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Hofstadter’s Butterfly
Harper’s Equation

2ψℓ cosp2πℓb � κq � ψℓ�1 � ψℓ�1 � EψℓHarper’s Equation: Competition of Two Length Scales

Proc. Phys. Soc. Lond. A 68 879 (1955)

a

Tight binding on 2D Square lattice with magnetic field

Harper’s Equation 

Two competing length scales:
a : lattice periodicity
lB : magnetic periodicity

where ϕ0 � 2πℏ{e is the magnetic flux quantum.
“At first glance, the idea seems totally out of the range of possibility, since. . . the
rather generous lattice spacing of a � 2 Å demands a magnetic field of roughly
109 G.”
Douglas Hofstadter (1976), "Energy levels and wavefunctions of Bloch electrons in rational and irrational
magnetic fields." Physical Review B 14 (6).
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The Moiré Superlattice for Twisted Bilayer Graphene
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Moire patterns as beating phenomena
Consider oscillations hℓprq �

°2
k�1 e ibℓ,k �r of twisted layers ℓ with wave vectors bℓ,k .

hMprq � h1prq � h2prq �
2̧

k�1
e i
� b1,k�b2,k

2

	
�r e�i

� b1,k�b2,k
2

	
�r
.

Fast atomistic scale oscillations with wave vectors
�

b1,k�b2,k
2

	
.

Slow moiré scale envelope function with moiré wave vectors
�

b1,k�b2,k
2

	
.
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Capturing Hofstadter’s Butterfly in Twisted Bilayer Graphene/hBN

W W W. N A T U R E . C O M / N A T U R E  |  1

SUPPLEMENTARY INFORMATION
doi:10.1038/nature12186
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FIG. S1: Left is a cartoon image of an electron subjected to both a magnetic field, and a square

periodic lattice. The usual Hofstadter Butterfly spectrum, calculated for a square superlattice,

is shown in the middle. Right shows the spectrum replotted as density versus magnetic field.

Coloured lines in the Hofstadter energy-field spectrum (middle) follow lines of constant chemical

potential. In the Wannier density-field spectrum (right), these same lines follow linear trajectories,

according to the Diophantine equation.

Fig. S1b and S1c illustrates the relationship between the energy-field diagram and

density-field diagram. As first demonstrated by Wannier (see main text), all spectral gaps

follow linear trajectories in the density-field space according to a dimensionless Diophantine

equation (Eqn. 1 in the main text). The Wannier diagram is experimentally accessible by

performing transport measurement while varying the carrier density and magnetic field. In

the quantum Hall regime, spectral gaps in the spectrum appear as minima in longitudinal

resistance, Rxx, and quantized plateaus in the transverse Hall resistance, Rxy.

S2. REPLOTTING LANDAU FAN DIAGRAM IN DIMENSIONLESS UNITS

The relevant quantities in the Landau fan diagram for a 2D electron system with a

superimposed periodic potential are the size of the superlattice unit cell, and the number of

flux penetrating this unit cell. For a square superlattice the magnetic flux penetrating the

unit cell is

φ

φo

=
Ba2

φo

(1)

Figure: Moiré lattice constant aM � 15.5 nm (a � 0.25 nm). B � 104 � 106G . Electron
density n0 � 1{A were A is area of moiré unit cell and n is integrated density of states.

Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices, Dean, C. R.; Wang, L.; . . . ;
Hone, J.; Kim, P. (30 May 2013). Nature. 497 (7451): 598–602.
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Mechanical Relaxation
� When two layers are closely aligned, they form large-scale moiré patterns.
� This leads to atomistic relaxation on the moiré scale.
� Electronic properties depend on the relaxation.
� Incommensurate. Moiré patterns are not periodic on atomistic scale!

Unrelaxed Relaxed

Energy minimization of 2D incommensurate heterostructures. Paul Cazeauz, Mitchell Luskin, and Daniel
Massatt. Arch. Rat. Mech. Anal., 235:1289–1325, 2019.
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Flat Band in Twisted Bilayer Graphene at Magic Angle

Flat Band ñ Small Group Velocity Bε
Bk + Real Space Localization

Low Kinetic Energy ñ Coloumb Energy ¡ Kinetic Energy.
Bistritzer-MacDonald (2011): Correlated phases such as superconductivity might

exist due to electron-electron interactions?

[Atomic and electronic reconstruction at van der Waals interface in twisted bilayer graphene , Hyobin Yoo,
Rebecca Engelke, Stephen Carr, Shiang Fang,. . . , Mitchell Luskin, Ellad B. Tadmor, Efthimios Kaxiras, Philip
Kim, Nature Materials, 2019]
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Superconductivity and Mott Insulator States in Magic Angle TBG
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Unconventional superconductivity in magic-angle graphene superlattices, Yuan Cao, Valla Fatemi, Shiang Fang,
& Pablo Jarillo-Herrero Nature volume 556, pages 43—50 (2018)
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Real Space Localization of Electronic Density at Magic Angle

Figure: Simulated local electronic density of states (LEDoS) at four different angles of
twisted bilayer graphene. The insets show a real-space image of the density of states in
the bilayer system at the energy value identified by a dashed line.
[Twistronics: manipulating the electronic properties of two-dimensional layered structures through the twist
angle, Stephen Carr, Daniel Massatt, Shiang Fang, Paul Cazeaux, Mitchell Luskin, and Efthimios Kaxiras.
Nanoscale Phys. Rev. B, 95:075420, 2017.]
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Library of moiré heterostructures with flat bands

Figure: Left: Alternate-twist trilayer Gr. Right: Twisted double bilayer Gr.

