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Motivation

Molecular Dynamics methods are used in Biology, Material Science, Nuclear Physics
(protein folding, nuclear fuels propagation inside the nuclear reactor).

The Underdamped Langevin dynamics model the evolution of thermostated molecular
systems.

Let N particles described by position qit ∈ R3, and momentum pit ∈ R3. The process
(Xt = (qt , pt))t≥0 := (q1t , . . . , q

N
t , p

1
t , . . . , p

N
t )t≥0 is solution of{

dqt = M−1ptdt,

dpt = −∇V (qt)dt − γM−1ptdt +
√

2γβ−1dBt ,

with V : R3N 7→ R the interaction potential, γ > 0 the friction parameter, M the mass matrix and
β−1 = kBT .

Numerical discretization: (qn∆t , pn∆t) ∼ (q̂n, p̂n) such that (Velocity-Verlet integrator)

(q̂n+1, p̂n+1) = Φ∆t (q̂n, p̂n).

Problem: The sampling of some physical events takes too many iterations! (Typically 10−6 s
with ∆t = 10−15 s).
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An example in dimension 2

Figure: Sampling in a double well potential. 100 000 iterations

Oscillation inside basins of attraction of the potential.

Transition events take a very long time: metastability because the system needs to overcome
an energetic gap.

Problem in large dimension where metastability correspond to entropic effects (narrow
escapes).

How to sample precisely these transition events?
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Parallel Replica algorithm

Conceived by Arthur Voter (Los Alamos National Laboratory) in 1998.

Objective: Parallelize the sampling of the first exit event (first exit time, exit point) from a
domain D for the process (Xt)t≥0.

Parallel Replica: Assume that (Xt)t≥0 stayed in D during τc ”long enough”. Let
τ∂ := inf{t > τc : Xt /∈ D}.

1 Initialize N independent replicas (X 1
t )t≥0, . . . , (X

N
t )t≥0 starting from Xτc and following the

same dynamics as (Xt)t≥0.

2 Make the N replicas evolve in D during τc (rejection sampling).

3 Let τ i∂ = inf{t > 0 : X i
t+τc

/∈ D} and i∗ = argmin1≤i≤N τ
i
∂ . Define(

τ∂ ,Xτ∂

)
:=

(
Nτ i

∗
∂ ,X i∗

τ i∗
∂

)
.

If justified, the last step would ensure a speed-up of N in wall-clock time.
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Quasi-stationary distribution

If (Xt)t≥0 stays long enough in a state D it reaches a ”local equilibrium”, called quasi-stationary
distribution (QSD).

Definition: Let τ∂ := inf{t > 0 : Xt /∈ D}. A probability measure ν on D is said to be a QSD on
D of the process (Xt)t≥0, if for all A ⊂ D,

Pν(Xt ∈ A, τ∂ > t)

Pν(τ∂ > t)
= ν(A).

First exit event starting from the QSD and justification of ParRep

Assume that X0
L
= QSD, then, see Collet, Martinez, San Martin (2013),

τ∂ follows the exponential law,

τ∂ is independent of Xτ∂ .

Let (XN
0 , . . . ,X

N
0 ) be i.i.d. according to the QSD and i∗ := argmin1≤i≤N τ

i
∂ , then

(Nτ i
∗

∂ ,X i∗

τ i∗
∂

)
L
= (τ∂ ,Xτ∂ ).

Parallel Replica: Existence of a QSD and long time convergence to the QSD ?
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Overdamped case

QSDs have been investigated for the overdamped Langevin dynamics (qt)t≥0

dqt = −∇V (qt)dt+
√

2β−1dBt ,

on a C2 bounded connected set O of Rd , where β−1 = kBT > 0, V ∈ C∞(Rd ,Rd ) (see Gong,
Qian and Zhao (1988), Le Bris, Lelièvre, Luskin, Perez (2012)).

