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Hofstadter's Butterfly

Harper's Equation
2¢pp cos(2mlb — K) 4+ o1 + o1 = Etpy

4

o Po : i =
where ¢g = 2mh/e is the magnetic flux quantum. o

“At first glance, the idea seems totally out of the range of possibility, since. .. the
rather generous lattice spacing of a = 2 A demands a magnetic field of roughly
10°G.”

Douglas Hofstadter (1976), "Energy levels and wavefunctions of Bloch electrons in rational and irrational
magpnetic fields." Physical Review B 14 (6).
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The Moiré Superlattice for Twisted Bilayer Graphene
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Moire patterns as beating phenomena

Consider oscillations h(r) = 2;2(:1 elbeicr of twisted layers £ with wave vectors by 4.
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Capturing Hofstadter's Butterfly in Twisted Bilayer Graphene/hBN
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Figure: Moiré lattice constant ay = 15.5nm (a = 0.25nm). B ~ 10* — 10°G. Electron
density np = 1/A were A is area of moiré unit cell and n is integrated density of states.

Hofstadter's butterfly and the fractal quantum Hall effect in moiré superlattices, Dean, C. R.; Wang, L.; ...;
Hone, J.; Kim, P. (30 May 2013). Nature. 497 (7451): 598-602.
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Mechanical Relaxation
> When two layers are closely aligned, they form large-scale moiré patterns.
» This leads to atomistic relaxation on the moiré scale.
> Electronic properties depend on the relaxation.
> Incommensurate. Moiré patterns are not periodic on atomistic scale!
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Energy minimization of 2D incommensurate heterostructures. Paul Cazeauz, Mitchell Luskin, and Daniel
Massatt. Arch. Rat. Mech. Anal., 235:1289-1325, 2019.
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Flat Band in Twisted Bilayer Graphene at Magic Angle

Flat Band = Small Group Velocity g—i—i— Real Space Localization
Low Kinetic Energy = Coloumb Energy > Kinetic Energy.
Bistritzer-MacDonald (2011): Correlated phases such as superconductivity might
exist due to electron-electron interactions?
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[Atomic and electronic reconstruction at van der Waals interface in twisted bilayer graphene , Hyobin Yoo,

Rebecca Engelke, Stephen Carr, Shiang Fang,. .., Mitchell Luskin, Ellad B. Tadmor, Efthimios Kaxiras, Philip
Kim, Nature Materials, 2019]
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Superconductivity and Mott Insulator States in Magic Angle TBG

1.1° reconstructed
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Unconventional superconductivity in magic-angle graphene superlattices, Yuan Cao, Valla Fatemi, Shiang Fang,
& Pablo Jarillo-Herrero Nature volume 556, pages 43—50 (2018)
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Real Space Localization of Electronic Density at Magic Angle
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Figure: Simulated local electronic density of states (LEDoS) at four different angles of
twisted bilayer graphene. The insets show a real-space image of the density of states in
the bilayer system at the energy value identified by a dashed line.

[Twistronics: manipulating the electronic properties of two-dimensional layered structures through the twist
angle, Stephen Carr, Daniel Massatt, Shiang Fang, Paul Cazeaux, Mitchell Luskin, and Efthimios Kaxiras.
Nanoscale Phys. Rev. B, 95:075420, 2017.]
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Library of moiré heterostructures with flat bands

Figure: Left: Alternate-twist trilayer Gr. Right: Twisted double bilayer Gr.

Electric field—tunable superconductivity in alternating-twist magic-angle trilayer graphene, Zeyu Hao, A. M.

Zimmerman, ... Philip Kim, Science Mar 2021 : 1133-1138.
Liu, X., Hao, Z., Khalaf, E.,...P. Kim. Tunable spin-polarized correlated states in twisted double bilayer

graphene. Nature 583, 221-225 (2020).
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Library of moiré heterostructures with flat bands

hBN

Figure: Left: ABC Trilayer Gr on hBN. Right: Twisted WSe .

é

Evidence of a gate-tunable Mott insulator in a trilayer graphene moir

Chen, G., Jiang, L., Wu, et al.

superlattice. Nat. Phys. 15, 237-241 (2019).

Wang, L., Shih, EM., Ghiotto, A., ..

., Dean, C. Correlated electronic phases in twisted bilayer transition metal

dichalcogenides. Nat. Mater. 19, 861-866 (2020).
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Periodic Table of Materials

Can design Hamiltonian by tuning

> stacking order of 2D crystals

» moiré unit cell area by varying twist angle (tear and stack)
> filling of unit cell by varying gate voltage

> interlayer coupling strength by varying pressure

> electrical field

> magnetic field

Unconventional superconductivity without need to dope cuprates.

