

Atomistic modelling of phase transformation at large time and length scales: atomistic phase field approach

Helena Zapolsky,

University of Rouen Normandie, GPM, UMR 6634, Saint-Etienne du Rouvray, France

March 20th, 2023 Workshop II: Scale-Bridging MaterialsModeling at Extreme Computational Scales

Acknowledgements

G. Demange , M. Lavrskyi, O. Nakonechna, Y. Borges Gomes Lima, A. Vaugeois, R. Patte GPM University of Rouen, France

A.G. Khachaturyan Rutgers University, Piscataway, NJ

Microstructure of alloys

Ni-8%Al-6%Ti aged at 800°C during 45h

Phase Field modelling

J Boisse et al Acta Mat. 55, 2007

Displacive transformations

Microstructures of the steel

R. Hossain et al Mat. Charact. 149, 2019

cubic \rightarrow trigonal martensitic transformation in a polycrystalline system

Y.M. Jin et al Acta Mater., 49 (2001)

Grain boundary segregation induced strengthening of an ultrafinegrained austenitic stainless steel

An <u>APT</u> analysis of HPT 400 °C 316 steel reveals formation of Mo–Cr–Si rich segregation at a grain boundary—Mo and Si atoms are displayed.

M.M. Abramova et al, Materials Letters, 136, 2014

Landau Khalatnikov kinetic equation (1954)

Addressable Scales

Atomic scale

Nano-scale

Micron and sub-micron scale

Time scale:

sub-second - up to years

Phenomenological approches

From Phase Field to Phase field Crystal Model

Stability of the system with respect to infinitesimal fluctuations

 $\delta c(r) = c(r) - \overline{c}$

Free energy of heterogeneous system in continuous approximation

$$F = \iint_{V} \left[(f(c) + \frac{1}{2}\beta(c)(\nabla c)^{2})dV \right]$$

Variation of free energy with respect to small fluctuations

$$\delta c(r) = c(r) - \overline{c} = \frac{1}{N} \sum_{k} c(k) e^{ikr}$$

$$FT$$

$$\Delta F = \frac{1}{2} \int b(k) |c(k)|^2 \frac{d^3k}{(2\pi)^3}$$
min F

Brazovskii model of crystalisation

The addition Ψ^3 in the free energy functional break ± symmetry (Brazovskii energy, 1975)

$$F = \int d\mathbf{r} \left[\frac{1}{2} \psi (-\varepsilon + (k_0^2 + \nabla^2)^2) \psi + \alpha \frac{\psi^3}{3} + \frac{\psi^4}{4} \right]$$

for $\epsilon=3/4$ and $k_0=1$

$$\frac{\partial \psi}{\partial t} = -L\frac{\delta F}{\delta \psi} = L(\varepsilon - (q_0^2 + \nabla^2)^2 \psi - \alpha \psi^2 - \psi^3)$$

Swift-Hohenberg model of convection

stripes

honeycomb structure.

Rayleigh-Bénard convection

Phase Field Crystal method (K. Elder, 2002) -> zones with high concentration-> atoms

Limit transition to the Landau theory

$$F = \int \frac{1}{2} \sum_{\alpha\beta} V_{\alpha\beta}(k) \Phi_{\alpha}(k) \Phi_{\beta}^{*}(k) \frac{d^{3}k}{(2\pi)^{3}} + \int_{V} f(\{\rho_{\alpha}(r)\}) d^{3}r$$
(1)

Where $V_{\alpha\beta}(\mathbf{k})$ is the Fourier transforms of the effective potentials $W_{\alpha\beta}(\mathbf{r})$:

$$V(\boldsymbol{k}) = \int_{V} W(\boldsymbol{r}) exp(-i\boldsymbol{k}\boldsymbol{r}) d^{3}r$$

Using Taylor expansion of $V_{\alpha\beta}(\mathbf{k})$ in k

$$V_{\alpha\beta}(k) = A_0^{\alpha\beta} + \frac{1}{2!}A_2^{\alpha\beta}k^2 + \frac{1}{4!}A_4^{\alpha\beta}k^4 + \dots + \frac{1}{n!}A_n^{\alpha\beta}$$

