Workflows for experimental facilities and the digital twin approach

IPAM Long Program: New Mathematics for the Exascale: Applications to Materials Science

Workshop III: Complex Scientific Workflows at Extreme Computational Scales

Amedeo Perazzo, Jana Thayer May 1st, 2023

Contents

Introduction to the Linac Coherent Light Source (LCLS) the most powerful X-ray Free electron Laser in the world

- Accelerator and instruments
- Beam parameters

Material science experiments at an XFEL

Complex workflows for XFELs

• Interfacing the LCLS beamlines to a supercomputer

Introduction to the digital twin approach

• Integrating simulations with experiments in real-time

Introduction to the Linac Coherent Light Source (LCLS)

The most powerful X-ray Free electron Laser in the world

Electron Energy: 2.5 – 14.7 GeV

Injector at 2-km point

Existing 1/3 Linac (1 km) (with modifications)

Electron Transfer Line (340 m) 🚟

X-ray Transport Line (200 m) Undulator (130 m) – Near Experiment Hall (NEH)

Far Experiment Hall (FEH)

LCLS Instruments

LCLS has already had a significant impact on many areas of science, including:

- → Resolving the structures of macromolecular protein complexes that were previously inaccessible
- → Capturing bond formation in the transition-state of a chemical reaction
- → Revealing the behavior of atoms and molecules in the presence of strong fields
- → Probing extreme states of matter

LCLS Beam Parameters

The upcoming superconducting LINAC will dramatically increase the pulse rate

Photon Beam Parameters	Symbol	NC HXU	linac x-rays	NC I SXU 2	inac k-rays	SC linac SXU x-rays (Projected***)		Unit	
		ħωmax	$\hbar\omega_{\min}$	ħωmax	$\hbar\omega_{\min}$	ħωmax	hominal	ħω _{min}	i
Photon Energy	ħω	25000	1000	5000	200	1300	800	200	eV
Fundamental wavelength	λr	0.5	12.4	2.5	62.0	9.5	15.5	62.0	Å
Final linac e- energy	ymc ²	16.5	3.5	10.0	3.5		3.5 - 4.0		GeV
FEL 3-D gain length	L_G	4.0	1.0	2.5	1.0		TBD		m
Peak power	Р	20	80	50	30	3	2.5 - 7	8	GW
Pulse duration range (FWHM)		10 -	- 50	10 -	250	20 - 40			fs
Nominal pulse duration (FWHM)	$\Delta \tau_f$	3	30	5	0		20		fs
Max Pulse Energy*	U	0.6	2.0	2.5	1.5	0.06	0.05 - 0.14	0.16	mJ
Photons per pulse*	Ny	0.15	14	3.1	47	0.28	0.4 - 1.1	5.0	1012
Peak brightness*	Bpk, SASE	7800	425	2250	19	20	8.6 - 24	1.7	10 ³⁰ §
Average brightness (120Hz for Cu-	$\langle B \rangle$	280	16	138	1.5	137	57 - 161	12	1020 §
linac)*						@ 33 kHz	@ 33 kHz	@ 33 kHz	
SASE bandwidth (FWHM)	$\Delta \omega / \omega$	30	2	10	2	4	3	3	eV
Photon source size (rms)	σs	8	20	16	46	TBD µr			μm
Photon far field divergence (FWHM)	ØFWHM,x,∞	1	12	3	25	TBD µr			µrad
Max. Beam Rate	Ø FEL	1	20	12	20	1,000 - 40,000**		Hz	
Avg. x-ray beam power	P_{x}	0.07	0.24	0.30	0.18	2.0 @ 33 kHz	1.7-4.6 @ 33 kHz	5.3 @ 33 kHz	W
Linear Polarization (100%)	$\langle P \rangle$	Ver	tical	Horiz	ontal	Horizontal			

Data Analytics for high repetition rate Free Electron Lasers

FEL data challenge:

- Ultrafast X-ray pulses from LCLS are used like flashes from a high-speed strobe light, producing stop-action movies of atoms and molecules
- Both data processing and scientific interpretation demand intensive computational analysis

LCLS-II will increase data throughput by three orders of magnitude by 2026, creating an exceptional scientific computing challenge

