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e A d-dimensional system of N atoms occuppying positions

R={r}L, € R".

e Atomistic energy E : (RY)VN — R, for instance, given by

e Simple example: £; =0, K =2, Ex(n,rn) = Va(|rn2|),
rip = r — r, where a = (a;, ap, a3) and

Va(r) = a1 (exp ( —2a(r — 33)> —2exp ( —ap(r— 33))>.
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Numerical continuation and bifurcation theory

e Treat (or modify) E as a function of R and some parameter
1€ R (u € RP possible), so now E : (R)VxR — R.
e What can pu be?
1. u=f(a), eg. f(a) = a, for Morse;
2. incremental loading at the boundary — Xiantao Li (Workshop 2),
prototyping this approach here with
3. more “sophisticated” boundary condition approaches — MB &
J.Kermode (Workshop 2).
4. E(R, ) :== nE(R) + (1 — p)Ena(R) — Manuel Athenes’ talk on
Tuesday.
5. “Helpful biasing force” — Steve Fitzgerald's talk on Thursday.
6. 777

e Forces F: (RY)NXR — (RY)N are given by
F(Rnu) = {—VH‘E(Rall’)}lNzl = VRE(val’)'



Curves of solutions

e Forces F: (RY)NxR — (RY)N are given by

F(R,11) = {~VE(R, )}y = VRE(R, ).

Set 11 = ;1 and suppose we have some R such that
F(RY, ;%) = 0 (and that it is regular).

Implicit Function Theorem implies there exists a curve

{(R(u), 1), e’ —eu’+e)}, F(R(n),n)=0.

e More generally curves can be parametrised as

[0,1] 5 5= (R(s), 1(s)),  F(R(s), u(s)) = 0.

Constant unit speed parametrisation if - |R(s)|? + <L pu(s)? = 1.



Numerical continuation

e Assume a curve
[0,1] 5 5 = (R(s), u(s)),  F(R(s),u(s)) = 0.
exists and that we identified one point on it:
X% = (R(s°), u(s%)),  F(R(s°), p(s%)) = 0.

e Compute (or approximate) tangent at XY, ie.

X0 .= iX

s—s0.
e Find the new point on the curve X* = (R(s'), uu(s')) by solving
F(R(s'), u(s")) =0,
(X1 = X% . X0 =ds,
where ds € R is a parameter we set.

e The extended system can be proven to “see” turning points as
regular solutions!






Application to crack propagation: NCFlex scheme

e In atomistic simulation one often applies K-field boundary

condition from continuum elasticity.

e One should combine it with flexible boundary approach*
KUcLe(x — @) = KUcLe(x) + K Z (yji UY)(x).
J

e (We can prove that Sinclair's order expansion is wrong and

systematically derive the correct expansionf.)

* J.E. Sinclair. The influence of the interatomic force law and of kinks on the propagation of brittle
cracks. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics. 1975
Mar 1;31(3):647-71.

T

J. Braun, M.B., in preparation.
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NCFlex algorithm*

e We use K as a continuation parameter.
e The boundary condition is

KUCLE(X — (\/).
e We apply it first to a toy model Mode IIl fracture problem: we

1. analyse finite size effects,

2. show how bad static boundary conditions are,

3. derive a simple diagnostic tool for estimating the range of K for
which equilibria exist.

e We then apply it to Mode | fracture propagation in silicone using
state-of-the-art empirical potentials (Kumagai and Tersoff with
screening).

e Ongoing work to use EAM and GAP potentials in BCC Iron.

*M. B, J.R. Kermode. Numerical-continuation-enhanced flexible boundary condition scheme applied to
mode-i and mode-iii fracture. Physical Review E. 2021 Mar 5;103(3):033002.
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(a) Kumagai+S, R=128 A
12

(b) Tersoff+S, R=128 A
12

(1) a=5.7 K/Kg =0.85

Energy difference E — Eq [eV]
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Deflation techniques

e Developed in the context of finding distinct solutions of PDEs by

P. Farrell*.
e Original formulation for finding roots of polynomials
N N
p(x) = Zakxk = H(X — Xk)-
k=1 k=1
e If we know p(x1) = 0, then run your root finding algorithm on
the deflated function _ p(x)
ql(X) = .
X — X1

e We can iterate: having found x> such that g1(x2) = 0, run your
root finding algorithm on

)= a(x) __ p()

Cx—x H?:1(X_Xi)

*P.E. Farrell,A. Birkisson,S.W. Funke. Deflation techniques for finding distinct solutions of nonlinear
partial differential equations. SIAM Journal on Scientific Computing. 2015;37(4):A2026-45. 13
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Prototype deflation approach in atomistic modelling

e Forces F: (RN — (RY)N are given by
F(R) = {~V,E(R)}\; = VRE(R).

e Suppose we have identified R° such that F(R") = 0.
We construct a deflated residual

G(R) o= Mp.a(R> RO)F(R)7

1
0y ._
Mp.o(R, R”) := <|R—RO||P +a> Id, acR.

Even if the Jacobian of F (the Hessian of the energy) is sparse,

the Jacobian of G is dense:

G(R) =7n(R)F(R) = 6G(R) =n(R)F'(R) + 7' (R) ® F(R).

Preconditioning that works well for F will work well for G.

14



Conclusions

e A pretty robust tool for exploring atomistic energy landscapes.
— “Nonlinear solvers that scale well and always converge (...)
and a pony”

e It works well when there is some "dominating" phenomenon (e.g.
fracture in brittle materials).

e One can combine deflation and continuation to sketch out
detailed information about the energy landscape.

e Need good continuation parameters.

e Probably need to adjust the deflation operator, e.g.

1
M(R, R°) = Id.
54 (\R—Rouz<3,<m)> *“) ‘

o IPAM-faciliated collaboration with Soumendu Bagchi (Los
Alamos National Laboratory) to apply this to dislocation
nucleation from surface steps. 15