Eq.(1) is a generalized Landau gradient expression:

$$F = \int_{V} \sum_{\alpha\beta} \left(\frac{1}{2!} A_{o}^{\alpha\beta} \rho_{\alpha}(\mathbf{r}) \rho_{\beta}(\mathbf{r}) + \frac{1}{2!} A_{2}^{\alpha\beta} \nabla \rho_{\alpha}(\mathbf{r}) \nabla \rho_{\beta}(\mathbf{r}) + \frac{1}{4!} A_{4}^{\alpha\beta} \nabla^{2} \rho_{\alpha}(\mathbf{r}) \nabla^{2} \rho_{\beta}(\mathbf{r}) + \dots \right) d^{3}r$$
$$+ \int_{V} f(\{\rho(\mathbf{r})_{\alpha}\}) d^{3}r$$

The **Phase Field Crystal model** has used two first terms of the gradient expansion of the Landau theory.

From Atomic density function theory on constrained lattice to continuous approach

$$F = F_{chem} + E_{elast}$$

$$F_{chem} = \frac{1}{2} \sum_{r,r'} V(r-r') p(r) p(r') + k_B T \sum_{\vec{r}} \left\{ p(r) Ln(p(r) + [1-p(r)] Ln[1-(p(r)]] \right\}$$
$$E_{elast} = \frac{1}{2} \sum_{pq} \int \frac{d^3k}{(2\pi)^3} B_{pq}(\mathbf{n}) \theta_p(\mathbf{k}) \theta_q^*(\mathbf{k})$$

Microscopic kinetic Onsager equation

$$\frac{dP(r,t)}{dt} = \frac{1}{k_B T} \sum_{\alpha,\beta} \sum_{r'} L_{\alpha\beta}(r-r') c_{\alpha} c_{\beta} \frac{\partial F}{\partial P(r',t)}$$

Carbide formation in Fe-C system

F. Scwab et al. submitted to Acta Mat.

Carbon atoms in the bcc lattice

Interaction potential consists of elastic and chemical parts:

$$\widetilde{w}_{pq}(\mathbf{k}) = \widetilde{w}_{pq}^{elas}(\mathbf{k}) + \widetilde{w}_{pq}^{chem}(\mathbf{k}) \qquad p, q = 1, 2, 3$$

Elastic part of the interaction potential:

$$\widetilde{w}_{pq}^{elast}(\mathbf{k}) = -F_i^{oct}(p, \mathbf{k})G_{ij}(\mathbf{k})F_i^{*oct}(q, \mathbf{k})$$

Kanzaki forces

$$F_x^{oct}(3, \mathbf{k}) = -ia_0^2 \sigma_{11}^0 \sin\left(\frac{k_x a_0}{2}\right) \cos\left(\frac{k_y a_0}{2}\right)$$

$$F_y^{oct}(3, \mathbf{k}) = -ia_0^2 \sigma_{11}^0 \cos\left(\frac{k_x a_0}{2}\right) \sin\left(\frac{k_y a_0}{2}\right)$$

$$F_z^{oct}(3, \mathbf{k}) = -ia_0^2 \sigma_{33}^0 \sin\left(\frac{k_z a_0}{2}\right)$$

$$\sigma_{11}^{0} = (C_{11} + C_{12}) u_{11} + C_{12} u_{33}$$

$$\sigma_{33}^{0} = C_{11} u_{33} + 2C_{12} u_{11}$$

Green function

$$G_{ij}(\mathbf{k}) = [D_{ij}(\mathbf{k})]^{-1}$$

CHEMICAL PART OF INTERACTION POTENTIAL

$$\widetilde{w}_{11}^{chem}(\mathbf{k}) = 8W_3 \cos\left(\frac{k_x a_0}{2}\right) \cos\left(\frac{k_y a_0}{2}\right) \cos\left(\frac{k_z a_0}{2}\right) + 2W_4 \left(\cos\left(k_y a_0\right) + \cos\left(k_z a_0\right)\right) + 2W_4^* \cos\left(k_x a_0\right)$$
$$\widetilde{w}_{12}^{chem}(\mathbf{k}) = 2W_1 \cos\left(\frac{k_z a_0}{2}\right) + 4W_2 \cos\left(\frac{k_y a_0}{2}\right) \cos\left(\frac{k_x a_0}{2}\right)$$