There exists a unique QSD µ on O. Besides, µ satisfies

1 (Lebesgue density) µ(dq) = ψ(q)dq,

2 (Spectral interpretation) ψ is the unique non-negative, normalized, classical solution in
C2(O) ∩ Cb(O) of the following eigenvalue problem{

L∗
ψ = −λψ, on O,

ψ = 0, on ∂O,

where L∗
= div(∇V ·) + β−1∆,

3 (Convergence) ∃C > 0, ∃α > 0 s.t. ∀t ≥ 0, ∀θ probability on O,∥∥Pθ(qt ∈ ·|τ∂ > t)− µ(·)
∥∥
TV

≤ Ce−αt ,

where τ∂ = inf{t > 0 : qt /∈ O}.
Question: Extension to the Langevin process on D := O × Rd?
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Langevin process

Let F ∈ C∞(Rd ,Rd ), γ ∈ R, σ > 0. Consider the Langevin process (Xt = (qt , pt))t≥0 on R2d{
dqt = ptdt,
dpt = F (qt)dt − γptdt + σ dBt .

The infinitesimal generator L of (qt , pt)t≥0 on R2d (kinetic Fokker-Planck operator) is given by

L = p · ∇q + F (q) · ∇p − γp · ∇p +
σ2

2
∆p .

Differences between the study of (qt)t≥0 in O and (qt , pt)t≥0 in D = O × Rd :

L is only hypoelliptic on R2d but not elliptic,

O is bounded but D = O × Rd is not.
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Boundary of D
Partition of ∂D:

Γ+ := {(q, p) ∈ ∂O × Rd : ⟨p, n(q)⟩ > 0} (exiting velocities),

Γ− := {(q, p) ∈ ∂O × Rd : ⟨p, n(q)⟩ < 0} (entering velocities),

Γ0 := {(q, p) ∈ ∂O × Rd : ⟨p, n(q)⟩ = 0} (tangential velocities),

where n(q) is the unitary outward normal vector to O at q ∈ ∂O.

(1, 0)(−1, 0) q

p

Γ0 Γ0

Figure: Boundary of D = (−1, 1) × R
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1. Transition density

Theorem (Transition density)

There exists a smooth function

(t, x, y) 7→ p
D
t (x, y) ∈ C∞(R∗

+ × D × D) × C(R∗
+ × D × D)

such that for all t > 0, x ∈ D and f ∈ L∞(D),

PD
t f (x) := Ex

[
1τ∂>t f (Xt)

]
=

∫
D

p
D
t (x, y)f (y)dy ,

where τ∂ = inf{t > 0 : Xt /∈ D}.

Besides,

∀t > 0, x ∈ D, ∂tp
D
t (x, y) = Lxp

D
t (x, y) = L∗

y p
D
t (x, y),

pD
t (x, y) = 0 if x ∈ Γ+ ∪ Γ0 or y ∈ Γ− ∪ Γ0,

pD
t (x, y) > 0 if x /∈ Γ+ ∪ Γ0 and y /∈ Γ− ∪ Γ0.
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1. Transition density

For any α ∈ (0, 1], let (X̂
(α)
t = (q̂

(α)
t , p̂

(α)
t ))t≥0 be the solution on R2d of{

dq̂
(α)
t = p̂

(α)
t dt,

dp̂
(α)
t = −γp̂(α)

t dt + σ√
α
dBt .

Let p̂
(α)
t (x , y) be its transition density.

Theorem (Gaussian upper-bound)

For any α ∈ (0, 1), T > 0, there exists C > 0 such that for all t ∈ (0,T ], for all x , y ∈ D,

pDt (x , y) ≤ C p̂
(α)
t (x , y).

This result is inspired from work on the parametrix method by Konakov, Menozzi, Molchanov

(2010). One can show that p̂
(α)
t ∈ L∞(D × D) ∩ L1(D × D) (thus in any Lp(D × D) for p ≥ 1).
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2. Compactness

Compactness of the semigroup

For any p ∈ [1,+∞] and t > 0, the operator PD
t is compact from Cb(D) to Cb(D).

Proof:

p̂
(α)
t ∈ L2(D × D) ⇒ PD

t is a Hilbert-Schmidt integral operator, hence compact in L2(D).

Propagate to Cb(D) using the Gaussian upper-bound.

