MAY 1 - 5, 2023 - IPAM WORKSHOP III: COMPLEX SCIENTIFIC WORKFLOWS AT EXTREME COMPUTATIONAL SCALES

Multiscale challenge in materials modeling and experiment

Inherent multiscale character of materials

Multiscale & multiscale simulations often require complex simulation workflows and large-scale simulations

> But: Tools have been independently developed and are not interoperable

Challenge: Multiscale and Multiphysics Character

Real Environments Thermodynamics ➤ T, p, μ Electrochemical

PH, U, E_{field}

Mechanical

•••

γσ

Virtual Materials Design

> Predict response of material to thermodynamic, electrochemical, mechanical environments

Exploring and navigating high-dimensional configuration spaces

Exploring and navigating high-dimensional configuration spaces

> Thermal complexity

Exploring and navigating high-dimensional configuration spaces

Thermal complexity

> Chemical complexity

Exploring and navigating high-dimensional configuration spaces

> Thermal complexity

Chemical complexity

Structural complexity

Key Challenge – Sampling Huge Configuration Spaces

> Exploration of a huge (8N dimensional) configuration space!

- > In principle well-suited for exascale computing
- > But any brute force approach is unfeasible:
 - > 10 data points on each coordinate
 - ➤ 100 atoms
 - ➤ 10⁸⁰⁰ configurations

Dimensionality reduction is mandatory!

Math + ML concepts

Practical examples of sampling/navigating in high-dimensional configuration spaces

Ab initio up to the melting temperature

X. Zhang, T. Hickel, B. Grabowski, JN, Comp. Mat. Sci. (2018)

Ab initio up to the melting temperature

Max-Planck-Institut für Eisenforschung GmbH | Jörg Neugebauer

X. Zhang, T. Hickel, B. Grabowski, JN, Comp. Mat. Sci. (2018)

Fully autonomous algorithm to determine melting point

5000

Max-Planck-Institut für Eisenforschung GmbH | Jörg Neugebauer

Zhu, Janssen, Ishibashi, Kormann, Grabowski, JN, Comp. Mat. Sci. 187, 12 (2021)

High-entropy alloy discovery

Machine learning-enabled high-entro alloy discovery

Ziyuan Rao¹, Po-Yen Tung^{1,2}, Ruiwen Xie³, Ye Wei¹*, Hongbin Zhang³, Alberto Ferrari⁴, T.P.C. Klaver⁴, Fritz Körmann^{1,4}, Prithiv Thoudden Sukumar¹, Alisson Kwiatkowski da Silva¹, Yao Chen^{1,5}, Zhiming Li^{1,6}, Dirk Ponge¹, Jörg Neugebauer¹, Oliver Gutfleisch^{1,3}, Stefan Bauer⁷, Dierk Raabe^{1*}

Many of the recent breakthroughs in materials science simulations rely on complex simulation protocols (workflows)

Workflows: Fundamentals

Workflows: Challenges

is mandatory

Libraries that successfully address some of these issues

>>> import numpy as np
>>> from scipy.optimize import minimize

```
>>> def rosen(x):
... """The Rosenbrock function"""
... return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0)
```

```
>>> print(res.x)
[1. 1. 1. 1. 1.]
```

Libraries that successfully address some of these issues

>>> import numpy as np
>>> from scipy.optimize import minimize


```
>>> print(res.x)
[1. 1. 1. 1. 1.]
```

Fully embedded in python!

Translation to materials science simulations

>>> print(res.x) [1. 1. 1. 1. 1.]

Fully embedded in python!

Translation to materials science simulations

Features beyond NumPy/SciPy

- Automatic upload of input + selected output to database/storage
 - Serialization
- Upscaling to HPC (exascale)
 - Job managment
- Full integration into Jupyter
 - > e.g. visualization of complex data structures such as atomic trajectories

Fully embedded in python!

Integrated development environment (IDE) for workflows

Max-Planck-Institut für Eisenforschung GmbH | Jörg Neugebauer

www.pyiron.org

Key concept: pyiron objects

Identical generic look and feel

job.structure job.input job.output.energy_tot job.run() job.structure job.input job.output.energy_tot job.run() job.structure job.input job.output.energy_tot job.run()

Structure

Relaxation

Solid

Melting

Liquid

Combine

Interface

Create structure

fcc Al with vacancy

```
Cu = pr.create.structure.bulk('Cu', cubic=True).repeat(3)
Cu[19] = 'Al'
Cu.plot3d(particle_size=2)
```