A. Udyansky, J. von Pezold, A. Dick, and J. Neugebauer. Phys. Rev. B, 83:184112, 2011

Interaction potential

$$\widetilde{w}_{pq}(\mathbf{k}) = -\frac{F_i^{oct}(p, \mathbf{k})G_{ij}(\mathbf{k})F_i^{*oct}(q, \mathbf{k})}{a_0^3 C_{44}u_{33}^2} + W_0 \frac{\widetilde{w}_{pq}^{chem}(\mathbf{k})}{a_0^3 C_{44}u_{33}^2}$$

Dimensionless	
parameter	
$a_0^3 C_{44} u_{33}^2 = 12.17 \text{ eV}$	

Concentration expansion
coefficients [1]

$$u_{11} = -0.09$$

 $u_{33} = 0.86$
 $t_1 = u_{11}/u_{33} = -0.1$

Fe _α	
$a_0 = 2,865 \text{ \AA}^{\circ}$	
$C_{11} = 242 \text{ GPa}$	
$C_{12} = 146.5 \mathrm{GPa}$	
$C_{44} = 112 \text{GPa}$	

Carbon diffusion in martensite phase at room temperature

 ρ_c =0.4w%

T=40° C

t = 0

t = 600000

t = 8000000

FIGURE 5.12: Dependence of the concentration $c_{ch}(\mathbf{r}, t)$ on time at the point $\mathbf{r}(x, y, z)$ with coordinates (52, 31, 61). The final stoichiometric formula for the blue curve is Fe₂C with an intermediate Fe₄C concentration. The time units are in \hat{t} .

Diffraction of carbon reach zones observed after aging at room temperature

а

simulation

diffraction pattren obtained from Fe-15Ni-1C marteniste after aging at room temperature for 26 min (K.A. Taylor et all. Met.Trans.A V.20A, 1989)

M. Kusunoki and S. Nagakura, J. Appl. Cryst, 14 (1981)

Transition-iron-carbide precipitates in a lath of tempered martensite. (a) Bright-field and (b) centered-dark-field TEM images.

S.W.Thompson Mater. Charact. V.106, 2015

Schwab et al npj Comput Mat under revision

From discrete to continuum ADF model

- (a) Probability $P(r_i, t)$ to find atom on site r_i
 - $\mathbb{P}(r)$: probability to find atom at position r
 - 1 atome \Leftrightarrow 1 site

$$\sum_{r} \mathbb{P}(r) = N_{atoms}$$

(M. Lavrskiy et al., npj computational materials 2017)

$$\sum_{r} \mathbf{P}(\mathbf{r}) = N_{fraton}$$

The Fourier Transform representation of the model Hamiltonian:

$$H = \frac{1}{2N} \sum_{k} \sum_{\alpha=1}^{\infty} \sum_{\beta=1}^{\beta=m} \tilde{W}_{\alpha\beta}(\boldsymbol{k}) \tilde{\rho}_{\alpha}(\boldsymbol{k}) \tilde{\rho}_{\beta}(\boldsymbol{k}) *$$

0.7.0

Model Potential
$$W_{\alpha\beta}(\mathbf{r} - \mathbf{r}') = \underbrace{\theta_{\alpha}(\mathbf{r} - \mathbf{r}')\delta_{\alpha\beta}}_{\text{Short range}} + \underbrace{\lambda_{\alpha\beta}W_{\alpha\beta}^{\text{LR}}(\mathbf{r} - \mathbf{r}')}_{\text{Long range}}$$
.

$$\underbrace{\theta_{\alpha}(\mathbf{r})}_{\substack{i=1 \ i=1 \ i=1$$

ł

Principal loading conditions – calculation of elastic constants

1) hydrostatic, $(x, y, z) \rightarrow (1 - \varepsilon)x, (1 - \varepsilon)y, (1 - \varepsilon)z,$

3) monoclinique $(x, y, z) \rightarrow x + \varepsilon y, y, z$

2) orthorhombic, $(x, y, z) \rightarrow (1 + \varepsilon)x, (1 - \varepsilon)y, z$

$$F_{cubic.}(\varepsilon) = F_0 + V_0 \frac{3}{2} (C_{11} + 2C_{12}) \varepsilon^2$$

$$F_{orthor.}(\varepsilon) = F_0 + V_0 (C_{11} - C_{12}) \varepsilon^2$$

$$F_{monoc.}(\varepsilon) = F_0 + V \frac{C_{44}}{2} \varepsilon^2$$

Kinetic equation (n-components alloy)

$$\frac{d \rho_{\alpha}(\mathbf{r},t)}{dt} = \sum_{\mathbf{r}'} L_{\alpha\beta}(\mathbf{r},\mathbf{r'}) \frac{\delta F}{\delta \rho_{\beta}(\mathbf{r'},t)}$$