Mitchell Luskin (University of Minnesota) April 22, 2023



Moiré kagome lattice
=
Floquet and cavity engineering w Effective multi-orbital models
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Moiré heterostructures as a Condensed-matter Quantum Simulator, D. Kennes, M. Claassen, ..., J. Hone, C.

Dean, D. N. Basov, A. N. Pasupathy & A. Rubio, Nature Physics, 17, pages 155-163 (2021).
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Learning Band Structure
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Figure: The Lo marked with the red dashed arrow is the image processing we aim to

achieve, e.g., the Twist Operator to be learned with a neural network. The solid black
arrows represent well-defined mappings.

Seeing moiré: convolutional network learning applied to twistronics. Diyi Liu, Mitchell Luskin, and Stephen Carr.
Phys. Rev. Res., 4:043224 (11pp), 2022.
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Learning Band Structure
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Figure: Comparison of configuration-dependent LDOS maps calculated from aligned
bilayer Hamiltonians (input, I), moiré Hamiltonians (output, O), and predictions from our
CNN (P) which are generated from the supplied input after training. Six representative
cases are shown here, for bilayers of material types M1, M2, M3, M6, M7, and M10.
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Reduced Models Needed for Correlated Physics

1.1° reconstructed

TBG moiré cell at magic angle # = 1.05° : 10,000 atoms, 60, 000 electrons.
Reference many-body model: Schrédinger equation for ¢ (xi, . . ., X60,000)-

Can compute local density of states, band structure, Kubo conductivity, etc., from
tight-binding approximation of single particle mean field Hamiltonian H (projection
onto atomistic scale localized Wannier basis functions).

To study correlated physics, must solve

Mitchell Luskin (University of Minnesota) April 22, 2023



Moiré scale Wannier functions
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8-band Wannier Functions

Reduced models: Project onto flat bands. 8 localized (at moiré scale) Wannier basis
functions per moiré cell versus 10,000. Topological obstructions? Fragile topology.

Mikito Koshino, ..., and Liang Fu Phys. Rev. X 8, 031087, 2018,
Stephen Carr, S. Fang, H. Po, A. Vishwanath, and E. Kaxiras Phys. Rev. Research 1, 033072, 2019.

Mitchell Luskin niversity of Minnesota) April 22, 2023



istritzer-MacDonald model
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Main theorem

Theorem (Watson-Kong-MacDonald-Luskin 2022 [simplified])

Consider the tight-binding model of twistqd ﬁbi/ayer graphene i0xp = Hip, with
wave-packet initial data (0) = efy(eR)e’ R localized at Dirac point K; in layer i,
with spectral width € « 1.

Suppose the interlayer hopping function h satisfies the assumption, and ¢ and 0
satisfy

(K O)| ~ ¢, 6 <e.

Then, ¥(t) = ef (R, et)e”z"'k + Op(€%t) evolves as wave-packet up to t ~ ¢ 20
(any § > 0), with envelopes f = (f*, fB, £, £B)T modulated by

| )T
[an = HBMf7 HBM = <U 7—(7.([;) ) 6: ((_r’)ﬁ)> ’

& = (01, 02) vector of Pauli matrices, T (r) moiré potential.

Bistritzer-MacDonald dynamics in twisted bilayer graphene. A. Watson, T. Kong, A. H. MacDonald, and M.
Luskin. J. Math. Phys. 64:031502 (38pp), 2023
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Veselago Lens and Klein Collimater

(@) g,
ks

A 2l
[Veselago lens and Klein collimator in disordered graphene, F Libisch, T Hischl, R Glattauer, L A Chizhoval and
J Burgdérfer, J. Phys.: Condens. Matter, , 2017]
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Gate-tunable Veselago Interference in a Bipolar Graphene Microcavity
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[Gate-tunable Veselago Interference in a Bipolar Graphene Microcavity, X. Zhang, W. Ren,.. ., E. Kaxiras, M.

Luskin, K. Wang, Nature Communications, 13:6711 (7pp)(18pp supplementary material), 2022.]
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2D bilayer geometry

For layers j € {1,2}, we define the Bravais lattice
R;={Ajn: neZ?%

where A; is a 2 x 2 invertible matrix whose columns are primitive lattice vectors.
We define the unit cell for layer j as

M ={Ax: xe[0,1)}.

Reciprocal lattice: R} := {2rA-Tn:neZ?}.
Brillouin Zone: '} := BZ; := {27TAJ-_TX . x € [0,1)2}.

Represent multilattices by Ry x A; and Ry x A,
where A; denotes the set of orbitals associated with each lattice point in layer i.

Mitchell Luskin (University of Minnesota) April 22, 2023



Real space , e ® Configuration space
T Pl 3

Blue lattice points’ (R1) local environment (I'z) described completely by the
disregistry between the red and blue unit-cells.