Perform MD simulations

- job = pr.create.job.Lammps(job_name='MD_700K')
 job.structure = Cu
 job.list_potentials()[:10]
- ['1999--Liu-X-Y--Al-Cu--LAMMPS--ipr1', '2011--Apostol-F--Al-Cu--LAMMPS--ipr1', '2012--Jelinek-B--Al-Si-Mg-Cu-Fe--LAMMPS--ipr2', '2016--Zhou-X-W--Al-Cu--LAMMPS--ipr2', '2018--Zhou-X-W--Al-Cu-H--LAMMPS--ipr1', '2022--Mahata-A--Al-Cu--LAMMPS--ipr1', 'EAM_Dynamo_CaiYe_1996_AlCu__M0_942551040047_005', 'EAM_Dynamo_LiuLiuBorucki_1999_AlCu__M0_020851069572_000', 'EMT_Asap_Standard_JacobsenStoltzeNorskov_1996_AlAgAuCuNiPdPt__M0_115316750986_001', 'MEAM_LAMMPS_JelinekGrohHorstemeyer_2012_AlSiMgCuFe__M0_262519520678_000']

Perform MD simulations

- job = pr.create.job.Lammps(job_name='MD_700K')
 job.structure = Cu
 job.list_potentials()[:10]
- ['1999--Liu-X-Y--Al-Cu--LAMMPS--ipr1', '2011--Apostol-F--Al-Cu--LAMMPS--ipr1', '2012--Jelinek-B--Al-Si-Mg-Cu-Fe--LAMMPS--ipr2', '2016--Zhou-X-W--Al-Cu--LAMMPS--ipr1', '2018--Zhou-X-W--Al-Cu-H--LAMMPS--ipr1', '2022--Mahata-A--Al-Cu--LAMMPS--ipr1', 'EAM_Dynamo_CaiYe_1996_AlCu__M0_942551040047_005', 'EAM_Dynamo_LiuLiuBorucki_1999_AlCu__M0_020851069572_000', 'EAM_Dynamo_LiuLiuBorucki_1999_AlCu__M0_020851069572_000', 'EAM_Dynamo_LiuLiuBorucki_1999_AlCu__M0_020851069572_000', 'EAM_Dynamo_LiuLiuBorucki_1999_AlCu__M0_020851069572_000', 'EAM_LAMMPS_JelinekGrohHorstemeyer_2012_AlSiMgCuFe__M0_262519520678_000'] job.potential = '2022--Mahata-A--Al-Cu--LAMMPS--ipr1' job.calc_md(temperature=700, n_ionic_steps=10000)

```
job.run(run_again=True)
```


Structure
Relaxation
Solid
Melting
Liquid
Combine
Interface

Direct access of all simulation data from database Load job from database and analyse it

	Parameter	Value
0	units	metal
1	dimension	3
2	boundary	qqq
3	atom_style	atomic
4	read_data	structure.inp
5	include	potential.inp
6	fixensemble	all nvt temp 700.0 700.0 0.1
7	variabledumptime	equal 100
8	variablethermotime	equal 100
9	timestep	0.001
10	velocity	all create 1400.0 53471 dist gaussian
11	dump1	all custom \${dumptime} dump.out id type xsu ysu zsu fx fy fz vx vy vz
12	dump_modify1	sort id format line "%d %d %20.15g
3	thermo_style	custom step temp pe etotal pxx pxy pxz pyy pyz pzz vol

format float %20.15g

14

thermo_modify

Jobs that are already in the database are automatically loaded rather than rerun

Run over series of temperatures

```
for T in np.arange(700, 1800, 100):
    job = pr.create.job.Lammps(job_name=f'MD_{T}K')
    job.structure = Cu
```

```
job.potential = '2022--Mahata-A--Al-Cu--LAMMPS--ipr1'
job.calc_md(temperature=T, n_ionic_steps=10000, pressure=0)
```

job**.run**()

2023	3-04-	-30	19:28	:51,	123 -	pyir	on_log -	WARN	ING	– Th	e job	MD_700	< is	being	loaded	instead	of	running.
The	job	MD_	800K	was s	saved	and	received	the	ID:	282								
The	job	MD_	900K	was s	saved	and	received	the	ID:	283								
The	job	MD_	1000K	was	saved	and	receive	d the	ID:	284								
The	job	MD_	_1100K	was	saved	and	receive	d the	ID:	285								
The	job	MD_	_1200K	was	saved	and	receive	d the	ID:	286								
The	job	MD_	_1300K	was	saved	and	receive	d the	ID:	287								

Structure

Relaxation

Analyse data using pyiron tables

```
def get_temperature(job):
    return int(job.job_name.split('_')[1][:-1])
```

```
def get_displacement(job):
    pos = job['output/generic/unwrapped_positions']
    return np.mean(np.linalg.norm(pos[-1] - pos[0], axis=-1))
```

```
table = pr.create.table(delete_existing_job=True)
table.add['temperature'] = get_temperature
table.add['displacement'] = get_displacement
table.add.get_volume
table.add.get_energy_tot_per_atom
table.add.get_job_name
table.run()
```

