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Setup

• A d-dimensional system of N atoms occuppying positions

R = {rj}Nj=1 ∈ (Rd)N .

• Atomistic energy E : (Rd)N → R, for instance, given by

E (R) =
K∑

k=1

1
k!

∑
i1 6=... 6=ik

Ek(ri1 , . . . , rik ).

• Simple example: E1 ≡ 0, K = 2, E2(r1, r2) = Va(|r12|),
r12 = r1 − r2 where a = (a1, a2, a3) and

Va(r) = a1

(
exp

(
− 2a2(r − a3)

)
− 2 exp

(
− a2(r − a3)

))
.
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Numerical continuation and bifurcation theory

• Treat (or modify) E as a function of R and some parameter
µ ∈ R (µ ∈ Rp possible), so now E : (Rd)N×R→ R.

• What can µ be?
1. µ = f (a), e.g. f (a) = a2 for Morse;
2. incremental loading at the boundary → Xiantao Li (Workshop 2),

prototyping this approach here with
3. more “sophisticated” boundary condition approaches → MB &

J.Kermode (Workshop 2).
4. E (R, µ) := µE (R) + (1− µ)EHA(R) → Manuel Athenes’ talk on

Tuesday.
5. “Helpful biasing force” → Steve Fitzgerald’s talk on Thursday.
6. ???

• Forces F : (Rd)N×R→ (Rd)N are given by

F (R, µ) = {−∇riE (R, µ)}
N
i=1 ≡ ∇RE (R, µ).
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Curves of solutions

• Forces F : (Rd)N×R→ (Rd)N are given by

F (R, µ) = {−∇riE (R, µ)}
N
i=1 ≡ ∇RE (R, µ).

• Set µ = µ0 and suppose we have some R0 such that
F (R0, µ0) = 0 (and that it is regular).

• Implicit Function Theorem implies there exists a curve{
(R(µ), µ), µ ∈ (µ0 − ε, µ0 + ε)

}
, F (R(µ), µ) = 0.

• More generally curves can be parametrised as

[0, 1] 3 s 7→ (R(s), µ(s)), F (R(s), µ(s)) = 0.

• Constant unit speed parametrisation if d
ds |R(s)|2 + d

dsµ(s)
2 = 1.
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Numerical continuation

• Assume a curve
[0, 1] 3 s 7→ (R(s), µ(s)), F (R(s), µ(s)) = 0.

exists and that we identified one point on it:

X 0 := (R(s0), µ(s0)), F (R(s0), µ(s0)) = 0.

• Compute (or approximate) tangent at X 0, ie.

Ẋ 0 :=
d
ds

X
∣∣∣s=s0 .

• Find the new point on the curve X 1 = (R(s1), µ(s1)) by solvingF (R(s1), µ(s1)) = 0,

(X 1 − X 0) · Ẋ 0 = ds,

where ds ∈ R is a parameter we set.
• The extended system can be proven to “see” turning points as

regular solutions! 5
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Application to crack propagation: NCFlex scheme

• In atomistic simulation one often applies K -field boundary
condition from continuum elasticity.

• One should combine it with flexible boundary approach∗

KUCLE(x − α) ≈ KUCLE(x) + K
∑
j

αj
1U

(j)(x).

• (We can prove that Sinclair’s order expansion is wrong and
systematically derive the correct expansion†.)

∗J.E. Sinclair. The influence of the interatomic force law and of kinks on the propagation of brittle
cracks. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics. 1975
Mar 1;31(3):647-71.
†J. Braun, M.B., in preparation.
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NCFlex algorithm∗

• We use K as a continuation parameter.
• The boundary condition is

KUCLE(x − α).

• We apply it first to a toy model Mode III fracture problem: we
1. analyse finite size effects,
2. show how bad static boundary conditions are,
3. derive a simple diagnostic tool for estimating the range of K for

which equilibria exist.

• We then apply it to Mode I fracture propagation in silicone using
state-of-the-art empirical potentials (Kumagai and Tersoff with
screening).

• Ongoing work to use EAM and GAP potentials in BCC Iron.
∗M. B, J.R. Kermode. Numerical-continuation-enhanced flexible boundary condition scheme applied to
mode-i and mode-iii fracture. Physical Review E. 2021 Mar 5;103(3):033002.
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(a) Kumagai+S, R = 128 Å
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(b) Tersoff+S, R = 128 Å
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Deflation techniques

• Developed in the context of finding distinct solutions of PDEs by
P. Farrell∗.

• Original formulation for finding roots of polynomials

p(x) =
N∑

k=1

akx
k =

N∏
k=1

(x − xk).

• If we know p(x1) = 0, then run your root finding algorithm on
the deflated function

q1(x) =
p(x)

x − x1
.

• We can iterate: having found x2 such that q1(x2) = 0, run your
root finding algorithm on

q2(x) =
q1(x)

x − x2
=

p(x)∏2
i=1(x − xi )

.

∗P.E. Farrell,A. Birkisson,S.W. Funke. Deflation techniques for finding distinct solutions of nonlinear
partial differential equations. SIAM Journal on Scientific Computing. 2015;37(4):A2026-45. 13



Prototype deflation approach in atomistic modelling

• Forces F : (Rd)N → (Rd)N are given by

F (R) = {−∇riE (R)}Ni=1 ≡ ∇RE (R).

• Suppose we have identified R0 such that F (R0) = 0.
• We construct a deflated residual

G (R) := Mp,α(R,R0)F (R),

Mp,α(R,R0) :=

(
1

‖R − R0‖p
+ α

)
Id, α ∈ R.

• Even if the Jacobian of F (the Hessian of the energy) is sparse,
the Jacobian of G is dense:

G (R) = η(R)F (R) =⇒ δG (R) = η(R)F ′(R) + η′(R)⊗ F (R).

• Preconditioning that works well for F will work well for G .
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Conclusions

• A pretty robust tool for exploring atomistic energy landscapes.
→ “Nonlinear solvers that scale well and always converge (...)
and a pony”

• It works well when there is some "dominating" phenomenon (e.g.
fracture in brittle materials).

• One can combine deflation and continuation to sketch out
detailed information about the energy landscape.

• Need good continuation parameters.
• Probably need to adjust the deflation operator, e.g.

M(R,R0) =

(
1

‖R − R0‖`2(Br (m))
+ α

)
Id.

• IPAM-faciliated collaboration with Soumendu Bagchi (Los
Alamos National Laboratory) to apply this to dislocation
nucleation from surface steps. 15