Isomorphism (one-to-one mapping) between R; and configurations (disregistries)
(F2) of incommensurate systems.

Configuration space approach gives a unified theoretical and computational
approach to mechanics, electronic structure, transport, and diffraction.

Mitchell Luskin (University of Minnesota) April 22, 2023



Disregistry
The disregistry of an atom Ry of layer 1 with respect to layer 2 is given by

blﬁz(Rl) = moer(R1)7 Rl € Rl.
Since A2A1’1R1 € R», we can smoothly interpolate to R? by
b1-s2(x) = modr, [(1 — A2A; H)x].

Real space , e ® Configuration space
L 3

= &
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Moiré Unit Cell and Superlattice

b1_,5(x) and by_,1(x) are isomorphisms

rM - r27
by —1 -1 —1
x> (1= AAT )x = A(AT — AT )X,

rM - rla
by —1 -1 -1
x> (I = AlAY)x = A1(AT — A7 )X,

where [\ is the periodic moiré cell:
Mai=R%/Rv = (AT = A71) Y0, 1)%,
and R ¢ is the moiré superlattice given by
R = (AT — A 7172,
Reciprocal moiré lattice is then given by

Ri=2m(A] T — A T)Z2.

Mitchell Luskin (University of Minnesota) April 22, 2023



Ergodicity of Disregistries for Incommensurate 2D Layers
For h € Coer(I'2), we thus have that h(Ry) = h(bi2(R1)) and
1 1 1
2 hR) =g D, hbia(R)) = i | h(b)db.
[P}

#R10 B Ri€R1AB, #R1n B, RiERLAB,

Replace integrals (traces) over BZypercen by disregistries '

Configuration space

Generalized Kubo formulas for the transport properties of incommensurate 2D atomic heterostructures. E.
Cancés, P. Cazeaux, and M. Luskin. Journal of Mathematical Physics, 58:063502, 2017.

Electronic density of states for incommensurate layers. Daniel Massatt, Mitchell Luskin, and Christoph Ortner.
SIAM J. Multiscale Modeling & Simulation, 15:476-499, 2017.

Mitchell Luskin (University of Minnesota) April 22, 2023



Density of States for Lattice by Trace (Integral) over BZ
The density of states p(E) can be computed by the formula

|A] Al . dr
d(em(q) ~ E) dg = / S
Z mZ:l em(q)=E |vq5m(Q)|

where d/ is the line integral on the level sets of the bands ¢,,(q) = E since
dg = |Vq£m(q)|*1 de, dl.
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Figure: Linear DoS at Fermi Level and Van Hove singularity.
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Density of States for Incommensurate 2D Layers
We have that
Dra[H] = Doa[Hi(b12(R1))], Ricn € Ry x Ay,

where Dg, o, [H] is the local density of states at Rya; € Ry X Aj, and
Hi(by) is the Hamiltonian with layer 2 shifted by disregistry by € I';.

Real space L Te Te ” Configuration space
7 3

Mitchell Luskin (University of Minnesota) April 22, 2023



Density of States for Incommensurate 2D Layers
Since
Drias [H] & Doo, [Hi(b152(R1))],  Rion € Ry x Ay,

and b;_,»(Ry) for Ry € Ry uniformly samples 5, we can rigorously derive the
ergodic property for the local density of states of incommensurate lattices

1
Z DRlal [H]
#{R1 x A} 0 By Ria1€{R1x A1} n B,

1
- #{Rl XAl}ﬁB

Do, [Hi(b1-2(R1))]
" Ria1e{R1x A1} B,

) :
Doa, [H1(b)]db.
AR a;, ra

Approximate by configuration sampling, domain truncation, and kernel polynomial
approximation.

Electronic density of states for incommensurate layers. Daniel Massatt, Mitchell Luskin, and Christoph Ortner.
SIAM J. Multiscale Modeling & Simulation, 15:476-499, 2017.

Mitchell Luskin (University of Minnesota) April 22, 2023



Twisted Bilayer Graphene Calculation

Avg EDoS as function of twist angle in tBLG jo*

—< Energy (eV)

Figure: 500 Angstrom radius disk ( 600,000 atoms in total)

[Twistronics: manipulating the electronic properties of two-dimensional layered structures through the twist
angle, Stephen Carr, Daniel Massatt, Shiang Fang, Paul Cazeaux, Mitchell Luskin, and Efthimios Kaxiras, Phys.
Rev. B, 95:075420, 2017.]