Free energy functional is:

$$F_{chem} = \frac{1}{2} \sum_{\alpha,\beta} \sum_{r,r'} V_{\alpha\beta}(r-r') p_{\alpha}(r) p_{\beta}(r') + k_{B}T \sum_{\alpha} \sum_{\bar{r}} \left\{ p_{\alpha}(r) Ln \left[p_{\alpha}(r) \right] + \left[1 - p_{\alpha}(r) \right] Ln \left[1 - (p_{\alpha}(r)) \right] \right\}$$

Reduced variables:

time is measured in units of typical atomic migration time, τ_o

energy is measured in units of $k_B T_o$, where T_o is the solidification temperature

the grid lattice increment, I, (the spacing of the underlying Ising lattice), is defined as a fraction of the atomic radius

The numerical solution -> the semi-implicit Fourier spectral method

Self-assembly of fratons with only short range interaction

$$\hat{\overline{\rho}} = 0.1, \ \hat{l} = 0.5, \ \Delta \hat{r} = 0.17, \text{ and } \ \hat{T} = 0.63 \qquad \hat{\lambda}_1 = 45.23, \ \xi = 4$$

α-Fe polycrystal

• Short range potential :

$$V^{sr}(r) = \begin{cases} -1 & \text{if} & r < R \\ \xi & \text{if} & R \le r & \le R + \Delta R \\ 0 & \text{if} & r & > R + \Delta R \end{cases}$$

• Long range potential¹ :

$$V^{lr}(k) = 1 - rac{k^4}{(k^2 - k_1^2)^2 + k_2^4}$$

GB growth (tilt angle θ = 3.58°)

The atomic density function (ADF) model of tilt grain boundaries in α-Fe

A. Kapikranyan, H. Zapolsky, C. Domain et al., Phys.Rev. B., 89, 014111, 2014.

Size-Dependent Solute Segregation at Symmetric Tilt <100> Grain Boundaries in α-Fe

Three types of solute atoms X₁, X₂ and X₃ with atomic radii $R_1 < R_{Fe}$, $R_2 = R_{Fe}$ and $R_3 > R_{Fe}$ corresponding to phosphorus (P), antimony (Sb) and tin (Sn)

Low angle GBs, with θ = 7.15 ° and θ = 9.53 °, and two high angle GBs, Σ 5 (310) (θ = 36.95 °) and Σ 29 (730) (θ = 46.40 °).

Interaction potentials

H. Zapolsky, A. Vaugeois, R. Patte, G. Demange, Materials 2021, 14, 4197.

Formation of Cottrell atmospheres around dislocations

Formation of Cottrell atmospheres at $\langle 100 \rangle$ edge dislocations (red \vdash marks) after segregation of solute atoms at $\langle 100 \rangle$ symmetric tilt LAGBs. (**a**,**b**) X₁ (small) atoms segregation for a misorientation angle $\theta = 7.15^{\circ}$. (**c**,**d**) X₂ (larger) atoms for $\theta = 9.53^{\circ}$. (**a**,**c**) solute atoms distribution (orange) and Fe atoms (transparent). (**b**,**d**) Volume per atom variation $\Delta V/V$ (Voronoi analysis). Red—dilatation, blue—compression. X atoms are spotted by green dots in (**b**,**d**).

HAGB in **α**-Fe

Figure 8. Influence of the volume per atom (Voronoi analysis) on the second of X₁ (a) X₂ (b) and X₃ (c) solute atoms at Σ 5 (310) (θ = 36.87°). X₁ atoms are spotted by green dots. The depleted (over-compressed) and segregated (less compressed) areas are delineated by dashed black lines, and referred to as zones 1 and 2 in (**b**,**c**).

