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Motivation

This work is motivated by molecular simulation, where we often have to
simulate long trajectories of complex, metastable systems.

Typical dynamics: the Langevin equation

dqt = pt dt, dpt = −∇V (qt) dt − γ pt dt +
√

2γβ−1 dWt
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Outline

Since we have to simulate long-time trajectories, it seems attractive
to use the parareal algorithm, which solves initial value problems by
parallel-in-time computations (domain-decomposition fashion)

It turns out that this algorithm is not stable for MD problems when
the time horizon is too large

We are therefore going to introduce an adaptive parareal algorithm

F.L., T. Lelièvre and U. Sharma, SIAM Journal on Scientific Computing 2022

O. Gorynina, F.L., T. Lelièvre and D. Perez, arXiv preprint 2212.10508
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Parallel in time algorithm for ODEs

dx

dt
= f (x), x ∈ Rd

The parareal algorithm (Lions, Maday and Turinici, 2001) is based upon
two integrators to propagate the system over a time ∆T :

a fine, accurate integrator F∆T

a cheap coarse integrator C∆T

For instance,

F∆T = (ΦδtF )∆T/δtF and C∆T = (ΦδtC )∆T/δtC with δtF � δtC

where Φδt is a one time step propagator
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The parareal iterative procedure

Initialization: coarse propagation that yields
{
xk=0
n

}
n
:

∀n, xk=0
n+1 = C∆T (xk=0

n )
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The parareal iterative procedure

Initialization: coarse propagation that yields
{
xk=0
n

}
n
:

∀n, xk=0
n+1 = C∆T (xk=0

n )

Iterate over k ≥ 0:
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The parareal iterative procedure

Initialization: coarse propagation that yields
{
xk=0
n

}
n
:

∀n, xk=0
n+1 = C∆T (xk=0

n )

Iterate over k ≥ 0:

compute jumps (in parallel):

Jkn = F∆T (xkn )− C∆T (xkn )
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The parareal iterative procedure

Initialization: coarse propagation that yields
{
xk=0
n

}
n
:

∀n, xk=0
n+1 = C∆T (xk=0

n )

Iterate over k ≥ 0:

compute jumps (in parallel):

Jkn = F∆T (xkn )− C∆T (xkn )

sequential update to obtain
{
xk+1
n

}
n
:

∀n, xk+1
n+1 = C∆T (xk+1

n ) + Jkn

The fine solver is called only in the parallel part of the algorithm.
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Parareal algorithm for MD simulations – 1

The parareal iterations converge (when k →∞) to the solution of the
reference dynamics

xn+1 = F∆T (xn)

This comes from the fact that xkn = Fn
∆T (x0) whenever k ≥ n.

In practice, for many applications, convergence is observed in much
fewer iterations

In MD, we often run simulations with time steps just below the
stability limit (this often provides sufficient accuracy on the quantities
of interest): no room for choosing δtC � δtF

We thus turn to a different paradigm where C∆T integrates a simpler
dynamics than F∆T (say with the same time step)
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Parareal algorithm for MD simulations – 2

In our setting,

F∆T integrates the original Langevin dynamics (with the reference
potential Vf ≡ V )

dqt = pt dt, dpt = −∇Vf (qt) dt − γ pt dt +
√

2γβ−1 dWt

C∆T integrates a Langevin dynamics run on a simplified (cheaper to
compute) potential Vc :

dqt = pt dt, dpt = −∇Vc(qt) dt − γ pt dt +
√

2γβ−1 dWt

Identical Gaussian increments for F∆T and C∆T and over all parareal
iterations (to ensure as best as possible trajectorial convergence)

Choice here: F∆T and C∆T use a single time-step to advance the
system by the time interval ∆T

Similar paradigm (in terms of Vf vs Vc ) in [Baffico et al, PRE 2002]
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Simulations on
toy model problems

Frédéric Legoll (ENPC & Inria) IPAM workshop #2 17-21 April 2023 11 / 31



Two model problems

A quadratic model in 1D:

Vf (q) =
q2

2
, Vc(q) = ω

q2

2
for some ω > 0

Simple enough to be amenable to theoretical analysis, and exhibits
the same issues as those appearing with more complex models.

A slightly less simple model: a 7-atom Lennard-Jones cluster in 2D:

Vf (q) =
1

2

∑
i ,j∈{1,...,7}, i 6=j

φf (|qi − qj |), φf (r) = r−12 − 2 r−6

Vc ≡ harm. approx. of Vf at the global minimum (the initial
condition is chosen in the corresponding well).
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Convergence criteria

Relative error between consecutive parareal trajectories:

E (k ,N) =

∑N
n=1 |qkn − qk−1

n |∑N
n=1 |q

k−1
n |

.