Mitchell Luskin (University of Minnesota) April 22, 2023



Local Density of States in Twisted Bilayer Graphene
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Figure: Simulated local electronic density of states (LEDoS) at four different angles of
twisted bilayer graphene. Each line corresponds to a different real-space configuration
along the line connecting AA to AB stacking. The insets show a real-space image of the
density of states in the bilayer system at the energy value identified by a dashed line.

[Twistronics: manipulating the electronic properties of two-dimensional layered structures through the twist
angle, Stephen Carr, Daniel Massatt, Shiang Fang, Paul Cazeaux, Mitchell Luskin, and Efthimios Kaxiras, Phys.
Rev. B, 95:075420, 2017.]

Mitchell Luskin (University of Minnesota) April 22, 2023



Extensions to Band Structure, Transport, Relaxation

» Bloch transform incommensurate Hamiltonian to momentum space (not
diagonal because of scattering between layers).

» Generalization of Kubo formula for optical conductivity to incommensurate
structures by configuration-based current-current correlation measure

u=V(/r2u1[b]db+/rluz[b]db>= and

- / ie2 f;g(E - EF) - f@(E’ — EF)
B 2 (E—E)E—E +w+in)

(E,E')du(E, E').

» DoS, band structure and transport for relaxed incommensurate structures.

Generalized Kubo formulas for the transport properties of incommensurate 2D atomic heterostructures. E.
Cancés, P. Cazeaux, and M. Luskin. Journal of Mathematical Physics, 58:063502, 2017.

Incommensurate heterostructures in momentum space. Daniel Massatt, Stephen Carr, Mitchell Luskin, and
Christoph Ortner. Multiscale Model. Simul., 16:429-451, 2018.

Modeling and computation of Kubo conductivity for 2D incommensurate bilayers. Simon Etter, Daniel Massatt,
Mitchell Luskin, and Christoph Ortner. Multiscale Model. Simul., 18:1525-1564, 2020.

Efficient computation of Kubo conductivity for incommensurate 2D heterostructures. D. Massatt, S. Carr, and
M. Luskin. Eur. Phys. J. B, 93, 2020.

Electronic Observables for Relaxed Bilayer 2D Heterostructures in Momentum Space. Daniel Massatt, Stephen
Carr, Mitchell Luskin, arXiv:2109.15296v3, 2021

Mitchell Luskin (University of Minnesota) April 22, 2023



Energy landscape in twisted bilayer graphene
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Strain solitons and topological defects in bilayer graphene. PNAS, 2013, Alden, ..., McEuen
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Continuum Model for Relaxation of Incommensurate 2D Bilayers

Approximate by a continuum model Eo(Us, Us) where Uj(x) : R? — R? is the
continuum displacement field for layer j :

o
Eon (U Us) = fim, o2 / A [ELsn(TUL()) + E2ra (VU (x))
r B,

1 1
+ 55'1ntcr(b1—>2(x) + Ui(x) — Ua(x)) + §5i2mcr(b2—»1(><) + Ua(x) = Ui(x))]
where &/, . (VU;) is the intralayer elastic energy and

Enter (b152(x) + Ur1(x) — Ua(x))

is the relaxed Generalized Stacking Fault Energy, &L, . : T[> — R, where

b1_,»(x) € Iy is the disregistry of layer 1 with respect to layer 2.

Disregistries b;_»(x) and by_,1(x) are periodic on moiré cell, [ x4.

Energy minimization of 2D incommensurate heterostructures. P. Cazeaux , M. Luskin, and D. Massatt. Arch.
Rat. Mech. Anal., 235:1289-1325, 2019.

Mitchell Luskin (University of Minnesota) April 22, 2023



Generalized Stacking Fault Energy

The interlayer energy density of layer 2 with respect to layer 1 can be accurately
modeled by the Generalized Stacking Fault Energy, Fgsre,

Ener(bams1(x) + Ua(x) = Ur(x)) = Fasre(bams1(x) + Ua(x) — Us(x)),
where by_,1(x) is the disregistry. Fgsee can be fit by DFT.
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Figure: How the Generalized Stacking Fault Energy, which represents the interlayer
coupling energy, depends on the disregistry b for three different materials.
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Total Energy

The relation between displacement in configuration space coordinates and real
space coordinates is given by

Ul(X) = Ul(blﬁz(X)) and U2(X) = Uz(bzﬁl(X)),
where uy is periodic on ', and wy is periodic on I'y. Since by_,5(x) and by—1(x) are

isomorphisms
Fam — T,
b1 : {

x = (I — AyATY)x,

Frm — T,
by_1 : .
x = (I = AlA; )X,

we have that U;(x) and Ux(x) are periodic on 'y and

Etot(U17 U2)

— [ (U 00) + e (TUa()
F'm

¥ 26 (Boa(3) + U () = Ua()) + 5 Elren (B () + Ual) = Ur()].