Electric field–tunable superconductivity in alternating-twist magic-angle trilayer graphene, Zeyu Hao, A. M.
Zimmerman, . . . Philip Kim, Science Mar 2021 : 1133-1138.
Liu, X., Hao, Z., Khalaf, E.,. . . P. Kim. Tunable spin-polarized correlated states in twisted double bilayer
graphene. Nature 583, 221–225 (2020).
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Library of moiré heterostructures with flat bands

Figure: Left: ABC Trilayer Gr on hBN. Right: Twisted WSe2 .

Chen, G., Jiang, L., Wu, et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré
superlattice. Nat. Phys. 15, 237–241 (2019).
Wang, L., Shih, EM., Ghiotto, A., . . . , Dean, C. Correlated electronic phases in twisted bilayer transition metal
dichalcogenides. Nat. Mater. 19, 861–866 (2020).
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Periodic Table of Materials

Can design Hamiltonian by tuning

� stacking order of 2D crystals
� moiré unit cell area by varying twist angle (tear and stack)
� filling of unit cell by varying gate voltage
� interlayer coupling strength by varying pressure
� electrical field
� magnetic field

Unconventional superconductivity without need to dope cuprates.
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Moiré heterostructures as a Condensed-matter Quantum Simulator, D. Kennes, M. Claassen, . . . , J. Hone, C.
Dean, D. N. Basov, A. N. Pasupathy & A. Rubio, Nature Physics, 17, pages 155–163 (2021).
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Learning Band Structure

Tight Binding 
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Figure: The Lθ marked with the red dashed arrow is the image processing we aim to
achieve, e.g., the Twist Operator to be learned with a neural network. The solid black
arrows represent well-defined mappings.

Seeing moiré: convolutional network learning applied to twistronics. Diyi Liu, Mitchell Luskin, and Stephen Carr.
Phys. Rev. Res., 4:043224 (11pp), 2022.
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Learning Band Structure
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Figure: Comparison of configuration-dependent LDOS maps calculated from aligned
bilayer Hamiltonians (input, I), moiré Hamiltonians (output, O), and predictions from our
CNN (P) which are generated from the supplied input after training. Six representative
cases are shown here, for bilayers of material types M1, M2, M3, M6, M7, and M10.
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Reduced Models Needed for Correlated Physics

TBG moiré cell at magic angle θ � 1.05� : 10, 000 atoms, 60, 000 electrons.
Reference many-body model: Schrödinger equation for ψpx1, . . . , x60,000q.

Can compute local density of states, band structure, Kubo conductivity, etc., from
tight-binding approximation of single particle mean field Hamiltonian H (projection
onto atomistic scale localized Wannier basis functions).

To study correlated physics, must solve

Ĥ �
¸
p, q

tpqâ�p âq �
¸

p, q, r , s
tpqrs â�p â�q âr âs .
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Moiré scale Wannier functions

Ĥ �
¸
p, q

tpqâ�p âq �
¸

p, q, r , s
tpqrs â�p â�q âr âs .

Reduced models: Project onto flat bands. 8 localized (at moiré scale) Wannier basis
functions per moiré cell versus 10, 000. Topological obstructions? Fragile topology.
Mikito Koshino, ..., and Liang Fu Phys. Rev. X 8, 031087, 2018,
Stephen Carr, S. Fang, H. Po, A. Vishwanath, and E. Kaxiras Phys. Rev. Research 1, 033072, 2019.
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Bistritzer-MacDonald model
Bistritzer-MacDonald (2011) proposed to model electrons in twisted bilayer
graphene by a moiré-periodic PDE model

iBtψ � HBMψ, HBM :�
�
σ⃗ � p�i∇⃗q T p⃗rq

T :p⃗rq σ⃗ � p�i∇⃗q



,

where ψptq the wave-function of an electron, σ⃗ � pσ1, σ2q the vector of Pauli
matrices, and T p⃗rq a moiré-periodic potential
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Main theorem

Theorem (Watson-Kong-MacDonald-Luskin 2022 [simplified])
Consider the tight-binding model of twisted bilayer graphene iBtψ � Hψ, with
wave-packet initial data ψp0q � ϵf0pϵR⃗qe iK⃗i �R⃗ localized at Dirac point K⃗i in layer i ,
with spectral width ϵ ! 1.

Suppose the interlayer hopping function h satisfies the assumption, and ℓ and θ
satisfy

|ĥp|K⃗ |; ℓq| � ϵ, θ À ϵ.

Then, ψptq � ϵf pϵR⃗, ϵtqe iK⃗i �R⃗ � Oℓ2pϵ2tq evolves as wave-packet up to t � ϵ�2�δ

(any δ ¡ 0), with envelopes f � pf A
1 , f B

1 , f A
2 , f B

2 q
J modulated by

iBT f � HBMf , HBM :�
�
σ⃗ � p�i∇⃗q T p⃗rq

T :p⃗rq σ⃗ � p�i∇⃗q



,

σ⃗ � pσ1, σ2q vector of Pauli matrices, T p⃗rq moiré potential.

Bistritzer-MacDonald dynamics in twisted bilayer graphene. A. Watson, T. Kong, A. H. MacDonald, and M.
Luskin. J. Math. Phys. 64:031502 (38pp), 2023
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Veselago Lens and Klein Collimater

F Libisch et al

2

collimators are robust in the presence of moderate interface 
roughness and weak bulk disorder, and give quantitative con-
straints for experimental realizations.