Reference: Lelievre, R., Reygner - Journal of Evolution Equations (2022).
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Krein-Rutman theorem

The compactness provides key spectral properties leading to the existence of a QSD, using in
particular Krein-Rutman theorem.

Theorem (QSD existence/uniqueness and convergence properties)

There exists a unique QSD µ on D = O × Rd for the Langevin process (Xt)t≥0. Besides, µ satisfies:

1 µ(dx) = ψ(x)dx on D,

2 ψ is the unique, normalized, non-negative classical solution in C2(D) ∩ Cb(D ∪ Γ−) of the following
eigenvalue problem {

L∗ψ(x) = −λψ(x), x ∈ D
ψ(x) = 0, x ∈ Γ−

3 There exists α > 0 such that for all θ probability on D, there exists Cθ > 0 and for all t ≥ 0,∥∥Pθ(Xt ∈ ·|τ∂ > t) − µ(·)
∥∥
TV

≤ Cθe
−αt

.
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Langevin exit point

Overdamped Langevin exit point

If q0 ∼ µ(dq) = ψ(q)dq (QSD), then

qτ∂
∼
β−1

λ
|∂nψ(q)|σ∂O(dq),

where σ∂O is the surface measure on ∂O.

Proof: Integration by parts on ∫
O

Eq

[
f (qτ∂

)
]
ψ(q)dq,

using that L∗ψ = −λψ (see Le Bris, Lelievre, Luskin, Perez (2010)).

Langevin exit point

If (q0, p0) ∼ µ(dq, dp) = ψ(q, p)dqdp (QSD), then

(qτ∂ , pτ∂ ) ∼
1

λ
|p · n(q)|ψ(q, p)σ∂O(dq)dp,

where σ∂O is the surface measure on ∂O.

Reference: Lelievre, R., Reygner - Stochastic Process and its Applications (2022)
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Proof: Integration by parts on ∫
O

Eq

[
f (qτ∂

)
]
ψ(q)dq,

using that L∗ψ = −λψ (see Le Bris, Lelievre, Luskin, Perez (2010)).

Langevin exit point

If (q0, p0) ∼ µ(dq, dp) = ψ(q, p)dqdp (QSD), then

(qτ∂ , pτ∂ ) ∼
1

λ
|p · n(q)|ψ(q, p)σ∂O(dq)dp,

where σ∂O is the surface measure on ∂O.

Reference: Lelievre, R., Reygner - Stochastic Process and its Applications (2022)
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Overdamped limit

Consider here γ > 0 and σ =
√

2γβ−1. Let
(
X

(γ)
t = (q

(γ)
t , p

(γ)
t )

)
t≥0

be the Langevin process

{
dq

(γ)
t = p

(γ)
t dt,

dp
(γ)
t = F (q

(γ)
t )dt − γp

(γ)
t dt +

√
2γβ−1 dBt .

Let (qt)t≥0 be the overdamped Langevin process

dqt = F (qt)dt +
√

2β−1dBt .

Assume that F is globally Lipschitz, then for T > 0,

Law((q
(γ)
γt )t∈[0,T ]) −→

γ→∞
Law((qt)t∈[0,T ]).

Question: Overdamped limit of the Langevin QSD ?
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Overdamped limit

Overdamped limit of the Langevin QSD

Let µ(γ) be the Langevin QSD on D and µ be the overdamped Langevin QSD on O, then

µ(γ)(dqdp) −→
γ→∞

µ(dq)
e−β

|p|2
2

(2πβ−1)d/2
dp.

Besides,

λ(γ) ∼
γ→∞

λ

γ
.

Reference: R. - Electronic Journal of Probability (2022).

Stationary overdamped limit

Let µ
(γ)
∞ be the Langevin stationary distribution and µ∞ be the overdamped Langevin stationary

distribution, then there exists C > 0 such that for all γ ≥ 2,

W
(
µ
(γ)
∞ , µ∞ ⊗ L(Z)

)
≤ C

√
log(γ)

γ
.