Mitchell Luskin (University of Minnesota) April 22, 2023



Bilayer Graphene or MoS, Configuration Space Model

For bilayer graphene or MoS,, Eintra = EL = E2

s Since the intralayer energy is
isotropic and

gilnter(bl*ﬂ(x)) = gi2nter(b2*>1(x))
by symmetry.

We can then obtain from the uniqueness of solutions to the energy minimization
problem that U; = —U, and Us is the minimum displacement for the energy

Ewor(U) : dx[Eintra(VU(X)) + Epnger (b152(x) 4+ 2U(x))].

Il Jr,
Rescale to Iy to get Ginzburg-Landau type equation:

Eiot(U) = /r dx|Einera(VU(x)) + Mé’fnter(blﬁz(x) +2U(x))].

Hence,

|Vur(b)|*> db < CO2, / |V Uy (x)]?dx < CO2.
M2 M'm

Mitchell Luskin (University of Minnesota) April 22, 2023



Regularity of Displacement
/ |Vuy(b)|* db < CO2, / |V Uy (x)]?dx < CO2.

I am

Graphene GSFF (meV) 0° oSy GSFE (meV)
5 0 B W0

180° Mo, GSFE (meV)
= n

b (A

Figure: Relaxation results for twisted bilayers with five incommensurate twist angles each.
The left panel of each column shows Fgsre(b + 2u(b)) over I' (the relaxation pattern in
configuration space) and the right panel shows Fgsre(r) (over real space).

Relaxation and Domain Formation in Incommensurate 2D Heterostructures. S. Carr, D. Massatt, S. B. Torrisi, P.

Cazeaux, M. Luskin and E. Kaxiras). Physical Review B, page 224102 (7 pp), 2018.

Relaxation and domain wall structure of bilayer moiré systems. Paul Cazeaux, Drake Clark, Rebecca Engelke,
Philip Kim, and Mitchell Luskin. Journal of Elasticity, to appear.
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Diffraction Patterns with Tunable Commensurability
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Figure: Reconstructed lattice structures and their simulated diffraction patterns with
tunable commensurability. a, Modeled lattice structure with fully commensurate domains.
b, ¢, d, Diffraction peaks appearing around g=1010, 1120,2020 Bragg peaks without any
reconstruction. Line cut of the diffraction peak intensity along the line in c, f, i.

[Atomic and electronic reconstruction at van der Waals interface in twisted bilayer graphene , Hyobin Yoo, Rebecca Engelke, Stephen Carr, Shiang Fang,
Kuan Zhang, Paul Cazeaux, Suk Hyun Sung, Robert Hovden, Adam W. Tsen, Takashi Taniguchi, Kenji Watanabe, Gyu-Chul Yi, Miyoung Kim, Mitchell
Luskin, Ellad B. Tadmor, Efthimios Kaxiras, Philip Kim, Nature Materials, 2019]
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Vortices and Anti-Vortices

Figure: Left: (d) Clockwise (vortex) or counterclockwise paths (anti-vortex) around an
AA point determine the order of R, G and B elements. Real space arrangement of
dislocations: corresponding to clockwise (e isotropic, f twist) and counterclockwise (g pure
shear, h simple shear) paths in configuration space. Right: moiré from (a) isotropic scaling
and (b) pure shear. Relaxed moiré from (d) isotropic scaling and (e) pure shear.

Topological nature of dislocation networks in two-dimensional moir “e materials. R. Engelke, H. Yoo, S. Carr, M.
Luskin, E. Kaxiras,. .., P. Kim. Phys. Rev. B, 107:125413, 2023.

April 22, 2023
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Figure: a) Dark field image of twisted bilayer graphene containing antivortices along a
bubble edge. b) Loops are drawn and topological number of each loop is counted. A)
Vortex-antivortex pair, w = 0. B) Antivortex, w = —1. C) Vortex, w = +1. D)
Closed-loop dislocation, w = 0. E) Linear domains, w = 0.

Topological nature of dislocation networks in two-dimensional moir ‘e materials. R. Engelke, H. Yoo, S. Carr, M.