2.  Klein tunneling

The linear band crossing in graphene at the K-point, the so-
called Dirac point creates a double-cone structure that closely 
mimics the dispersion relation of massless Dirac fermions 
(see figure 1(a)), described by the Dirac-like Hamiltonian,

1 ( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟=

+

−
+ ⋅H v

p p

p p
V x

0 i

i 0
,

x y

x y
F� (1)

where px (py) denote the momentum operators and we have set 
E(kK)  =  0. The approximation (1) ignores both the length scale of 
the graphene lattice constant a  =  1.4 Å and the broken rotational 
symmetry of the cone due to the hexagonal lattice structure, an 
effect known as trigonal warping [8]. The symmetric electron-like 
(hole-like) dispersion relation of equation (1) above (below) the 
Dirac point allows to locally tune the Fermi energy to create 
n-doped (electron-like) or p-doped (hole-like) regions of carrier 
density by an external potential. At a finite-width potential step 
V(x) (by, e.g. a back gate) [8] (see figure 1)

( )
/

( ) ⩾

⎧
⎨
⎩

=
⋅ <
⋅

V x
V x d x d

x V x dsgn
0

0
� (2)

between an n-doped and a p-doped region, electrons may 
tunnel from the n-region into the p-region (see figure 1(a)). In 
the limit of a sharp interface with the transition half-width d 
small compared to the de Broglie wavelength λD, λ�d D, tun-
neling occurs with near unit probability due to the electron-
hole symmetry of H (equation (1)), a phenomenon known as 
Klein tunneling [15, 32]. Since the group velocity is reversed 
when switching from the upper to the lower cone, i.e. from 
the n to the p region, the wave originally propagating in the 
( )k k,x y  direction in the n-region is transmitted into the p region 
with wavevector ( ) ( ) ( )− ⋅ − = −k k k k1 , ,x y x y  due to flux con-
servation at the interface. The resulting scattering kinematics 
corresponds to the optical analogue of a metamaterial with 
a negative index of refraction (figure 1). Consequently, a 
diverging ray of trajectories emanating from a source point 

(S) will be focused by an ideal p–n interface onto the point F 
on the p side. Such an electron-optical lens could be created in 
graphene simply by applying a discontinuous potential step. If, 
however, the transition from n- to p- region is gradual instead 
of sudden, i.e. if d is of the order of λD, new effects appear. For 
grazing incidence with �k ky x  at the p–n interface, ky  may 
exceed the local ħ( ) ( ) /= −k x E V x vF F causing total reflec-
tion rather than transmission. Consequently, partial transmis-
sion through the p–n interface is restricted to near-normal 
incidence [28] and no distinct focal point exists. The p–n 
junction operates in this regime as filter that only transmits on 
near-normal incidence.

3.  p–n junction in graphene nanoribbons

Realizing electron-optical elements such as lenses and fil-
ters suggested by the ideal massless Dirac fermion picture 
(equation (1)) in graphene structures must account for the 
discrete honeycomb lattice structure with lattice constant a 
made up by two interleaved triangular sublattices (A and B). 
It can be described in tight-binding approximation by the 
Hamiltonian [33]

∑ ∑φ φ γ φ φ= − +H V h.c.,
i

i i i
i j

i j i j
,

,
( )

� (3)

where the sum (i,j) extends over pairs of lattice sites, φj s,  

is the tight-binding orbital with spin s at lattice site j, Vi is a 
locally varying potential which includes in the present case the 
potential step (equation (2)), and γi j,  are the hopping matrix 
elements between lattice sites i and j. We omit physical spin 
in the following. In contrast to the Dirac Hamiltonian of equa-
tion (1), the electronic structure of graphene features a weakly 
broken electron-hole symmetry accounted for in the present 
simulations by including third-nearest-neighbor coupling (for 
details see [34]). Furthermore, the hexagonal symmetry of 
the graphene lattice distorts the perfectly circular Dirac cone 
at energies farther away from the Dirac point. This so-called 
trigonal warping [8, 37] is also included in our third-nearest 
neighbor description.

We explore the consequences of this symmetry breaking 
for a graphene nanoribbon that extends to infinity to the left 
and right, ( ±−∞x → ), containing a single p–n transition. 

Figure 1.  (a) Graphene bandstructure near a p–n junction with transition width 2d. Circles represent cuts through the Dirac cone at constant 
energy, the arrow gives the direction of group velocity. (b) Refraction at an ideal infinitely sharp p–n junction with zero transition width 
d  =  0 results in focusing due to the different sign of the group velocity for the particle and hole. (c) Same as (b) for a finite transition width 
between n- and p-region, leading to specular reflection of rays incident with large perpendicular momentum component ky as transmission 
through the intermediate region is blocked (see text).

J. Phys.: Condens. Matter 29 (2017) 114002

[Veselago lens and Klein collimator in disordered graphene, F Libisch, T Hisch1, R Glattauer, L A Chizhova1 and
J Burgdörfer, J. Phys.: Condens. Matter, , 2017]
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Gate-tunable Veselago Interference in a Bipolar Graphene Microcavity

[Gate-tunable Veselago Interference in a Bipolar Graphene Microcavity, X. Zhang, W. Ren,. . . , E. Kaxiras, M.
Luskin, K. Wang, Nature Communications, 13:6711 (7pp)(18pp supplementary material), 2022.]
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2D bilayer geometry

For layers j P t1, 2u, we define the Bravais lattice

Rj � tAjn : n P Z2u

where Aj is a 2� 2 invertible matrix whose columns are primitive lattice vectors.
We define the unit cell for layer j as

Γj � tAjx : x P r0, 1q2u.

Reciprocal lattice: R�
j :� t2πA�T n : n P Z2u.

Brillouin Zone: Γ�j :� BZj :� t2πA�T
j x : x P r0, 1q2u.

Represent multilattices by R1 �A1 and R2 �A2
where Ai denotes the set of orbitals associated with each lattice point in layer i .
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Blue lattice points’ (R1) local environment (Γ2) described completely by the
disregistry between the red and blue unit-cells.

Isomorphism (one-to-one mapping) between R1 and configurations (disregistries)
(Γ2) of incommensurate systems.

Configuration space approach gives a unified theoretical and computational
approach to mechanics, electronic structure, transport, and diffraction.
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Disregistry
The disregistry of an atom R1 of layer 1 with respect to layer 2 is given by

b1Ñ2pR1q � modΓ2pR1q, R1 P R1.