- Solute atoms are located inside of the capped trigonal prism in dilatation region.
- With increasing of atomic size the solute atoms are concentrated more and more near GB, in dilatation region

(b)

(e)

Polycrystal in α -Fe

$\Sigma 5(310), \ \theta = 36.87$

Σ 29(730), θ = 46.40

Equilibrium

Under constrain

Thesis A. Vaugeois

MARTENSITIC TRANSFORMATIONS

 $Bain \ OR: \ \{010\}_{\gamma} \| \{001\}_{\alpha} \\ \{110\}_{\gamma} \| \{100\}_{\alpha} \|$

The Bain model of the martensitic transformation

Fig. 1. Six crystallographic variants (V1–V6) for the K–S orientation relationship that evolves on a (111) austenite plane. The triangle and rectangles indicate the (111) plane of austenite (γ : fcc) and the (011) plane of martensite (α' : bcc), respectively.

MARTENSITIC TRANSFORMATIONS

Variant	Plane parallel	Direction parallel
V1 V2 V3 V4 V5 V6	(111) _γ //(011) _{α'}	$ \begin{array}{c} [\bar{1} \ 0 \ 1]_{\gamma} / / [\bar{1} \ \bar{1} \ 1]_{\alpha'} \\ [\bar{1} \ 0 \ 1]_{\gamma} / / [\bar{1} \ 1 \ \bar{1}]_{\alpha'} \\ [0 \ 1 \ \bar{1}]_{\gamma} / / [\bar{1} \ 1 \ 1]_{\alpha'} \\ [0 \ 1 \ \bar{1}]_{\gamma} / / [\bar{1} \ 1 \ 1]_{\alpha'} \\ [1 \ \bar{1} \ 0]_{\gamma} / / [\bar{1} \ 1 \ 1]_{\alpha'} \\ [1 \ \bar{1} \ 0]_{\gamma} / / [\bar{1} \ 1 \ 1]_{\alpha'} \end{array} $
V7 V8 V9 V10 V11 V12	$(1\overline{1}1)_{\gamma}//(011)_{\alpha'}$	$ \begin{array}{c} [1 \ 0 \ \overline{1}]_{\gamma} / / [\overline{1} \ \overline{1} \ 1]_{\alpha'} \\ [1 \ 0 \ \overline{1}]_{\gamma} / / [\overline{1} \ 1 \ \overline{1}]_{\alpha'} \\ [\overline{1} \ \overline{1} \ 0]_{\gamma} / / [\overline{1} \ \overline{1} \ 1]_{\alpha'} \\ [\overline{1} \ \overline{1} \ 0]_{\gamma} / / [\overline{1} \ \overline{1} \ 1]_{\alpha'} \\ [0 \ 1 \ 1]_{\gamma} / / [\overline{1} \ \overline{1} \ 1]_{\alpha'} \\ [0 \ 1 \ 1]_{\gamma} / / [\overline{1} \ \overline{1} \ 1]_{\alpha'} \end{array} $
V13 V14 V15 V16 V17 V18	$(\bar{1}11)_{\gamma}/(011)_{\alpha'}$	$ \begin{array}{c} [0\bar{1}1]_{\gamma}/\!/[\bar{1}\bar{1}1]_{\alpha'} \\ [0\bar{1}1]_{\gamma}/\!/[\bar{1}1\bar{1}]_{\alpha'} \\ [\bar{1}0\bar{1}]_{\gamma}/\!/[\bar{1}\bar{1}1]_{\alpha'} \\ [\bar{1}0\bar{1}]_{\gamma}/\!/[\bar{1}\bar{1}\bar{1}]_{\alpha'} \\ [110]_{\gamma}/\!/[\bar{1}\bar{1}1]_{\alpha'} \\ [110]_{\gamma}/\!/[\bar{1}\bar{1}\bar{1}]_{\alpha'} \end{array} $
V19 V20 V21 V22 V23 V24	$(11\bar{1})_{\gamma}//(011)_{\alpha'}$	$ \begin{array}{c} [\bar{1} \ 1 \ 0]_{\gamma} / / [\bar{1} \ \bar{1} \ 1]_{\alpha'} \\ [\bar{1} \ 1 \ 0]_{\gamma} / / [\bar{1} \ 1 \ \bar{1}]_{\alpha'} \\ [0 \ \bar{1} \ \bar{1}]_{\gamma} / / [\bar{1} \ \bar{1} \ 1]_{\alpha'} \\ [0 \ \bar{1} \ \bar{1}]_{\gamma} / / [\bar{1} \ 1 \ \bar{1}]_{\alpha'} \\ [1 \ 0 \ 1]_{\gamma} / / [\bar{1} \ \bar{1} \ 1]_{\alpha'} \\ [1 \ 0 \ 1]_{\gamma} / / [\bar{1} \ \bar{1} \ 1]_{\alpha'} \\ [1 \ 0 \ 1]_{\gamma} / / [\bar{1} \ \bar{1} \ 1]_{\alpha'} \end{array} $

The 24 crystallographic variants for the K-S orientation relationship

Fig. 1. Six crystallographic variants (V1–V6) for the K–S orientation relationship that evolves on a (111) austenite plane. The triangle and rectangles indicate the (111) plane of austenite (γ : fcc) and the (011) plane of martensite (α' : bcc), respectively.