Luskin, E. Kaxiras,. .., P. Kim. Phys. Rev. B, 107:125413, 2023.
April 22, 2023
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Twisted Trilayer Honeycomb Lattice
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Figure: (a) An example of a twisted trilayer honeycomb lattice in real space with

012 = 5.3° and 63 = 7.7°. (b) Magnified view at the black box marked in (a). The twist
angle between L; and Ly, 012, and the twist angle between L, and L3, 623, are marked by
black arrows.
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Twisted Trilayer Configuration Space

50 : Re..a} Space Real Space Configuration Space

5 ERR - °
°
-40 -20 0 20 40 ° o °

Figure: The first layer (blue) is twisted by 2° with respect to the second layer (red), and
the third layer (green) is twisted by 3° with respect to the second.
The configuration space X, := 1 x '3 is uniformly sampled.
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Moire patterns as beating phenomena
Consider the oscillations of layer £ given by h(r) = >7_, Ay xe®*". Then

h/\/](r) = hl(r) + hg(l’)

b1 kt+bo, k) .(b1,k*b2,k
r i
e

ZAlke 2

_— . by kb
Fast oscillations with wave number (%)

N W N AV o Wi NN
. ).r n AQ.kel<7Z ) r ,(72 ) r
Slow beating oscillations with wave number (b1 kb, k) .

(m1, my) harmonic. Now hy(r) = Zizl Ay gemebescr Then
hu(r) = hi(r) + ho(r)

2 m1b1 k+maby i L m1by g —maby i my by g+maby L miby g —maby ko
: ] r r =1 5 -r

2 ) + A2 K€ ( 2
Fast oscillations with wave number (

mlbl,k-‘rmzbz,k)
— )

Slow beating oscillations with wave number (%) :
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Moiré of moiré superlattice

Reciprocal moiré lattice vectors for layers i and j are given by columns of
R, = 2m(ATT — AT )22 = G727,
The (m, n) harmonic for TTG is given by the reciprocal superlattice
RE . = (mGrp — nGy3)Z2.
and corresponding superlattice

Rm,n = (27r)71(mG12 — HGQ3)7T22.

(MG — nGy)~T|, is not necessarily the largest

The length of (m, n) harmonic,
for the (1,1) mode.

Mitchell Luskin (University of Minnesota) April 22, 2023



Dominant moiré of moiré lengt

 (nm) 012

Figure: lllustration of moiré of moiré pattern in tTLG for 012 = 2.6°, 0,3 = 2.8°. Red and
blue points represent the lattice points of the bilayer moiré supercells between L1-L2 and
L2-L3 respectively. (b) The dominant moiré of moiré length scale on a logarithmic color
scale. The black star corresponds to the twist angle in (a), and (m, n) labels the moiré of
moiré harmonic that the nearby lobe corresponds to.

Energy minimization of 2D incommensurate heterostructures. P. Cazeaux , M. Luskin, and D. Massatt. Arch.
Rat. Mech. Anal., 235:1289-1325, 2019.
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(a) O3 = 2.8° (b)

== Dominant
1,n

y (nm)

=

moiré of moiré length (nm)

y (nm)

012(") ‘ r(gm]
Figure: (a) Moiré of moiré of lengths AXL, as a function of 61> for 623 = 2.8°. The thick
black line indicates the dominant length. (b)-(d) Example moiré of moiré geometries,
corresponding to the red crosses in (a). Top: red and blue scattered points are the lattice
points of the bilayer moiré supercells between L1, L2 and L2, L3 respectively. Black
vectors indicate estimated dominant moiré of moiré supercell lattice vectors. A blow-up of
the small boxed area is shown below, with points representing the atomic positions of each
monolayer graphene, for L1 and L2 on the left half and for L2 and L3 on the right half.
Red and blue vectors are the bilayer moiré lattice vectors of L1, L2 and L2, L3 respectively.
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Relaxation of Tristed Trilayer Heterostructures

For twisted trilayer heterostructures, the configuration is not periodic on any
two-dimensional domain, so we have to consider the large body limit

3
Etor(Ur, Uy, Us) = lim |B|/ dxlz{g{m(vuj(x))
Z inter J*’JJrl( )+ Uj(X)_ Uj+1(X))

3
Z gfl;uox J=i— 1( ) + UJ(X) - %1(X))]

where &, . (VU;(x)) is the intralayer elastic energy, Ex (b): Mj+1 — R is the
interlayer generalized stacking fault energy of layer j with respect to layer j + 1, and
bj_j+1(x) is the reference local disregistry of layer j with respect to layer j + 1.

.. ., ji+1

Note that b;_,;;1(x) and bj.1,;(x) are periodic on the moiré cell I{f*, and the
., i1 .

moiré cells FJJJ\:{ are incommensurate.

Mitchell Luskin (University of Minnesota) April 22, 2023



Relaxation of Incommensurate Twisted Trilaver Graphene
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Figure: Real space relaxation pattern for twisted trilayer graphene with 61,

023 = 2.24°, using discretization N

= 81.

[Modeling mechanical relaxation in incommensurate trilayer van der Waals heterostructures, Ziyan Zhu, Paul

Cazeaux, Mitchell Luskin, and Efthimios Kaxiras, Physical Review B,, 2020]
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Configuration-based Intralayer Energy
Define the displacement in configuration space
UJ'(bj_,l, ey bj—)j—lv bJ_,J_;,_l. Ceegees bj_,3) by

Uj(x) == uj(bjs1(x), - s bsjm1(x), bjmsja(x), - o Bjss(x).