Since A2A�1
1 R1 P R2, we can smoothly interpolate to R2 by

b1Ñ2pxq � modΓ2

�
pI � A2A�1

1 qx
�
.
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Moiré Unit Cell and Superlattice
b1Ñ2pxq and b2Ñ1pxq are isomorphisms

b1Ñ2 :
#

ΓM Ñ Γ2,

x ÞÑ pI � A2A�1
1 qx � A2pA�1

2 � A�1
1 qx ,

b2Ñ1 :
#

ΓM Ñ Γ1,

x ÞÑ pI � A1A�1
2 qx � A1pA�1

1 � A�1
2 qx ,

where ΓM is the periodic moiré cell:

ΓM :� R2{RM � pA�1
1 � A�1

2 q�1r0, 1q2,

and RM is the moiré superlattice given by

RM :� pA�1
1 � A�1

2 q�1Z2.

Reciprocal moiré lattice is then given by

R�
M :� 2πpA�T

1 � A�T
2 qZ2.
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Ergodicity of Disregistries for Incommensurate 2D Layers
For h P CperpΓ2q, we thus have that hpR1q � hpb1Ñ2pR1qq and

1
#R1 X Br

¸
R1PR1XBr

hpR1q �
1

#R1 X Br

¸
R1PR1XBr

hpb1Ñ2pR1qq Ñ
1
|Γ2|

�
Γ2

hpbqdb.

Replace integrals (traces) over BZsupercell by disregistries Γ2

Generalized Kubo formulas for the transport properties of incommensurate 2D atomic heterostructures. E.
Cancés, P. Cazeaux, and M. Luskin. Journal of Mathematical Physics, 58:063502, 2017.
Electronic density of states for incommensurate layers. Daniel Massatt, Mitchell Luskin, and Christoph Ortner.
SIAM J. Multiscale Modeling & Simulation, 15:476–499, 2017.
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Density of States for Lattice by Trace (Integral) over BZ
The density of states ρpE q can be computed by the formula

ρpE q �
|A|̧

m�1

�
Γ�
δpεmpqq � E q dq �

|A|̧

m�1

�
εmpqq�E

dℓ
|∇qεmpqq|

,

where dℓ is the line integral on the level sets of the bands εmpqq � E since
dq � |∇qεmpqq|�1 dεm dℓ.

E
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Figure: Linear DoS at Fermi Level and Van Hove singularity.
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Density of States for Incommensurate 2D Layers

We have that

DRαrHs � D0αrH1pb1Ñ2pR1qqs, R1α1 P R1 �A1,

where DR1α1rHs is the local density of states at R1α1 P R1 �A1, and
H1pb2q is the Hamiltonian with layer 2 shifted by disregistry b2 P Γ2.
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Density of States for Incommensurate 2D Layers

Since
DR1α1rHs � D0α1rHjpb1Ñ2pR1qqs, R1α1 P R1 �A1,

and b1Ñ2pR1q for R1 P R1 uniformly samples Γ2, we can rigorously derive the
ergodic property for the local density of states of incommensurate lattices

1
#tR1 �A1u X Br

¸
R1α1PtR1�A1uXBr

DR1α1rHs

�
1

#tR1 �A1u X Br

¸
R1α1PtR1�A1uXBr

D0α1rH1pb1Ñ2pR1qqs

Ñ
1

|A1| � |Γ2|

¸
α1PA1

�
Γ2

D0α1rH1pbqsdb.

Approximate by configuration sampling, domain truncation, and kernel polynomial
approximation.
Electronic density of states for incommensurate layers. Daniel Massatt, Mitchell Luskin, and Christoph Ortner.
SIAM J. Multiscale Modeling & Simulation, 15:476–499, 2017.
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Twisted Bilayer Graphene Calculation

Figure: 500 Angstrom radius disk ( 600,000 atoms in total)

[Twistronics: manipulating the electronic properties of two-dimensional layered structures through the twist
angle, Stephen Carr, Daniel Massatt, Shiang Fang, Paul Cazeaux, Mitchell Luskin, and Efthimios Kaxiras, Phys.
Rev. B, 95:075420, 2017.]
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Local Density of States in Twisted Bilayer Graphene

Figure: Simulated local electronic density of states (LEDoS) at four different angles of
twisted bilayer graphene. Each line corresponds to a different real-space configuration
along the line connecting AA to AB stacking. The insets show a real-space image of the
density of states in the bilayer system at the energy value identified by a dashed line.
[Twistronics: manipulating the electronic properties of two-dimensional layered structures through the twist
angle, Stephen Carr, Daniel Massatt, Shiang Fang, Paul Cazeaux, Mitchell Luskin, and Efthimios Kaxiras, Phys.
Rev. B, 95:075420, 2017.]
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Extensions to Band Structure, Transport, Relaxation
� Bloch transform incommensurate Hamiltonian to momentum space (not

diagonal because of scattering between layers).
� Generalization of Kubo formula for optical conductivity to incommensurate

structures by configuration-based current-current correlation measure

µ � ν

� �
Γ2

µ1rbs db �
�

Γ1

µ2rbs db


, and

σ � �

� ie2

ℏ2
fβpE � EF q � fβpE 1 � EF q

pE � E 1qpE � E 1 � ω � iηq pE ,E
1q dµpE ,E 1q.

� DoS, band structure and transport for relaxed incommensurate structures.
Generalized Kubo formulas for the transport properties of incommensurate 2D atomic heterostructures. E.
Cancés, P. Cazeaux, and M. Luskin. Journal of Mathematical Physics, 58:063502, 2017.

Incommensurate heterostructures in momentum space. Daniel Massatt, Stephen Carr, Mitchell Luskin, and
Christoph Ortner. Multiscale Model. Simul., 16:429–451, 2018.