FCC-BCC transition

$$\frac{a_0^{fcc}}{a_0^{bcc}} = \sqrt{\frac{3}{2}} \approx 1.225 \qquad a_0^{fcc} = 8\Delta x$$
$$\sigma = 0.05$$

Elastic constants of the given potential

$$\frac{C_{11}^{bcc}}{C_{11}^{fcc}} \approx 1.68, \quad \frac{C_{12}^{bcc}}{C_{12}^{fcc}} \approx 1.25, \quad \frac{C_{44}^{bcc}}{C_{44}^{fcc}} \approx 1.3$$

Experimental elastic constants for iron

$$\frac{C_{11}^{bcc}}{C_{11}^{fcc}} \approx 1.60, \quad \frac{C_{12}^{bcc}}{C_{12}^{fcc}} \approx 1.15, \quad \frac{C_{44}^{bcc}}{C_{44}^{fcc}} \approx 1.51$$

$$\widetilde{w}_{LR}(\mathbf{k}) = \exp\left(-\frac{(k-k_{01})^2}{2\sigma^2}\right) + 0.1\exp\left(-\frac{(k-k_{02})^2}{2\sigma^2}\right)$$

Twinning structure of **α**-Fe (bcc) precipitate in Cu (fcc) matrix in the Cu-2.0Fe-0.5Co wt%

Growth of α -Fe particle in the Cu matrix

G. Demange et al. Acta mat. 226 (2022)

Twin boundaries

⁽a) IR+RI couple

Reflection (R) and isoceles(I) twin boundaries structures

During the propagation of TB, the transitions (I) \rightarrow (R) and (R) \rightarrow (I)– is accompanied by the stacking fault in ($\overline{2}11$)_{α_1} planes, which results in the shift of the interface along the direction ($\overline{2}11$)_{α_1} perpendicular to the twinning plane.

Partial twin dislocation couple (IR+RI) with step $h = a_2(2 \vee 6)$, Burgers vector $\mathbf{b} = \frac{1}{12} < \overline{1}11 >_{\alpha 1}$

Fcc/bcc interface

Propagation mechanism of fcc/bcc interface

Transformation pass: $fcc \rightarrow hcp \rightarrow bcc$.

- Two steps:
- Shockley partial dislocation with Burgers vector ${\bf b}_{\rm p}$ produces a SF $\,$ ABCABC-> ABAB $\,$
- Homogeneous deformation (111) $_{\gamma}$ fcc -> (011) $_{\alpha}$ bcc planes (glide of **b**₁ and **b** $_2$ fcc screw dislocations)

Dual-phase (DP) steels

Dual microstructure of soft ferrite and harder martensite phases.

Role of transformation interface

Solid-state phase transformations moving transformation interface during steel processing Interface interaction with the alloying elements \geq **Microstructure future** Orientation relationship (ORs) between two phases phases volume fraction Interface properties (coherency, thickness and shape) \geq topology and morphology of phases Atomic structure of the interface \geq grain size distribution Ability to dissipate energy: interfacial friction **Experimental investigation** of the transformation **Mechanical properties of the steel** interface at the nanoscale and modeling

15s at 625 °C: interface #7

Thesis O. Nakonechna

Austenite-to-ferrite phase transfromation

The change in the crystal structure (from fcc to bcc).
 Diffusional process: the redistribution of interstitial and substitutional elements.

