

Strong Entropic Contributions to Thermallyactivated Kinetics: A Case-study in Dislocation Nucleation

Soumendu Bagchi, Danny Perez Theoretical Division

IPAM Long Program: <u>New Mathematics for the Exascale: Applications to Materials Science</u> Workshop I: Increasing the Length, Time, and Accuracy of Materials Modeling Using Exascale Computing

Dislocations Multiplication from Pre-Existing Sources

- Strength and ductility of crystals is dictated by plastic response
- Strain is accommodated through slip, beyond elastic level

Nucleations of *new* dislocations are rare (?)

- Strength and ductility of crystals is dictated by plastic response
- Strain is accommodated through slip, beyond elastic level
- Typical crystal microstructures posses pre-existing defects
- Nano-/micro-pillars could be "almost" defect free

Chen et al. 2015

Greer J. et al., 2005

Nucleations of *new* dislocations are rare (?)

- Strength and ductility of crystals is dictated by plastic response
- Strain is accommodated through slip, beyond elastic level
- Typical crystal microstructures posses pre-existing defects
- Nano-/micro-pillars could be "almost" defect free
- Nucleation of new dislocations from stress concentrators govern onset of plasticity

Chen et al. 2015

Greer J. et al., 2005

Surface Nucleation Pathways: How Feasible are they?

under low (2%) compressive strain

Nudged Elastic Band (NEB) Search of Minimum Energy Path (MEP)

From TST based approximations,

An upper bound for rate (i.e. no recrossing)

$$k = \frac{K_B T}{h} \frac{Z^*}{Z_A}$$

$$= \frac{\prod_{i=1}^{3N} v_i^A}{\prod_{i=1}^{3N-1} v_i^*} e^{\frac{-E_b}{K_B T}} \text{ Harmonic Approx}$$

$$= v_0 e^{\frac{-E_b}{K_B T}}$$
(Arrhenius rate)

From TST based approximations,

An upper bound for rate (i.e. no recrossing)

Surface Nucleation Events from MD Simulations

under low (2%) compressive strain

With ~40 Million EAM Cu atoms

(only defect-atoms are shown)

(10K/ns)

Maximum Likelihood of Rate Parameters

From a series of (~100) 40 million atom MD runs

According to rate theories,

 $p_i(t) \sim k(t)e^{-\int k(t)dt}$, where $k(t) = v_0 e^{\frac{-E_b}{K_B T(t)}}$ $\sim p(t, v, E_b)$

considering MD runs as i.i.d

$$L(v, E_b | t_{nuc}) = \prod_i p_i$$

Maximum Likelihood of Rate Parameters

Maximum Likelihood of Rate Parameters

From a series of (~100) 40 million atom MD runs

 $p_i(t)dt \sim \text{ probability of nucleating between time } t$ and t + dt $p_i(t) \sim k(t)e^{-\int k(t)dt}, \text{ where } k(t) = v_0 e^{\frac{-E_b}{K_BT(t)}}$ $\sim p(t, v, E_b)$

considering MD runs as i.i.d

$$L(v, E_b | t_{nuc}) = \prod_i p_i$$

But $10^{32} - 10^{33}$ /s is huge w.r.t typical prefactors of 10^{12} /s

4.5

From TST based approximations,

An upper bound for rate (i.e. no recrossing)

$$k = \frac{K_B T}{h} \frac{Z^*}{Z_A}$$

N is usually a large number → which means a small change in frequency multiplicatively high!

$$= v_0 \ e^{\frac{S}{K_B}} e^{\frac{-E_b}{K_BT}}$$

From TST based approximations,

An upper bound for rate (i.e. no recrossing)

$$k = \frac{K_B T}{h} \frac{Z^*}{Z_A}$$

$$=\frac{\prod_{i=1}^{3N}v_i^A}{\prod_{i=1}^{3N-1}v_i^*}e^{\frac{-E_b}{K_BT}}=\frac{Harmonic\,Approx.}{$$

N is usually a large number -> which means a small change in frequency multiplicatively high!

$$= v_0 e^{\frac{S}{K_B}} e^{\frac{-E_b}{K_BT}}$$
$$-(F^* - F^A)$$

 $\sim ve^{-K_BT}$

Need:

Hessian at minimum and saddle

But:

• Computationally expensive (Typically million atoms systems)

From TST based approximations,

ZΔ

 $E_{barrier}$

An upper bound for rate (i.e. no recrossing)

$$k = \frac{K_B T}{h} \frac{Z^*}{Z_A}$$

$$=\frac{\prod_{i=1}^{3N}v_i^A}{\prod_{i=1}^{3N-1}v_i^*}e^{\frac{-E_b}{K_BT}}=\frac{Harmonic\,Approx.}{Harmonic\,Approx.}$$

N is usually a large number \rightarrow which means a small change in frequency *multiplicatively high!*

$$= v_0 e^{\frac{S}{K_B}} e^{\frac{-E_b}{K_B T}}$$
$$\sim v_0 e^{\frac{-(F^* - F^A)}{K_B T}}$$

 $\sim ve$

Finite T-string/PAFI methods to compute free energy—but still involved!

Need:

Hessian at minimum and \bullet saddle

But:

Computationally expensive • (Typically million atoms systems)

Entropy computation from higher order free-energy approximation

Following Schroek 1980,

Higher order approx. of free-energy density as function of temp. (*T*) and Green-Lagrange strain $E_{ij} = \frac{1}{2} [F_{ik}F_{kj} - \delta_{ij}]$

$$f(T, E_{ij}) = f_0 + f_{T,ik}TE_{ik} + \frac{1}{2}f_{ik,lm}E_{ik}E_{lm} + \dots$$

Higher order entropy density

$$\Delta s = -\frac{\partial \Delta f}{\partial T} = -f_{T,ik}E_{ik} - \frac{1}{2}f_{T,ik,lm}E_{ik}E_{lm} = \alpha_{lm}f_{ik,lm}E_{ik} - \frac{1}{2}f_{T,ik,lm}E_{ik}E_{lm}$$

Total Entropy change

$$S = \int \Delta s dV = \alpha_V K \int E_{ii} dV - \frac{1}{2} \frac{\partial C_{iklm}}{\partial T} \int E_{ik} E_{lm} dV$$

Thermal expansion
coefficient T-dependences of
elastic modulii

Free Energy along MEP : under compression

Free Energy along MEP : under compression

Total Entropy change $S = \alpha_V K \left| \int E_{ii} dV \right| - \frac{1}{2} \frac{\partial C_{iklm}}{\partial T} \int E_{ik} E_{lm} dV \qquad \mathcal{F} = E - TS$ Z* (? $\frac{K_BT}{h} \frac{Z^*}{Z_A}$ 10144 $\boldsymbol{k} =$ OK (NEB) 6 10124 100K Energy (eV) 10¹⁰⁴ 10⁸⁴ With increasing T: rc = 0.075Free rc = 0.05Free energy saddle moves inwards • entropy 300K 4e-06 2 (towards smaller loops) Free energy barrier becomes smaller 650K might need to consider variations of rc = 0.1251e-06 0.3 saddle/dividing surface? 0.2 0.0 0.1 **Reaction Coordinate**

1 0 8

Variational Transition State Theory

The "best" dividing surface is the one the predicts the smallest TST rate (since TST is an upper bound to the true rate)

I.e., the (T-dependent) dividing surface should be at the **free-energy saddle**, not the energy saddle

Free Energy Pathway for Dislocation Nucleation

Total Entropy change

Free Energy Pathway for Dislocation Nucleation

Total Entropy change

Bagchi S Perez D., 2022 (in preperation)

Variational TST can capture anharmonic kinetic rates

 $v_0 e^{\frac{S}{K_B}} e^{\frac{-E_b}{K_BT}}$

HTST is asymptotically recovered at low-T and high compressive strains

Vibrational Entropy could be crucial for plasticity

Summary:

We have implemented a continuum approximation to the entropy change that predicts:

Free energy barriers << Energy barriers HUGE prefactors (10³² vs 10¹² 1/s !) Nucleation rates in good agreement with direct MD

Data-driven ways to quantify path deviations at finite–T (also benchmanrk with other methods e.g. PAFI)

Strong anharmonicity can also facilitate other activated plasticity (large strain release) events

Acknowledgements