Modeling and computation of Kubo conductivity for 2D incommensurate bilayers. Simon Etter, Daniel Massatt,
Mitchell Luskin, and Christoph Ortner. Multiscale Model. Simul., 18:1525–1564, 2020.

Efficient computation of Kubo conductivity for incommensurate 2D heterostructures. D. Massatt, S. Carr, and
M. Luskin. Eur. Phys. J. B, 93, 2020.

Electronic Observables for Relaxed Bilayer 2D Heterostructures in Momentum Space. Daniel Massatt, Stephen
Carr, Mitchell Luskin, arXiv:2109.15296v3, 2021
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Energy landscape in twisted bilayer graphene

Strain solitons and topological defects in bilayer graphene. PNAS, 2013, Alden, . . . , McEuen
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Continuum Model for Relaxation of Incommensurate 2D Bilayers
Approximate by a continuum model E totpU1,U2q where Ujpxq : R2 Ñ R2 is the
continuum displacement field for layer j :

EtotpU1,U2q � lim
rÑ8

1
|Br |

�
Br

dx
�
E1

intrap∇U1pxqq � E2
intrap∇U2pxqq

�
1
2E1

interpb1Ñ2pxq � U1pxq � U2pxqq �
1
2E2

interpb2Ñ1pxq � U2pxq � U1pxqq
�

where E j
intrap∇Ujq is the intralayer elastic energy and

E1
interpb1Ñ2pxq � U1pxq � U2pxqq

is the relaxed Generalized Stacking Fault Energy, E1
inter : Γ2 Ñ R, where

b1Ñ2pxq P Γ2 is the disregistry of layer 1 with respect to layer 2.

Disregistries b1Ñ2pxq and b2Ñ1pxq are periodic on moiré cell, ΓM.

Energy minimization of 2D incommensurate heterostructures. P. Cazeaux , M. Luskin, and D. Massatt. Arch.
Rat. Mech. Anal., 235:1289–1325, 2019.
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Generalized Stacking Fault Energy
The interlayer energy density of layer 2 with respect to layer 1 can be accurately
modeled by the Generalized Stacking Fault Energy, FGSFE,

E2
interpb2Ñ1pxq � U2pxq � U1pxqq � FGSFEpb2Ñ1pxq � U2pxq � U1pxqq,

where b2Ñ1pxq is the disregistry. FGSFE can be fit by DFT.

b

Sheet 1
Sheet 2

Figure: How the Generalized Stacking Fault Energy, which represents the interlayer
coupling energy, depends on the disregistry b for three different materials.
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Total Energy
The relation between displacement in configuration space coordinates and real
space coordinates is given by

U1pxq � u1pb1Ñ2pxqq and U2pxq � u2pb2Ñ1pxqq,

where u1 is periodic on Γ2 and u2 is periodic on Γ1. Since b1Ñ2pxq and b2Ñ1pxq are
isomorphisms

b1Ñ2 :
#

ΓM Ñ Γ2,

x ÞÑ pI � A2A�1
1 qx ,

b2Ñ1 :
#

ΓM Ñ Γ1,

x ÞÑ pI � A1A�1
2 qx ,

we have that U1pxq and U2pxq are periodic on ΓM and

EtotpU1,U2q

�

�
ΓM

dx
�
E1

intrap∇U1pxqq � E2
intrap∇U2pxqq

�
1
2E1

interpb1Ñ2pxq � U1pxq � U2pxqq �
1
2E2

interpb2Ñ1pxq � U2pxq � U1pxqq
�
.
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Bilayer Graphene or MoS2 Configuration Space Model
For bilayer graphene or MoS2, Eintra � E1

intra � E2
intra since the intralayer energy is

isotropic and
E1

interpb1Ñ2pxqq � E2
interpb2Ñ1pxqq

by symmetry.

We can then obtain from the uniqueness of solutions to the energy minimization
problem that U1 � �U2 and U1 is the minimum displacement for the energy

EtotpUq :� 1
|ΓM |

�
ΓM

dx
�
Eintrap∇Upxqq � E1

interpb1Ñ2pxq � 2Upxqq
�
.

Rescale to Γ0 to get Ginzburg-Landau type equation:

EtotpUq :�
�

Γ0

dx
�
Eintrap∇Upxqq � 1

p2 sin θ{2q2 E1
interpb1Ñ2pxq � 2Upxqq

�
.

Hence, �
Γ2

|∇u1pbq|2 db ¤ Cθ�2,

�
ΓM

|∇U1pxq|2dx ¤ Cθ�2.
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Regularity of Displacement�
Γ2

|∇u1pbq|2 db ¤ Cθ�2,

�
ΓM

|∇U1pxq|2dx ¤ Cθ�2.

Figure: Relaxation results for twisted bilayers with five incommensurate twist angles each.
The left panel of each column shows FGSFEpb � 2upbqq over Γ (the relaxation pattern in
configuration space) and the right panel shows FGSFEprq (over real space).
Relaxation and Domain Formation in Incommensurate 2D Heterostructures. S. Carr, D. Massatt, S. B. Torrisi, P.
Cazeaux, M. Luskin and E. Kaxiras). Physical Review B, page 224102 (7 pp), 2018.

Relaxation and domain wall structure of bilayer moiré systems. Paul Cazeaux, Drake Clark, Rebecca Engelke,
Philip Kim, and Mitchell Luskin. Journal of Elasticity, to appear.

Mitchell Luskin (University of Minnesota) Computing at the Moiré Scale April 22, 2023 38 / 62



Diffraction Patterns with Tunable Commensurability

Figure: Reconstructed lattice structures and their simulated diffraction patterns with
tunable commensurability. a, Modeled lattice structure with fully commensurate domains.
b, c, d, Diffraction peaks appearing around g=101̄0, 112̄0, 202̄0 Bragg peaks without any
reconstruction. Line cut of the diffraction peak intensity along the line in c, f, i.