Kurdjumov-Sachs (KS): $\{111\}_{\gamma} \mid\mid \{110\}_{\alpha}$ $\langle \overline{1}01 \rangle_{\gamma} \mid\mid \langle \overline{1}\overline{1}1 \rangle_{\alpha}$ Nishiyama-Wassermann (NW): $\{111\}_{\gamma} \mid\mid \{011\}_{\alpha}$ $\langle 10\overline{1} \rangle_{\gamma} \mid\mid \langle 100 \rangle_{\alpha}$

At higher T: disordered interfaces migrate faster **At lower T:** coherent interfaces migrate faster ¹

FCC-BCC plane interface

Greninger-Troiano OR

Kurdjumov-Sachs OR

Thesis Y. Borges Gomes Lima

Propagation of (575) interface with KS OR

Nishiyama Wasserman Orientation Relationship

(121) Habit plane

(575) Habit plane

FCC->BCC phase transformation in Fe

Nishiyama Wasserman Orientation Relationship

• Average step height : $h = a_{BCC}\sqrt{3} \approx 0,50 \text{ nm}.$

• Average terrace length : 1,0 nm $\leq l \leq$ 1,5nm.

Slip Vector Aanalyses of NW $(575)_{FCC}$ interface with a BCC reference. Blue vectors are detected dislocations mean line direction.

Kurdjumov-Sachs OR

<u>screw dislocations</u> exist with <u>Burgers vector</u> $a_{fcc}/2[\overline{1}01]$ lying next to the steps along $[101]_{fcc}$, with the <u>stacking fault</u> between partials lying on the $(111)_{fcc}$ terrace.

F. Maresca et W. A. Curtin, Acta Mat., 134, 2017

Interaction of the Fcc/BCC interface with Carbon atoms

Long-range potential to model the C-C repulsion:

[2] A.Udyansky, J. von Pezold, A.Dick, and J.Neugebauer, Phys. Rev. B 83, 184112, 2011

Long-range potential to model the Fe-C repulsion (Screened Coulomb potential):

$$w_{FeC}(\boldsymbol{r}) = \frac{e^2}{r} \exp\left(-\frac{r^2}{r_D^2}\right)$$

 $r_D = 0.2036 \cdot a_0$ [3], where r_D - Debye radius

$$w_{FeC}(k) = \lambda_2 \frac{1}{(1/r_D)^2 + k^2}$$

Dkt

7.5

[3] Khachaturyan, Pokrovskii, Progress in Materials Science Vol. 29, pp. 1-138, 1985

$$\widehat{L}^0 = \begin{pmatrix} L^0_{FeFe} & L^0_{FeC} \\ L^0_{FeC} & L^0_{CC} \end{pmatrix}$$

> $L_{FeC}^0 = 0$ - since C atoms are in interstitial positions, there is no Fe/C exchange

 $> L_{CC}^0/L_{FeFe}^0 > 1$ – Carbon atoms are more mobile than iron atoms

$$\widehat{L}^0 = \begin{pmatrix} 0.67 & 0\\ 0 & 1.5 \end{pmatrix}$$

Segregation of C atoms at non-KS interfaces

OVITO software: Common

Neighbor Analysis (CAN)

- BCC;
- FCC;
- "other";
- Carbon
- $V = 256 \times 256 \times 512$

Segregation of C atoms at non-KS interfaces

APT data Fe-0,787At%C-2At%Mn

3D reconstructions and concentration profiles of C and Mn atoms across (a) the 1st interface of tip5 (isothermal holding at 625°C during 15s),

(**b**) the 2nd interface of tip3 (isothermal holding at 625°C during 15s).

Thesis O. Nakonechna

Segregation of C atoms at fcc/bcc moving interface

FCC/BCC interface with C atoms

- Interface with Non-KS OR propagates faster than KS
- **Concentration of C at non-KS OR interface is around 12%**
- Concentration of C at KS OR interface is around 5-6 %

Versatility of Phase Field Atomic and Nanoscale Modeling

$$\frac{\partial c(\mathbf{r},t)}{\partial t} = \left(\nabla M \nabla\right) \frac{\delta F}{\delta c}$$

$$\frac{\partial \eta(\mathbf{r},t)}{\partial t} = -L\frac{\delta F}{\delta \eta}$$

Different types of fields:

- atomic density, $\rho(r)$ –solidification, atomic ordering
- composition *c*(*r*), decomposition
- atomic LRO parameters, $\eta(r)_i$, (atomic ordering)
- transformation strain, *e*(*r*)_{ij}, (martensitic transformation)
- polarization, *P*, (ferroelectrics)
- magnetization, *M*(*r*), (ferromagnets)
- Burgers vector, *b*, (multi-dislocations systems)
- crack opening, *h* (multi-crack systems)