Material science experiments at an XFEL

Courtesy of Apurva Mehta (LCLS Dep Head for Material Science)

Scientific Thrust for Material Science in LCLS

Use X-ray techniques to study short lived excited states

- Study emergence, suppression and evolution of excited states using spectroscopic techniques, inelastic X-ray scattering, X-ray emission and absorption spectroscopy
- Transient structural phases
- Study changes in material morphology and defects

A selected examples:

- Magnon dynamics in cuprates
- Laser ablation
- Metal additive manufacturing

Potential energy surface diagram depicting excited state evolution in [Fe(bpy)₃]²⁺ in solution following charge-transfer excitation The involvement of the ³T state had never been detected before LCLS

K.S. Kjær et al., *Chem. Sci.*, **10** 5749 (2019). W. Zhang and K.J. Gaffney, *Acc. Chem. Res.*, **48** 1140 (2015).

Photo-excitation of the Stripe Phase

Understand the Origin/Stabilization of the Stripe Phase for LBCO - resolve paramagnon dynamics

(c)

Miao, et al., PNAS, 114 (47), 12430-12435 (2017)

Understanding Laser Ablation

Pulsed laser machining - hard materials, delicate materials, complex and large aspect ratios

Laser-induced stress waves

Small Angle Scattering

Particle formation

Wide Angle Scattering

Changes in crystallinity

Hierarchy of time-scales

- Solidification dynamic – nucleation barriers
- Non-equilibrium metastable phase
 - phases
- Novel microstructure
- Thermal transport
- Crack formation

LCLS Science Impact Assessment Report on Theory and Simulation in condensed matter physics and materials science

Strong recognition of the role of simulations at LCLS

LCLS experiments have stimulated the development of advanced combined computational experimental methods that include artificial-intelligence-guided data analysis and strategies for comparing theory with vast arrays of experimental data.

The experimental work at LCLS has had a significant impact on the way researchers approach modelling and data visualization. For example, in the case of dynamic compression experiments, where the use of X-ray diffraction is ubiquitous, modelers now routinely use molecular dynamics or crystal plasticity codes to directly output simulated diffraction profiles, not only to compare with experimental data after the event, but also to inform the design of experiments before they are performed. Furthermore, and as alluded to in the section above, experimental data has informed the plasticity models, spanning the length scales.

... huge impact on atomic kinetics calculations that are widely used within theoretical laser-plasma community. In particular, the intense X-ray excitation that LCLS affords means that many standard codes, which had not included the relevant atomic configurations (or super-configurations) within them, do not accurately predict the observed spectra, and that has led to considerable efforts to create codes specifically designed for XFEL-matter interactions.

... observation of ionization thresholds at energies differing from standard theory has led to many groups now employing density functional theory to attempt to understand matter under extreme conditions.

Submitted by the LCLS Science Impact Assessment Committee members:

Antoinette (Toni) Taylor, Los Alamos National Laboratory (Chair) Paul Evans, Department of Materials Science and Engineering, University of Wisconsin- Madison Claudio Masciovecchio, FERMI FEL, Elettra Sincrotrone Trieste Laboratory James McCusker, Department of Chemistry, Michigan State University Janet Smith, Department of **Biological Chemistry and Life** Sciences, University of Michigan Marc Vrakking, Max-Born-Institute and the Freie Universität Berlin Justin Wark, Department of Physics, University of Oxford Philippe Wernet, Department of Physics and Astronomy, Uppsala Universitet

Complex workflows for FELs

Performance and automation

Linac Coherent Light Source: Workflows Benefit from Integration of Experimental Data with Simulations/Modeling

20+ Scientific Workflows with Unique Requirements

Example of Massive Throughput Workflow: Coherent Imaging at LCLS

JLAU

One workflow must encompass several areas and disciplines: integrated approach required

Accelerator	X-ray Images	Instant Data	Assess Data Quality	Interpretation of
Diagnostics		Reduction	from Integrated Data	Structural Dynamics
	a b b c c d c c c c c c c c c c c c c c c	a		
99999 99999 99999 99999				Perlmutter
Machine Learning	High Frame	Edge	Local Fast-feedback	High End
Optimization	Rate Detector	Computing	Computing	Computing

