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Dislocations Multiplication from Pre-Existing Sources

=« Strength and ductility of crystals is
~ (dictated by plastic response

e« Strainis accommodated through slip,
beyond elastic level




Chen et al. 2015

Nucleations of new dislocations are rare (?)
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Greer J. et al., 2005

Strength and ductility of crystals is
dictated by plastic response

Strain is accommodated through slip,
beyond elastic level

Typical crystal microstructures
posses pre-existing defects

Nano-/micro-pillars could be
“almost” defect free



Nucleations of new dislocations are rare (?)

¥
[ J

Strength and ductility of crystals is
dictated by plastic response

e« Strainis accommodated through slip,
beyond elastic level

e Typical crystal microstructures
posses pre-existing defects

* Nano-/micro-pillars could be
“almost” defect free

* Nucleation of new dislocations
from stress concentrators govern
onset of plasticity

Chen et al. 2015
Greer J. et al., 2005



Surface Nucleation Pathways: How Feasible are they?

under low (2%) compressive strain
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Nudged Elastic Band (NEB) Search of Minimum Energy Path (MEP)
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Classical Transition State Theory Approach

From TST based approximations, An upper bound for rate (i.e. no recrossing)
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Classical Transition State Theory Approach

From TST based approximations, An upper bound for rate (i.e. no recrossing)
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Surface Nucleation Events from MD Simulations

With ~40 Million EAM Cu atoms

under low (2%) compressive strain
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Maximum Likelihood of Rate Parameters

From a series of (~100) 40 million atom MD runs
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considering MD runs as i.i.d

L(v, Epltnuc) = Hi Pi



Maximum Likelihood of Rate Parameters

From a series of (~100) 40 million atom MD runs
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According to rate theories,
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considering MD runs as i.i.d

L(v, Epltnuc) = Hi Pi

L(v, Eplthuc)

High
35 | 1 1 1
o
S 33} ]
|2
(a1
g32 i 55eV, 5.57E+32 /s
—
31} i
25 30 35 40 45 |,

Log Likelihood

Log Likelihood

25 3.0 35

1032 1034
Log Prefactor (v)

5 4.0 45
Ep (eV)



Maximum Likelihood of Rate Parameters

From a series of (~100) 40 million atom MD runs
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p; (t)dt~ probability of nucleating between time t

and t +dt _E,
pi(t)~k(t)e‘fk(t)dt, where k(t) = v,ekBT®

~p(tr v, Eb)

considering MD runs as i.i.d

L(v, Epltnuc) = Hi Pi

But 103% — 1033 /s is huge w.r.t

typical prefactors of 1014 /s

L(v, Eplthuc)

High
35 1 1 1 1
o
S 33} ]
o
(a
g32 i 55eV, 5.57E+32 /s
-]
31} 4
25 30 35 40 45 |,

Et; (eV)

Log Likelihood

Log Likelihood

1032 1034
Log Prefactor (v)

25 3.0

2.0 45

3.5
Ep (eV)



Classical Transition State Theory Approach

From TST based approximations, An upper bound for rate (i.e. no recrossing)
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Classical Transition State Theory Approach

From TST based approximations, An upper bound for rate (i.e. no recrossing)
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But:
* Computationally expensive
(Typically million atoms systems)




Classical Transition State Theory Approach

From TST based approximations, An upper bound for rate (i.e. no recrossing)
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N is usually a large number 2 which
means a small change in frequency
multiplicatively high!
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But:
Finite T-string/PAFI methods to compute  Computationally expensive
free energy—but still involved! (Typically million atoms systems)




Entropy computation from higher order free-energy approximation

Following Schroek 1980,

Higher order approx. of free-energy density as function of temp. (T) and Green-Lagrange strain E;; = % [FikFj — 6ij]
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Free Energy along MEP : under compression

Steep increase of entropy along the MEP!

Total Entropy change
3 Caused by release of compressive strain
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1. Insanely high rates are suggested!
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2. But, still (very) high comparedto (15
0 max. likelihood estimates!
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Free Energy along MEP : under compression

Total Entropy change
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With increasing T:
* Free energy saddle moves inwards

(towards smaller loops)
* Free energy barrier becomes smaller

might need to consider variations of
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Variational Transition State Theory

The “best” dividing surface
is the one the predicts the smallest
TST rate
(since TST is an upper bound
to the true rate)

l.e., the (T-dependent) dividing surface
should be at the free-energy saddle,
not the energy saddle



Free Energy Pathway for Dislocation Nucleation

Total Entropy change
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Free Energy Pathway for Dislocation Nucleation

Total Entropy change
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Variational TST can capture anharmonic kinetic rates
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Vibrational Entropy could be crucial for plasticity
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Summary:
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Nucleation rates in good agreement with direct MD

Data-driven ways to quantify path deviations at finite—T
(also benchmanrk with other methods e.g. PAFI)
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Strong anharmonicity can also facilitate other

activated plasticity (large strain release) events

Proville, Nature Materials, 2012 @l 21
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