The spatial gradient of the atomistic displacement is

= D IVh - (= AAY) = Vouj(bjsy).
i#j

We can then model the intralayer energy by the Cauchy-Born approximation or even
linear elasticity

3
Eintra(u) = Z E’Yntra(v)(uj) dbf"l M dbj*’lﬂ

j=17%

where X; = X iz ;.

@xuj(bjﬁ,-) is a directional derivative for a 2-dimensional submanifold of the
4-dimensional torus Xj, so the Euler-Lagrange PDE is nonelliptic.

Incommensurability gives a small divisor problem for a hypoelliptic operator.

Mitchell Luskin (University of Minnesota) April 22, 2023



Fourier Analysis of Intralayer Energy

Let GY) e R} and let the Fourier coefficients i) be defined according to

u(i)(bi—>j7 bik) = Z ﬁ(i>(G(j)» G(k)) X exp{i(G(j) “biyj + G . bisk)}-
GU), G

The contribution of the mode (GY, G(¥) to the variational elastic energy is

; - 1o, ,
Einra (69,6 = 2 [10(6Y, 6M) @ (MT 6V + MIGW)|: C:

[;,U)(GU)., 6®) (Mj,Tc<f> + Mj[ak))]

where M; = | — A;A; " and C is the isotropic linear elastic strain rank 4 tensor

K+G 0 0 K-G
= (%37 8) e (& 5

0 G G 0
C21U=(K—G 0) C22"f=<o K+G>’

Mitchell Luskin (University of Minnesota)
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Nonsingularity of Euler-Lagrange PDE

The Euler-Lagrange PDE is nonetheless nonsingular since
&£(GP 63 = 0if and only if 11(G?,6®) =00or G? =GB =0
and similarly for &(GM), G®)) and &(GM), G?)).
To see this, note that £ (G, G®))oc| M), G2 + MJ G2 and
M), G? + ML G® = —¢'W + G2 4 GO,
where 'V = ATTATG® + AT TATG® e R and
—6¢'™M 4+ 6@ £ 6® =0ifand only if 'Y = 6@ = 6 =
by the incommensurability assumption of the trilayer.

Observe that |G’ — G — G®)|2 and hence £1(G?@, G®) can be small even
though G and G are large, which is contrary to the ellipticity condition that
£1(G?, GP) is a uniformly positive definite quadratic form in (G?, G3)) for all
Fourier coefficients &1(1)(G(?), G(3)) of the displacement.

Mitchell Luskin (University of Minnesota) April 22, 2023



Configuration-based Interlayer Energy

Similarly, the interlayer misfit energy can be modeled by
1” 1 -
Eintcr 7[ gmter J"J'Jrl( ][ gmter J"j—l(w))
J 2

where gj_)jil(bj_,,-) is the interpolated modulated local disregistry :

M1 9 Bjnjr1(bjsi) = bjsjer +ujx1 (bji — AiAG bissjen) — uj(bjosi)

since
bjs15i(x) = bjmi(x) = AAT bjssjar (%)

Finally, we formulate the mechanical relaxation of the multilayers by

u € arg min{ Eintra(u) + Einger(u) | uj € HY A W™ “(Xj; R?) }

Energy minimization of 2D incommensurate heterostructures. P. Cazeaux , M. Luskin, and D. Massatt. Arch.
Rat. Mech. Anal., 235:1289-1325, 2019.

Mitchell Luskin (University of Minnesota) April 22, 2023



Transform to Momentum Space

For the wave function v := (¢, ..., 1),
(Hyop) (R) = > hi(Ri = R)W(R), Ry, RjeR;,
RIER;
(Hio) (R) = > hi(Ri = ROYk(Re), R, € Rj R, € Ry,
Rxe€R«

Define the Bloch transform for each sheet
v —1/2 —iR;
Ui(q) = ITF172 D) dre ™9, qeTt.
RJ'ERJ‘
Transform the Hamiltonian to momentum space

Hyvi(q) = ¢ Jj( )7/}1( )s qe rf-,

Hibi(q) = Z Gihi(q + G)Ula+ G, j#k qe rs,
GEeR}

» Gk = G - Ck, and

hjj(q) = ||_;'k|71/2 Z hjj(Rj)eiﬂqu qe Fj‘,
Ri€R;

where ¢; = [[#[1/2

- 1/ . _
hi(q) = o= | hu(x)e ™ 9dx,  j#k qe R?.