LCLS Data System, a scalable, adaptable system

Mix of automatic, on-demand, and user driven data flows - combination of onsite and offsite resources

Workflows for Automated Run Processing

Data Management for data transfer, metadata capture, and automatic run processing

- Uses superfacility API to connect to NERSC
- Streams data to remote computational resources
- Automatically launches remote workflows
- Returns results to experiments in a web browser
- Everything (airflow, etc) runs on LCLS side and funnels through SF API

Introduction to the digital twin approach

Integrating simulations with experiments in real-time

Up to now, not much but...

Even small improvements in use of beam can impact science outputs — especially at high rep rate facilities where sufficient data may be collected in a short time at the right conditions

Future light sources could use simulations to predict the behavior of new experiments, steer experiments, build smarter and faster experiments by, for example:

- Interpreting experimental data, testing experimental assumptions
- Providing information about parts of a system that are inaccessible (destructive measurement, slow measurement, or not directly measurable)
- Training ML algorithms or determine corrections and calibrations (e.g. knowing when to stop optimizing an experiment)
- Prototyping novel accelerator operation modes without using valuable machine time or to predict which parts of an experimental phase space are likely to yield the most useful data

Simulated diffraction pattern of a rice dwarf virus (RDV)

Challenges of Using a Digital Twin

A Digital Twin (ML/AI or model) can mimic the behavior of the accelerator (and help tune it more efficiently), a beamline (optics, detector) or a physical system (protein, material)

To be used effectively in the context of an experiment, several issues must be addressed:

- Timescale: accelerator tuning, experiment steering happen in ~real-time during experiments but timescales for experimental analysis and simulation often differ by orders of magnitude
- Phase space: Availability of experimental data, appropriate simulated data. Vast and multi-dimensional phase space to explore (e.g., temperature, chemical potential, ionic strength, solvent dielectric, chemical composition,...)
- Computational cost: Simulations that include nonlinear and collective effects are powerful tools, but they can be computationally expensive need access to HPC, develop models to provide fast approximations to simulations, or both

Digital Twin Example 1: X-ray Tracing

Simulations aiding convergence and resolution in nanocrystallography reconstruction

Science Goal: enable the time-domain "movie" of an enzymatic reaction X-ray Tracing Approach: apply L-BFGS to estimate structural parameters from diffraction data - handle polychromatic X-rays and reflects imperfections in crystal

Photosystem II protein complex: $2H_2^0 \rightarrow O_2^+ 4H^+ + 4e^-$

Digital Twin Example 1: X-ray Tracing (continued)

Pixel-level Bragg analysis: First XFEL modeling of spectral shape and crystal mosaic texture - goal is high resolution atomic detail

Digital Twin Example 2: Accelerator Optimization

Start-to-end simulation for FELs: Light Source Unified Modeling Environment (LUME)

- How should accelerator be configured to produce the best pulses?
- How do (realistic) pulses propagate through the instrument and interact with optics?
- How does the X-ray pulse interact with the sample?
- What is the impact of detector performance?
- In a statistical measurement, how much data is enough?

propagation

Digital Twin Example 2: Accelerator Optimization (continued)

Tuning approaches leverage different amounts of data / previous knowledge suitable under different circumstances

Accelerator tuning is aimed at combining the strengths of different approaches. General strategy: start with sample-efficient methods that do well on new systems, then build up to more data-intensive and heavily model-informed approaches.

SLAC

Conclusions

The role of simulations at FELs is rising

As FEL science is getting more mature, making good use of beamtime is becoming critical, for both facility and users

Simulations can optimize data taking by reducing the time needed to acquire scientific results and improving the quality of data collection through

- Better reconstruction algorithms
- Sampling strategies to adaptively narrow the space of probable solutions instead of blindly search through all possible combinations without leveraging the information being acquired
- Identification of sources of error between simulations and measurements (UQ) via fast-executing models

If you have ideas of possible engagements with LCLS, please reach out

(contact: Apurva Mehta, LCLS Dep Head for Material Science, mehta@slac.stanford.edu)

How a Free Electron Laser Works