[Atomic and electronic reconstruction at van der Waals interface in twisted bilayer graphene , Hyobin Yoo, Rebecca Engelke, Stephen Carr, Shiang Fang,
Kuan Zhang, Paul Cazeaux, Suk Hyun Sung, Robert Hovden, Adam W. Tsen, Takashi Taniguchi, Kenji Watanabe, Gyu-Chul Yi, Miyoung Kim, Mitchell

Luskin, Ellad B. Tadmor, Efthimios Kaxiras, Philip Kim, Nature Materials, 2019]
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Vortices and Anti-Vortices
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Figure: Left: (d) Clockwise (vortex) or counterclockwise paths (anti-vortex) around an
AA point determine the order of R, G and B elements. Real space arrangement of
dislocations: corresponding to clockwise (e isotropic, f twist) and counterclockwise (g pure
shear, h simple shear) paths in configuration space. Right: moiré from (a) isotropic scaling
and (b) pure shear. Relaxed moiré from (d) isotropic scaling and (e) pure shear.

Topological nature of dislocation networks in two-dimensional moir´e materials. R. Engelke, H. Yoo, S. Carr, M.
Luskin, E. Kaxiras,. . . , P. Kim. Phys. Rev. B, 107:125413, 2023.
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(c)Figure: a) Dark field image of twisted bilayer graphene containing antivortices along a
bubble edge. b) Loops are drawn and topological number of each loop is counted. A)
Vortex-antivortex pair, w � 0. B) Antivortex, w � �1. C) Vortex, w � �1. D)
Closed-loop dislocation, w � 0. E) Linear domains, w � 0.

Topological nature of dislocation networks in two-dimensional moir´e materials. R. Engelke, H. Yoo, S. Carr, M.
Luskin, E. Kaxiras,. . . , P. Kim. Phys. Rev. B, 107:125413, 2023.
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Twisted Trilayer Honeycomb Lattice

Figure: (a) An example of a twisted trilayer honeycomb lattice in real space with
θ12 � 5.3� and θ23 � 7.7�. (b) Magnified view at the black box marked in (a). The twist
angle between L1 and L2, θ12, and the twist angle between L2 and L3, θ23, are marked by
black arrows.
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Twisted Trilayer Configuration Space

Figure: The first layer (blue) is twisted by 2� with respect to the second layer (red), and
the third layer (green) is twisted by 3� with respect to the second.
The configuration space X2 :� Γ1 � Γ3 is uniformly sampled.
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Moire patterns as beating phenomena
Consider the oscillations of layer ℓ given by hℓprq �

°2
k�1 Aℓ,ke ibℓ,k �r . Then

hMprq � h1prq � h2prq

�
2̧

k�1
A1,ke i

� b1,k�b2,k
2

	
�r e i

� b1,k�b2,k
2

	
�r
� A2,ke i

� b1,k�b2,k
2

	
�r e�i

� b1,k�b2,k
2

	
�r
.

Fast oscillations with wave number
�

b1,k�b2,k
2

	
.

Slow beating oscillations with wave number
�

b1,k�b2,k
2

	
.

pm1, m2q harmonic. Now hℓprq �
°2

k�1 Aℓ,ke imℓbℓ,k �r . Then

hMprq � h1prq � h2prq

�
2̧

k�1
A1,ke i

�m1b1,k�m2b2,k
2

	
�r e i

�m1b1,k�m2b2,k
2

	
�r
� A2,ke i

�m1b1,k�m2b2,k
2

	
�r e�i

�m1b1,k�m2b2,k
2

	
�r
.

Fast oscillations with wave number
�

m1b1,k�m2b2,k
2

	
.

Slow beating oscillations with wave number
�

m1b1,k�m2b2,k
2

	
.
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Moiré of moiré superlattice

Reciprocal moiré lattice vectors for layers i and j are given by columns of

R�
Mij

� 2πpA�T
i � A�T

j qZ2 :� GijZ2.

The pm, nq harmonic for TTG is given by the reciprocal superlattice

R�
m,n � pmG12 � nG23qZ2.

and corresponding superlattice

Rm,n � p2πq�1pmG12 � nG23q
�TZ2.

The length of pm, nq harmonic, }pmG12 � nG23q�T }, is not necessarily the largest
for the p1, 1q mode.
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Dominant length of moiré of moiré pattern in tTLG

Figure: Illustration of moiré of moiré pattern in tTLG for θ12 � 2.6�, θ23 � 2.8�. Red and
blue points represent the lattice points of the bilayer moiré supercells between L1–L2 and
L2–L3 respectively. (b) The dominant moiré of moiré length scale on a logarithmic color
scale. The black star corresponds to the twist angle in (a), and pm, nq labels the moiré of
moiré harmonic that the nearby lobe corresponds to.

Energy minimization of 2D incommensurate heterostructures. P. Cazeaux , M. Luskin, and D. Massatt. Arch.
Rat. Mech. Anal., 235:1289–1325, 2019.
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Figure: (a) Moiré of moiré of lengths λH
mn as a function of θ12 for θ23 � 2.8�. The thick

black line indicates the dominant length. (b)-(d) Example moiré of moiré geometries,
corresponding to the red crosses in (a). Top: red and blue scattered points are the lattice
points of the bilayer moiré supercells between L1, L2 and L2, L3 respectively. Black
vectors indicate estimated dominant moiré of moiré supercell lattice vectors. A blow-up of
the small boxed area is shown below, with points representing the atomic positions of each
monolayer graphene, for L1 and L2 on the left half and for L2 and L3 on the right half.
Red and blue vectors are the bilayer moiré lattice vectors of L1, L2 and L2, L3 respectively.
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Relaxation of Tristed Trilayer Heterostructures

For twisted trilayer heterostructures, the configuration is not periodic on any
two-dimensional domain, so we have to consider the large body limit

EtotpU1,U2,U3q � lim
rÑ8

1
|Br |

�
Br

dx
�

3̧

j�1
E j

intrap∇Ujpxqq

�
1
2

2̧

j�1
E j�

interpbjÑj�1pxq � Ujpxq � Uj�1pxqq

�
1
2

3̧

j�2
E j�

interpbjÑj�1pxq � Ujpxq � Uj�1pxqq
�

where E j
intrap∇Ujpxqq is the intralayer elastic energy, E j�

interpbq : Γj�1 Ñ R is the
interlayer generalized stacking fault energy of layer j with respect to layer j � 1, and
bjÑj�1pxq is the reference local disregistry of layer j with respect to layer j � 1.