The job table was saved and received the ID: 290

Processing jobs: 100%

12/12 [00:00<00:00, 261.72it/s]

pyiron tables provide a powerful tool to map/reduce complex data into pandas Dataframes

pyiron tables provide a powerful tool to map/reduce complex data into pandas Dataframes df = table.get_dataframe().sort_values(by='temperature')
df

	job_id	job_name	energy_tot	volume	temperature	displacement
0	278	MD_700K	-3.353856	1270.238787	700	0.181369
4	282	MD_800K	-3.328802	1328.153374	800	0.247824
5	283	MD_900K	-3.256737	1352.336401	900	0.321491
6	284	MD_1000K	-3.286276	1334.194147	1000	0.264272
7	285	MD_1100K	-3.233808	1353.052931	1100	0.325095
8	286	MD_1200K	-3.241711	1346.373954	1200	0.310809
9	287	MD_1300K	-3.218381	1358.605471	1300	0.338850
1	279	MD_1400K	-3.203465	1374.474437	1400	0.362491
10	288	MD_1500K	-3.110352	1374.445628	1500	0.406013
3	281	MD_1600K	-3.075405	1382.937737	1600	0.646145

Analyse structure

job_MD.get_structure(-1).plot3d(particle_size=2)

Pair-correlation function

Max-Planck-Institut für Eisenforschung GmbH | Jörg Neugebauer

etc.

Translation to materials science simulations

Features beyond NumPy/SciPy

- Automatic upload of input + selected output to database/storage
 - Serialization
- Upscaling to HPC (exascale)
 - Job managment
- Full integration into Jupyter
 - > e.g. visualization of complex data structures such as atomic trajectories

Pyiron provides all these features!

HP(

(inp, wf, out)

Structure Relaxation Solid Melting Liquid Combine Interface

```
job.potential = 'CuAl_lammps_eam'
job.calc_md(temperature=600, pressure=0, n_ionic_steps=1000)
job.server.queue_view
# job.run()
```

	maximum cores	minimum cores	run time limit
impi_hy*	1280	40	259200
impi_hydra	4240	20	259200
impi_hydra_cmfe.*	1280	40	259200
impi_hydra_small	40	1	604800

```
job.potential = 'CuAl_lammps_eam'
job.calc_md(temperature=600, pressure=0, n_ionic_steps=1000000)
job.server.core = 40
job.server.queue = 'impi_hydra_small'
job.run()
```

Translation to materials science simulations

Features beyond NumPy/SciPy

- Automatic upload of input + selected output to database/storage
 - Serialization
- Upscaling to HPC (exascale)
 - Job managment
- Full integration into Jupyter
 - > e.g. visualization of complex data structures such as atomic trajectories

Pyiron provides all these features!

Run over several atomistic simulations Structure pr = Project('benchmark') Al = pr.create.structure.bulk('Al', cubic=True).repeat(3) Relaxation for job_type in ['Lammps', 'Vasp', 'Sphinx']: job = pr.create_job(job_type=job_type, job_name=job_type) job.structure = Al job.run() Solid Al = job.get_structure(-1) # get last structure Melting Liquid Combine Interface

Fully interoperable via generic input/output

Fully autonomous algorithm to determine melting point

5000

Max-Planck-Institut für Eisenforschung GmbH | Jörg Neugebauer

Zhu, Janssen, Ishibashi, Kormann, Grabowski, JN, Comp. Mat. Sci. 187, 12 (2021)

Sociological challenges

How to successfully drive transfer?

- user-friendliness
- bottom-up development
- developers must be active users
- internal & external workshops
- hackathons
- documentation & examples
- ➤ 'killer' applications
- scientific breakthroughs

Transition coordinate

pyiron as platform for internal & external collaborations

Hands-on interactive workshops (examples)

From Atomistics to Phase Diagrams

Constructing ML Potentials **Talk by R. Drautz** ADIS 2021

> 200 participants

Teaching platform (example)

Lecture: Modelling and Engineering of Nanoscale Materials (Univ. Gent)

Quote:

"pyiron changed our exercise lessons drastically, by allowing more time to tackle advanced and complex problems instead of dealing with code technicalities."

– Sander Borgmans (Tutor)

Hackathons & Journal Club

- Weekly 2-3 hour events
- > 5-10 people
- Interactive prototyping & development of new concepts and tools

Interactive seminars

Publications

Read papers and run published notebooks using pyiron and mybinder

A fully automated approach to calculate the melting temperature of elemental crystals

Nucleus for large-scale networks: MaterialDigital

Initiative to digitize materials: particular strategic importance for Germany as a business location

The project goals: What an industrially relevant material data space must fulfill

Sovereignty: Security, ownership and access rights to the data, taking into account the interests of the data creators, are at the forefront of all activities.