Mitchell Luskin (University of Minnesota) April 22, 2023



Interlayer Scattering

Transform the Hamiltonian to momentum space

Hibi(a) = ghi(@)di(q), g€ BZ;,

Hiw(q) = Z ckhi(a + G)k(a+ G),  j# k, qeBZ;.
GeR}

We thus see that

j(q) scatters to Ux(q + G) = be(q+ G — Gi), Gy eR;, G € Ry
No periodicity if lattices are incommensurate!
Bilayer:

1\/)/1(q) scatters to 1\/1/2(q + G — G), G eRy GeR,.
fcz;;(q + Gy — G) scatters to E(q + (G — Gy) + (G5 — GY))
= 91(q+ (G — G)) = (G — G})), GheRy, GleRy.

Low energy continuum approximation gives periodicity in bilayer, not for p > 2

Mitchell Luskin (University of Minnesota) April 22, 2023



Electronic band structure: unrelaxed vs. relaxed
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Figure: Electronic band structure along high-symmetry lines of the moiré Brillouin zone at
a single monolayer K valley for 0.3° (top), 1.1° (middle), and 3.0° (bottom).

Electronic Observables for Relaxed Bilayer 2D Heterostructures in Momentum Space, Daniel Massatt, Stephen
Carr, Mitchell Luskin, arXiv:2109.15296v3, 2021
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unrelaxed and relaxed 2D bilayers
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Figure: Interlayer coupling for small twist angle = 0.3° in real and momentum space.
Real space methods suffer a loss of regularity with respect to configuration, while
momentum space suffers with slower reciprocal space localization.

Electronic Observables for Relaxed Bilayer 2D Heterostructures in Momentum Space, Daniel Massatt, Stephen
Carr, Mitchell Luskin, arXiv:2109.15296v3, 2021
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Degrees of Freedom Comparison Between TBLG & TTLG

Bilayer, 6 = 2° Trilayer, 65 = 2°
0.15 i
° . - 12
0.1
L J [ ] [ ] [
0.05
e [ ] [ ] L
S0 ° ° °
-0.05 ° ° °
0.1 4 L] [ ] [
-0.15 @ [ d LJ L
-0.1 0 0.1

ke

Figure: Comparison between k degrees of freedom of bilayer (left) and trilayer (right).
Finite scattering between Bloch waves of the two layers in tBLG in low energy continuum
approximation (Bistritzer-MacDonald model), but infinite scattering between Bloch waves
of the three layers in tTLG. Convergence?

[Twisted trilayer graphene: A precisely tunable platform for correlated electrons, Ziyan Zhu, Stephen Carr, Daniel Massatt, Mitchell Luskin, and Efthimios
Kaxiras, Physical Review Letters, 2020]
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Band Structure Comparison Between TBLG & TTLG

Monolayer Brillouin zone

T M Ko

Bilayer moiré Brillouin zone

Figure: tBLG has an insolated flat band. tTTG has non-isolated and continuous bands.

Band structure along the high symmetry line in the bilayer moiré Brillouin zone in tTLG
010 = O3 = 2° and tBLG 0 = 2°.

[Twisted trilayer graphene: A precisely tunable platform for correlated electrons, Ziyan Zhu, Stephen Carr, Daniel Massatt, Mitchell Luskin, and Efthimios
Kaxiras, Physical Review Letters, 2020]
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Trilayer Superconductivity

4.1 -1.5
n (1010 ¢cm -2)
Figure: Resistance of tTLG as a function of carrier density and temperature for equal twist
angles 612 = 03 = 3.06°.
At half-filling of the moiré of moiré superlattice (n ~ —3.2 - 10'°cm?), correlated
insulating behavior is observed with two adjacent superconducting domes.
Correlated insulating behavior is observed at n ~ —1.5 - 10*?cm? in tBLG.

[Correlated superconducting and insulating states in twisted trilayer graphene moiré of moiré superlattices,, K-T
Tsai, Xi Zhang, Ziyan Zhu, Yujie Luo, S. Carr, M. Luskin, E. Kaxiras, and Ke Wang, Phys. Rev. Lett., 2021.]
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Insulating and Semimetal Behavior at Even Fillings of Moiré of Moiré
Superlattices
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Figure: Resistance peaks are observed at all even fillings, v = n/(ns) = —4,—2,0,2,4, in

which n is the carrier density and ns = 6.22 - 10'%cm? is the carrier density corresponding
to full occupancy of the moiré of moiré unit cell.

[Correlated superconducting and insulating states in twisted trilayer graphene moiré of moiré superlattices,, K-T
Tsai, Xi Zhang, Ziyan Zhu, Yujie Luo, S. Carr, M. Luskin, E. Kaxiras, and Ke Wang, Phys. Rev. Lett., 2021.]
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