Note that bjÑj�1pxq and bj�1Ñjpxq are periodic on the moiré cell Γjj�1
M , and the

moiré cells Γjj�1
M are incommensurate.
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Relaxation of Incommensurate Twisted Trilayer Graphene

Figure: Real space relaxation pattern for twisted trilayer graphene with θ12 � 1.73�,
θ23 � 2.24�, using discretization N � 81.

[Modeling mechanical relaxation in incommensurate trilayer van der Waals heterostructures, Ziyan Zhu, Paul
Cazeaux, Mitchell Luskin, and Efthimios Kaxiras, Physical Review B,, 2020]
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Configuration-based Intralayer Energy
Define the displacement in configuration space
ujpbjÑ1, . . . , bjÑj�1, bjÑj�1, . . . , . . . , bjÑ3q by

Ujpxq :� ujpbjÑ1pxq, . . . , bjÑj�1pxq, bjÑj�1pxq, . . . , . . . , bjÑ3pxqq.

The spatial gradient of the atomistic displacement is

∇Ujpxq �
¸
i�j

∇bjÑi uj � pI� AiA�1
j q �: p∇xujpbjÑiq.

We can then model the intralayer energy by the Cauchy-Born approximation or even
linear elasticity

Eintrapuq :�
3̧

j�1

 
Xj

E j
intrap

p∇xujq dbjÑ1 . . . dbjÑp,

where Xj �
�

i�j Γi .p∇xujpbjÑiq is a directional derivative for a 2-dimensional submanifold of the
4-dimensional torus Xj , so the Euler-Lagrange PDE is nonelliptic.

Incommensurability gives a small divisor problem for a hypoelliptic operator.
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Fourier Analysis of Intralayer Energy

Let Gpjq P R�
j and let the Fourier coefficients ũpiq be defined according to

upiqpbiÑj , biÑkq �
¸

Gpjq, Gpkq
ũpiqpGpjq, Gpkqq � exptipGpjq � biÑj � Gpkq � biÑkqu.

The contribution of the mode pGpjq,Gpkqq to the variational elastic energy is

E i
intrapGpjq,Gpkqq �

1
2

�
ũpiqpGpjq,Gpkqq b

�
MT

ji Gpjq �MT
jk Gpkq

	�
: C :�

ũpiqpGpjq,Gpkqq b
�

MT
ji Gpjq �MT

jk Gpkq
	�

where Mji � I � AjA�1
i and C is the isotropic linear elastic strain rank 4 tensor

C11ij �

�
K � G 0

0 G



C12ij �

�
0 K � G
G 0



C21ij �

�
0 G

K � G 0



C22ij �

�
G 0
0 K � G



.

Mitchell Luskin (University of Minnesota) Computing at the Moiré Scale April 22, 2023 51 / 62



Nonsingularity of Euler-Lagrange PDE
The Euler-Lagrange PDE is nonetheless nonsingular since

E1pGp2q,Gp3qq � 0 if and only if ũ1pGp2q,Gp3qq � 0 or Gp2q � Gp3q � 0

and similarly for E2pGp1q,Gp3qq and E3pGp1q,Gp2qq.

To see this, note that E1pGp2q,Gp3qq9|MT
21Gp2q �MT

31Gp3q|2 and

MT
21Gp2q �MT

31Gp3q � �G 1p1q � Gp2q � Gp3q,

where G 1p1q � A�T
1 AT

2 Gp2q � A�T
1 AT

3 Gp3q P R�
1 and

�G 1p1q � Gp2q � Gp3q � 0 if and only if G 1p1q � Gp2q � Gp3q � 0

by the incommensurability assumption of the trilayer.

Observe that |G 1p1q � Gp2q � Gp3q|2 and hence E1pGp2q,Gp3qq can be small even
though Gp2q and Gp3q are large, which is contrary to the ellipticity condition that
E1pGp2q,Gp3qq is a uniformly positive definite quadratic form in pGp2q,Gp3qq for all
Fourier coefficients ũp1qpGp2q,Gp3qq of the displacement.
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Configuration-based Interlayer Energy

Similarly, the interlayer misfit energy can be modeled by

Einterpuq �
1
2

p�1̧

j�1

 
Xj

E j�
interp

pBjÑj�1pωqq �
1
2

p̧

j�2

 
Xj

E j�
interp

pBjÑj�1pωqq

where pBjÑj�1pbjÑiq is the interpolated modulated local disregistry :

Γj�1 Q pBjÑj�1pbjÑiq � bjÑj�1 � uj�1
�
bjÑi � AiA�1

j�1bjÑj�1
�
� ujpbjÑiq

since
bj�1Ñipxq � bjÑipxq � AiA�1

j�1bjÑj�1pxq.

Finally, we formulate the mechanical relaxation of the multilayers by

uc P arg min
 

Eintrapuq � Einterpuq | uj P H1 XW 1,8pXj ;R2q
(
.