Reproducibility: The standardized description of data generation. This must be transparent, traceable and repeatable.

Accessibility: The uniformly and comprehensively described data must be retrievable in order to avoid redundancies in research.

Adaptability: Flexible data logic that is always aligned with new research and development findings.

Curation: Clearly defined specifications for the data enable its quality assurance.

Nucleus for large-scale networks: MaterialDigital

Initiative to digitize materials: particular strategic importance for Germany as a business location

The vision: A decentralized data room as a unity of data and data processing

Generation of material data: When data is generated, it is stored according to unified schemas.

Decentralized storage: The large amounts of data remain at the place of their creation. No data provider cedes its control.

Integrated analysis: Linked software environments allow standardized data access and processing.

Remote access: The network architecture allows external partners to authorize access to the local environment.

Max-Planck-Institut für Eisenforschung GmbH | Jörg Neugebauer

Automated workflows

Nucleus for large-scale networks: NFDI-MatWerk

NFDI-MatWerk

On the route towards a *National Research Data Infrastructure* for Materials Science & Engineering.

> Workflows as central part in materials science & engineering!

www.nfdi-matwerk.de

Automating simulation life cycle by pyiron

Next steps

IronFlow - Jupyter-based visual scripting gui for running pyiron workflow graphs

- Note: under active development
 not yet production ready
- ➤ Features
 - Ontologic typing
 - Fully integrated in Jupyter
 - Batch jobs (e.g.for ML)
 - New nodes can be easily written and added
- Workflow programming and application for everybody

Max-Planck-Institut für Eisenforschung GmbH | Jörg Neugebauer

https://github.com/pyiron/ironflow

Node-based pyiron architecture

Application: Materials design

METALLURGY

Rao et al., Science 378, 78-85 (2022)

Machine learning-enabled high-entropy alloy discovery

Ziyuan Rao¹, Po-Yen Tung^{1,2}, Ruiwen Xie³, Ye Wei¹*, Hongbin Zhang³, Alberto Ferrari⁴, T.P.C. Klaver⁴, Fritz Körmann^{1,4}, Prithiv Thoudden Sukumar¹, Alisson Kwiatkowski da Silva¹, Yao Chen^{1,5}, Zhiming Li^{1,6}, Dirk Ponge¹, Jörg Neugebauer¹, Oliver Gutfleisch^{1,3}, Stefan Bauer⁷, Dierk Raabe^{1*}

Identify from millions of possible compositionally complex alloy compositions those with the lowest/vanishing thermal expansion coefficient (Invar alloys)

Original Invar Alloy (FeNi)

Example: Alloy Discovery

Aim:

Challenges:

- Sharp local minima
- Interplay between magnetism & phonons
- > 5 elements

ML Architecture

Rao et al., Science 378, 78–85 (2022)

Importance of Physics-Informed Descriptors

Physics descriptors: ω_s - magnetostriction T_c - Curie temperature):

Inclusion of DFT computed descriptors significantly improves ML model!

Rao et al., Science 378, 78–85 (2022)

Dimensionality Reduction

GMM-MCMC sampling

WAE latent space

Islands in latent space reflect compositional differences and provide treasure map for HEA-based Invar alloys!

GMM - Gaussian mixture modelMCMC - Markov chain Monte Carlo samplingWAE - Wasserstein autoencoder architecture

Rao et al., Science 378, 78-85 (2022)

Discovery of Invar Alloys

Experiment

Comparison

Design of high-entropy Invar alloys using very sparse experimental data by employing DFT descriptors based on physical models!

Max-Planck-Institut für Eisenforschung GmbH | Jörg Neugebauer

Rao et al., Science 378, 78–85 (2022)

Conclusions

Advanced thermodynamic and ML approaches together with physics-based descriptors provide powerful tools to explore and utilize high-dimensional configuration spaces

Workflows/simulation protocols to run these approaches become exceedingly complex

 \rightarrow Our approach: **pyiron** as materials IDE

Enable computational materials design in high-dimensional configuration spaces

Conventior

allovs

0.2 0.4 0.6

0.0

TEC (10°/K)

15

Thank you for your attention!

Jan Janssen

Developer Team

DFG

Deutsche

SFB

1394

MATERIALD1G1TAL

RUHR EXPLORES SOLVATION

Structural and

Complexity

Chemical Atomic

Federal Ministry of Education and Research

CLUSTER OF EXCELLENCE - EXC 1069

Alexander von Humboldt Stiftung/Foundation