We stop the algorithm at the first parareal iteration k for which

E (k ,N) < δconv = 10−5

The wall-clock gain is

gain =
N

k
=

# fine propagations for a sequential algorithm

# fine propagations for the parareal algorithm

Ef (k ,N) = relative error with respect to the reference trajectory
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Instability at large times

Plot of Ef (k ,N) as a function of k :
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For small N, fast convergence of the parareal iterations (gain ≈ 10)

For large N, the error increases to large values when k increases
(because the trajectory goes far away), before eventually converging

Harmonic model, ω = 0.1, ∆T = 0.05, β = 3
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Gain as a function of N and ω
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Theoretical analysis on a toy problem (steepest descent)

Reference problem: Vf (x) = x2/2 and

dx

dt
= −V ′f (x) = −x

Fine integrator (exact integ. over ∆T ): F∆T (x) = exp(−∆T ) x

Coarse model: Vc(x) = ω x2/2 and

dx

dt
= −V ′c(x) = −ω x

Coarse integrator (exact integ. over ∆T ): C∆T (x) = exp(−ω∆T ) x

We have a complete understanding (see [SISC 2022]) of the relative

error as a function of the trajectory length N and of y =
F∆T

C∆T
− 1,

which quantifies how much the coarse and fine models differ.

This analysis on an oversimplified model is illustrative of the general situation.
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A typical result

Rn,k = relative error at time n and iteration # k , y =
F∆T

C∆T
− 1

If y is such that 0 < y ≤ c/n (the coarse model is very close to the
fine; the longer the trajectory, the closer the models should be), then

k 7→ Rn,k is decreasing and convex

If y is such that y ≥ c n (the coarse model is very different from the
fine), then

k 7→ Rn,k is decreasing and concave

If y is in-between, then there exists p ≈ n|y |
1 + |y |

∈ [1, n] such that

k 7→ Rn,k is concave for 1 ≤ k ≤ p and convex for p ≤ k ≤ n
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Numerical illustration

Plot of k 7→ Rn,k for n = 1000

The error (as a function of k) is

convex for ω = 1.02 (excellent convergence)

concave for ω = 160 (error close to 100% for almost all k . . . )

concave then convex for in-between ω (infl. point depends on y & n)

There are cases where k 7→ Rn,k is not a decreasing function (error grows when more

iterations!)
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Adaptive algorithm
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Heuristics
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If N is not too large, the algorithm performs nicely . . .
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Adaptive algorithm

E ≡ relative error between consecutive trajectories

On the time-slab [0,N∆T ], we run the parareal algorithm until E is

either smaller than the convergence threshold δconv
or larger than an explosion threshold δexpl (attained at parareal
iteration # kcur)

In the blow-up case, for the parareal iteration kcur, we find the first
time iteration 1 + m̃1 ≤ N for which E exceeds δexpl, and we shorten
the slab to [0, m̃1∆T ].

We then proceed with the parareal iterations on the slab [0, m̃1∆T ],
that we possibly further shorten, until the relative error (on
[0, m̃1∆T ]) is smaller than δconv.

Once we have converged on [0, m̃1∆T ], we proceed and define the
new (tentative) time-slab as [m̃1∆T ,N∆T ].

Frédéric Legoll (ENPC & Inria) IPAM workshop #2 17-21 April 2023 21 / 31



Adaptive algorithm

E ≡ relative error between consecutive trajectories

On the time-slab [0,N∆T ], we run the parareal algorithm until E is

either smaller than the convergence threshold δconv
or larger than an explosion threshold δexpl (attained at parareal
iteration # kcur)

In the blow-up case, for the parareal iteration kcur, we find the first
time iteration 1 + m̃1 ≤ N for which E exceeds δexpl, and we shorten
the slab to [0, m̃1∆T ].

We then proceed with the parareal iterations on the slab [0, m̃1∆T ],
that we possibly further shorten, until the relative error (on
[0, m̃1∆T ]) is smaller than δconv.

Once we have converged on [0, m̃1∆T ], we proceed and define the
new (tentative) time-slab as [m̃1∆T ,N∆T ].

Frédéric Legoll (ENPC & Inria) IPAM workshop #2 17-21 April 2023 21 / 31



Adaptive algorithm

E ≡ relative error between consecutive trajectories

On the time-slab [0,N∆T ], we run the parareal algorithm until E is

either smaller than the convergence threshold δconv
or larger than an explosion threshold δexpl (attained at parareal
iteration # kcur)

In the blow-up case, for the parareal iteration kcur, we find the first
time iteration 1 + m̃1 ≤ N for which E exceeds δexpl, and we shorten
the slab to [0, m̃1∆T ].

We then proceed with the parareal iterations on the slab [0, m̃1∆T ],
that we possibly further shorten, until the relative error (on
[0, m̃1∆T ]) is smaller than δconv.

Once we have converged on [0, m̃1∆T ], we proceed and define the
new (tentative) time-slab as [m̃1∆T ,N∆T ].

