with Photolithography

Background: Nanoscale Patterning with Photolithography

70nm

Chemical reactions cause solubility switch

- 1994 to 2017: "deep" UV, 248 nm 134 nm light
 - 5 eV 9 eV photons
 - Selective resonant photochemistry
- Want smaller patterns? Need shorter wavelength!
- 2018 to now: "extreme" UV, 13.5 nm light
 - 92 eV photons
 - Stochastic photoionization yields poorly understood radical ion reaction cascade

EUV Lithography Reaction Network Construction

EUV Lithography Reaction Network Analysis

Recap: The Steps of Building and Analyzing a CRN

1. Species generation 3. Pathway sampling 4. Identify Products 2. Reaction generation Generate reactions Perform many thermodynamically bounded Monte Carlo trajectories by stoichiometry Recombinant Principal Molecular fragments molecules molecules Species Enumeration ,∕=o High-throughput DFT Extract shortest reaction pathways from each trajectory to each specie of interest Filter reactions High formation / consumption $\bigcirc \longrightarrow \bigcirc \square$ $H^{+} \xrightarrow{\Theta}_{HC} \xrightarrow{0}_{O} \longrightarrow \bigcup_{O} \xrightarrow{0}_{O}$ Significant accumulation **KFFP** KFFP Low-cost pathways available **Network product?** Reaction Coordinate Reaction Coordinate Reaction Coordina DISCARD DISCARD $\bigcirc \overset{\mathsf{O}}{\longrightarrow} \overset{\mathsf{O}}{\longrightarrow} \overset{\mathsf{O}}{\longrightarrow} \overset{\mathsf{O}}{\longrightarrow} \overset{\mathsf{H}^*}{\longrightarrow} \overset{\mathsf{O}}{\longrightarrow} \overset{\mathsf{O}}{\to} \overset{\mathsf{O}}{\longrightarrow} \overset{\mathsf{O}}{\to} \overset{\mathsf{$ Transition state calcs DISCARD KEEP Build kinetic models

Under development: ML-assisted network expansion

Conce

Step

Discover novel

important

pathways

species and

Background: Upconverting Nanoparticles (UCNPs)

Security Printing

Lu et al. Nat. Photon. 2014

Bio-imaging

Xiong et al, Anal. Chem. 2009

3D Printing

Sanders et al, Nature 2022

UCNP Doping and Heterostructure

UCNP Photophysics Can Be Simulated With kMC

Transition rate constants

KELEY LAB

20000

10000

0

-10000

Large Search Space Necessitates Intelligent Searching

Combinatorial/Robotic Synthesis

Consider a simple spherical nanoparticle:

- <u>Chose up to 4 dopants</u> (of 13 lanthanides)
 1,093 combinations
- <u>3 Dopant concentrations</u> Low, Medium, High
 66,379 dopant configurations
- <u>5 particle sizes</u> 4, 6, 8, 10, & 12nm

265,516 nanoparticle configurations

Inverse Design

Sanchez-Lengling et al. Science 2018

Generating a Dataset for Machine Learning

IID Dataset:

- Up to 8 nm diameter core
- Up to 3 shells
 - Each shell is 1-2.5 nm thick
- Consider only Yb, Er, and Nd dopants

OOD Testing Dataset:

- Up to 8 nm diameter core
- 4 shells
 - Each shell is 1-2.5 nm thick
- Consider only Yb, Er, and Nd dopants

>6,000 nanoparticle configurations/spectra simulated

UCNP kinetic Monte Carlo Simulation Workflow

KELEY LAB

Representations of Nanoparticles for Machine Learning

E. Sivonxay, E. Chan, S. M. Blau, In preparation

E. Sivonxay, E. Chan, S. M. Blau, In preparation

KELEY LAB

Comparing Tabular vs. Image vs. Graph Rep. Performance

Comparing Tabular vs. Image vs. Graph Rep. Performance

Comparing Tabular vs. Image vs. Graph Rep. Performance

Inverse Design of Nanoparticles Via Gradient Ascent

E. Sivonxay, E. Chan, S. M. Blau, In preparation

BERKELEY LAB

33

Acknowledgements

Daniel Barter

Evan Spotte-Smith

Eric Sivonxay

Jacob Milton

Frances Houle

Emory Chan

Office of Science

Center for High Precision Patterning Science

KELEY LAB