Energy minimization of 2D incommensurate heterostructures. P. Cazeaux , M. Luskin, and D. Massatt. Arch.
Rat. Mech. Anal., 235:1289–1325, 2019.
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Transform to Momentum Space
For the wave function ψ :� pψ1, . . . , ψpq,

pHjjψjq pRjq �
¸

R1j PRj

hjjpRj � R 1
j qψjpR 1

j q, Rj , R 1
j P Rj ,

pHjkψkq pRjq �
¸

RkPRk

hjkpRj � RkqψkpRkq, Rj , P Rj Rk , P Rk .

Define the Bloch transform for each sheetqψjpqq � |Γ�j |�1{2
¸

RjPRj

ψRj e�iRj �q, q P Γ�j .

Transform the Hamiltonian to momentum space~Hjjψjpqq � cj|hjjpqq qψjpqq, q P Γ�j ,�Hjkψkpqq �
¸

GjPR�
j

cjk xhjkpq � Gjq|ψkpq � Gjq, j � k, q P Γ�j ,

where cj � |Γ�j |1{2, cjk � cj � ck , and|hjjpqq � |Γ�j |�1{2
¸

RjPRj

hjjpRjqe�iRj �q, q P Γ�j ,

xhjkpqq �
1

2π

�
hjkpxqe�ix �qdx , j � k, q P R2.

The proof follows from the Poisson summation formula:
|Γ�j |�1

¸
RjPRj

e iq�Rj �
¸

GjPR�
j

δpq � Gjq, q P R.
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Interlayer Scattering
Transform the Hamiltonian to momentum space

~Hjjψjpqq � cj|hjjpqq qψjpqq, q P BZj ,�Hjkψkpqq �
¸

GjPR�
j

cjk xhjkpq � Gjq|ψkpq � Gjq, j � k, q P BZj .

We thus see that

qψjpqq scatters to |ψkpq � Gjq � |ψkpq � Gj � Gkq, Gj P Rj , Gk P Rk .

No periodicity if lattices are incommensurate!

Bilayer:

|ψ1pqq scatters to |ψ2pq � G1 � G2q, G1 P R1, G2 P R2.|ψ2pq � G1 � G2q scatters to |ψ1pq � pG1 � G2q � pG 1
2 � G 1

1qq

� |ψ1pq � pG1 � G 1
1q � pG2 � G 1

2qq, G 1
2 P R2, G 1

1 P R1.

Low energy continuum approximation gives periodicity in bilayer, not for p ¡ 2
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Electronic band structure: unrelaxed vs. relaxed

Figure: Electronic band structure along high-symmetry lines of the moiré Brillouin zone at
a single monolayer K valley for 0.3� (top), 1.1� (middle), and 3.0� (bottom).
Electronic Observables for Relaxed Bilayer 2D Heterostructures in Momentum Space, Daniel Massatt, Stephen
Carr, Mitchell Luskin, arXiv:2109.15296v3, 2021
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Interlayer hopping functions for unrelaxed and relaxed 2D bilayers

Figure: Interlayer coupling for small twist angle θ � 0.3� in real and momentum space.
Real space methods suffer a loss of regularity with respect to configuration, while
momentum space suffers with slower reciprocal space localization.
Electronic Observables for Relaxed Bilayer 2D Heterostructures in Momentum Space, Daniel Massatt, Stephen
Carr, Mitchell Luskin, arXiv:2109.15296v3, 2021
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Degrees of Freedom Comparison Between TBLG & TTLG

Figure: Comparison between k degrees of freedom of bilayer (left) and trilayer (right).
Finite scattering between Bloch waves of the two layers in tBLG in low energy continuum
approximation (Bistritzer-MacDonald model), but infinite scattering between Bloch waves
of the three layers in tTLG. Convergence?

[Twisted trilayer graphene: A precisely tunable platform for correlated electrons, Ziyan Zhu, Stephen Carr, Daniel Massatt, Mitchell Luskin, and Efthimios
Kaxiras, Physical Review Letters, 2020]
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Band Structure Comparison Between TBLG & TTLG

Figure: tBLG has an insolated flat band. tTTG has non-isolated and continuous bands.
Band structure along the high symmetry line in the bilayer moiré Brillouin zone in tTLG
θ12 � θ23 � 2� and tBLG θ � 2�.

[Twisted trilayer graphene: A precisely tunable platform for correlated electrons, Ziyan Zhu, Stephen Carr, Daniel Massatt, Mitchell Luskin, and Efthimios
Kaxiras, Physical Review Letters, 2020]
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Trilayer Superconductivity
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Figure: Resistance of tTLG as a function of carrier density and temperature for equal twist
angles θ12 � θ23 � 3.06�.
At half-filling of the moiré of moiré superlattice (n � �3.2 � 1010cm2), correlated
insulating behavior is observed with two adjacent superconducting domes.
Correlated insulating behavior is observed at n � �1.5 � 1012cm2 in tBLG.
[Correlated superconducting and insulating states in twisted trilayer graphene moiré of moiré superlattices,, K-T
Tsai, Xi Zhang, Ziyan Zhu, Yujie Luo, S. Carr, M. Luskin, E. Kaxiras, and Ke Wang, Phys. Rev. Lett., 2021.]

Mitchell Luskin (University of Minnesota) Computing at the Moiré Scale April 22, 2023 60 / 62



Insulating and Semimetal Behavior at Even Fillings of Moiré of Moiré
Superlattices

Figure: Resistance peaks are observed at all even fillings, ν � n{pnsq � �4,�2, 0, 2, 4, in
which n is the carrier density and ns � 6.22 � 1010cm2 is the carrier density corresponding
to full occupancy of the moiré of moiré unit cell.
[Correlated superconducting and insulating states in twisted trilayer graphene moiré of moiré superlattices,, K-T
Tsai, Xi Zhang, Ziyan Zhu, Yujie Luo, S. Carr, M. Luskin, E. Kaxiras, and Ke Wang, Phys. Rev. Lett., 2021.]
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