Frédéric Legoll (ENPC & Inria) IPAM workshop #2 17-21 April 2023 21 / 31



Adaptive algorithm

E ≡ relative error between consecutive trajectories

On the time-slab [0,N∆T ], we run the parareal algorithm until E is

either smaller than the convergence threshold δconv
or larger than an explosion threshold δexpl (attained at parareal
iteration # kcur)

In the blow-up case, for the parareal iteration kcur, we find the first
time iteration 1 + m̃1 ≤ N for which E exceeds δexpl, and we shorten
the slab to [0, m̃1∆T ].

We then proceed with the parareal iterations on the slab [0, m̃1∆T ],
that we possibly further shorten, until the relative error (on
[0, m̃1∆T ]) is smaller than δconv.

Once we have converged on [0, m̃1∆T ], we proceed and define the
new (tentative) time-slab as [m̃1∆T ,N∆T ].

Frédéric Legoll (ENPC & Inria) IPAM workshop #2 17-21 April 2023 21 / 31



Explosion threshold

The slab sizes are such that E ≤ δexpl:
if δexpl is chosen large, the adaptive criterion is never triggered:
vanilla parareal

if δexpl is chosen small, the slabs are short: no parallelism anymore

the optimal choice of δexpl is somewhere in-between

List of the sizes of the time-slabs found by the algorithm:
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Gain
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For moderate values of δexpl, the gain seems independent of N

For large N, the adaptive algorithm always outperforms the classical
version (gain ≈ 30 for Har-1d, gain ≈ 7 for LJ7-2d)
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Conclusions on this part

In the long time limit, the trajectories provided by the classical
parareal algorithm are far away from the reference trajectories:
trajectorial accuracy is poor, and statistical accuracy is poor as well!

The adaptive algorithm always outperforms the classical version

F.L., T. Lelièvre and U. Sharma, SIAM J. Scientific Computing 2022
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Applications to the simulation of
self-interstitial atoms in tungsten

Joint work with O. Gorynina, T. Lelièvre and D. Perez (arXiv preprint
2212.10508)
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Our aim

We consider a periodic lattice of 128 tungsten atoms and add a
defect in the lattice in the form of a self-interstitial atom (SIA)

For the chosen physical parameters,

the system is metastable
within affordable trajectories, several jumps of the SIA are observed
(the residence time within a basin is long, but not extremely long)

Quantity of interest: residence times ≡ time spent by the SIA in a
given well before jumping to another well
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Potentials

Coarse potential Vc : EAM ≡ a cheap empirical potential based on
physically informed parameterized expressions

Fine (reference) potential Vf : SNAP ≡ an expensive empirical
potential.

It is based on generic expressions, the parameters of which are
optimized using machine-learning techniques to reproduce (on some
small configurations) the energies, forces, etc, obtained by ab-initio
computations

Cost ratio between Vc and Vf : 2600

Non-intrusive implementation:

the parareal algorithm is implemented in Python

to perform the time-stepping, Python calls LAMMPS

The fact that we use LAMMPS in a particular setting (on short trajectories . . . ) raises

additional difficulties (not detailed here).
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Trajectorial accuracy

For a small enough value of the convergence threshold (here
δconv = 10−10), it is possible to observe trajectorial accuracy:

reference residence times

[122, 23, 27, 476, 14, 32, 560, 245]

δconv parareal residence times

10−5 [63, 27, 16, 36, 19, 34, 332, 972]
10−10 [122, 23, 27, 476, 14, 32, 575, 15, 28, 31, 156]

The first six residence times are identically reproduced on the parareal
trajectory.

In this case, the reference trajectory and the parareal trajectory start from the same IC

and are fed with the same Gaussian increments.
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10−10 [122, 23, 27, 476, 14, 32, 575, 15, 28, 31, 156]

The first six residence times are identically reproduced on the parareal
trajectory.

In this case, the reference trajectory and the parareal trajectory start from the same IC

and are fed with the same Gaussian increments.
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Distribution of residence times (reference results)

We now focus on statistical accuracy: trajectories run with different noises and ICs

Mean residence time: Tmean = 320× δt, confidence interval [269; 372]× δt

EAM trajectory is wrong: Tmean = 100× δt, confid. interval [93; 107]× δt
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Parareal results, statistical accuracy (δconv = 10−3)

Reference results: Tmean = 320× δt, confidence interval [269; 372]× δt

Parareal results: Tmean = 286× δt, confidence interval [240; 332]× δt

Very good statistical accuracy (overlapping confidence intervals), while no
pathwise accuracy for this value of δconv. Gain ≈ 5 to 20
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Conclusions

Non-intrusive implementation within LAMMPS is possible
this allows to consider realistic systems
needs appropriate adjustement of time-scheme (not discussed here)

We found a regime of intermediate δconv where
significant computational gains, of the order of 20 (resp. 5) for δt =
0.5 fs (resp δt = 2 fs)
no pathwise accuracy but excellent statistical accuracy

Similar gains for tungsten lattice and LJ7 cluster
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