Reference: Monmarché, R. - Electronic Communications in Probability (2022)
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Reference: Monmarché, R. - Electronic Communications in Probability (2022)

Mouad Ramil (Seoul National University) QSD for Langevin March 27 2023 19 / 32



Research letter

R. , Lelièvre and Reygner - Mathematical foundations for the Parallel Replica algorithm applied to
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Metadynamics for the Mueller potential

Consider the two-dimensional overdamped Langevin dynamics

dXt = −∇V (Xt)dt +
√

2kBTdBt ,

where V is the Mueller potential defined by:

V (x1, x2) =
4∑

i=1

Kie
ai (x1−βi )

2+bi (x1−βi )(x2−γi )+ci (x2−γi )
2
.

Figure: Sampling in the Mueller potential. 100 000 iterations

We want to sample a transition path between A and B using Metadynamics.
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Metadynamics

Definition: A collective variable s : R2 7→ R captures the low-dimensional information of the
system. A good collective variable takes different values in relevant metastable states and
transition states.

Equilibrium distribution:

X∞ ∼ µ(x) =
e−V (x)/kBT

α
.

Latent equilibrium distribution:

s(X∞) ∼ p(s) =

∫
R2
µ(x)δs(x)=s(dx).

Free energy:
F (s) = −kBT log(p(s)).
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Metadynamics

Assuming one has an estimate B ≈ −F .If we perturb the potential into Ṽ (x) = V (x) + B(s(x)).

s(X̃∞) ∼ p̃(s) ∝
∫

R2
δs(x)=s(dx)e

−(V (x)+B(s(x))/kBT

= e−B(s)/kBT
∫

R2
δs(x)=s(dx)e

−V (x)/kBT

= e−B(s)/kBT e−F (s)/kBT ≈ 1.

As a result,
s(X̃∞) ∼ Uniform

Problem: We need a free energy estimate first ...
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Metadynamics

Build an approximation of F iteratively:

Bt+1(s) = Bt(s) + we
− (st−s)2

2σ2 .

Figure: Metadynamics

Generates uniform samples on the path A ↔ B.
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Autoencoder

Train the sampled data on an autoencoder to obtain the collective variable.

Loss = ∥x − y∥2.
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Metadynamics trajectories

Figure: 50 000 Metadynamics iterations with autoencoder trained on the database of A and B

Figure: 25 000 Metadynamics iterations with CV as the orthogonal projection on [AB]
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Adaptative Metadynamics

Train the autoencoder adaptatively on the previous trajectory after every 1000 Metadynamics
iterations.

Figure: 40 000 Metadynamics iterations with autoencoder trained iteratively on the trajectory
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Adaptative Metadynamics

Impose conditions on the path such that it visits A and B.

Loss = ∥x − AE(x)∥2 + (∥AE(xA)− xA∥2 + ∥AE(xB)− xB∥2)/2.

The path is defined by:

(Latent projection) sA = s(xA), sB = s(xB)

(Discretization) si = sA + i(sB − sA)/N, (1 ≤ i ≤ N).

Path is given by (D(si ))1≤i≤N ,

where D is the decoder of the autoencoder.

Figure: 38 000 Metadynamics iterations with autoencoder trained iteratively on the trajectory. Path is plotted
in orange.
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Adaptative Metadynamics

Consider a modified Mueller potential Ṽ defined by:

Ṽ (x) = V (x) + (−100 + ∥x − η∥2)e−2∥x−η∥2 ,

with η = [−1.7, 0.2].

Figure: 100 000 Metadynamics iterations with autoencoder trained iteratively on the trajectory. Path in orange.
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Adaptative Metadynamics

Penalize high energy configurations happening in the path.

Loss = ∥x − y∥2 + (∥AE(xA)− xA∥2 + ∥AE(xB)− xB∥2)/2 + Epath,

where

Epath =
N∑
i=1

∥D(si+1)− D(si )∥(V (D(si )) + C),

with C > 0 such that V (D(si )) + C > 0.

Figure: 100 000 Metadynamics iterations with autoencoder trained iteratively on the trajectory. Path in orange.

Reference: R., Boudier, Goryaeva, Marinica and Maillet - Journal of Chemical Theory and
Computation, (2022).
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Thank you for your attention!
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