Quantum Materials Dynamics at the Nexus of Exascale Computing, Artificial Intelligence, and Quantum Computing

<u>Aiichiro Nakano</u>, Rajiv K. Kalia, Ken-ichi Nomura, Priya Vashishta, Anikeya Aditya, Lindsay Bassman, Hikaru Ibayashi, Thomas Linker, Ankit Mishra, Pankaj Rajak, Taufeq Razakh, Liqiu Yang

Collaboratory for Advanced Computing & Simulations Depts. of Computer Science, Physics & Astronomy, Chemical Engineering & Materials Science, and Quantitative & Computational Biology University of Southern California

Email: anakano@usc.edu

Collaborators: F. Shimojo, K. Shimamura (*Kumamoto University, Japan*)

UCLA-IPAM Workshop on "Increasing the Length, Time, and Accuracy of Materials Modeling Using Exascale Computing" Organizers: Dr. V. Ehrlacher, Dr. V. Gavini, Dr. D. Perez, Dr. S. Plimpton

Current & Future Supercomputing

• Won two DOE supercomputing awards to develop & deploy metascalable ("design once, scale on future platforms") simulation algorithms

Atomistic simulations on million cores (pre-exascale)

Innovative & Novel Computational Impact on Theory & Experiment

Title: AI-Guided Exascale Simulations of Quantum Materials Manufacturing and Control **PI and Co-PIs**: Aiichiro Nakano–PI, Rajiv K. Kalia, Ken-ichi Nomura, Priya Vasishta

786,432-core IBM Blue Gene/Q 281,088-core Intel Xeon Phi 560-node (2,240-GPU) AMD/NVIDIA Polaris

Changing Computing Landscape for Science

Post-exascale Computing for Science

Compute Cambrian explosion

Quantum Computing for Science

AI for Science

DOE readies multibilliondollar Al push

U.S. supercomputing leader is the latest big backer in a globally crowded field

By Robert F. Service, in Washington, D.C. Science **366**, 559 (Nov. 1, '19)

Use all to advance science!

Molecular Dynamics & Machine Learning

Molecular Dynamics (MD)

Reactive MD (RMD)

Nonadiabatic quantum Charge (e) **MD** (NAQMD)

0.2 0.0

First principles-based neural-network quantum molecular dynamics (NNQMD)

Physical Review Letters Editor's choice (May 25, 2021)

BES

Exa-scale

BASIC ENERGY SCIENCES

EXASCALE REQUIREMENTS REVIEW

An Office of Science review sponsored jointly by Advanced Scientific Computing Research and Basic Energy Sciences

16,661-atom QMD

Shimamura *et al.*, *Nano Lett.* **14**, 4090 ('14)

10⁹-atom RMD

Shekhar *et al.*, *Phys. Rev. Lett.* **111**, 184503 ('13)

NOVEMBER 3-5, 2015

ROCKVILLE, MARYLAND

BES

BASIC ENERGY SCIENCES

EXASCALE REQUIREMENTS REVIEW

An Office of Science review sponsored jointly by Advanced Scientific Computing Research and Basic Energy Sciences

16,661-atom QMD

Shimamura *et al.*, *Nano Lett.* **14**, 4090 ('14)

10⁹-atom RMD

Shekhar *et al*., *Phys. Rev. Lett*. **111**, 184503 ('13)

NOVEMBER 3-5, 2015

ROCKVILLE, MARYLAND

Divide-Conquer-Recombine (DCR) Engines

M. Kunaseth *et al.*, *ACM/IEEE* SC13

• Variable *N*-charge problem: *O*(*N*³)→*O*(*N*): Extended-Lagrangian reactive molecular dynamics algorithm eliminates speed-limiting charge iteration

Nomura et al., Comput. Phys. Commun. **192**, 91 ('15); Liu et al., IEEE/ACM ScalA18 cf. Niklasson, Phys. Rev. Lett. **100**, 123004 ('08)

• Quantum *N*-body problem: $O(C^N) \rightarrow O(N)$: Lean divide-&-conquer density functional theory algorithm for QMD minimizes O(N) prefactor

Shimojo *et al.*, *J. Chem. Phys.* **140**, 18A529 ('14); Nomura *et al.*, *IEEE/ACM SC14*; Tiwari *et al.*, *ACM HPCAsia20*, best paper award

Divide-&-Conquer Density Functional Theory

Lean Divide-&-Conquer (LDC) DFT

• Density-adaptive boundary potential to reduce the O(N) prefactor

$$v_{\alpha}^{\rm bc}(\mathbf{r}) = \int d\mathbf{r}' \frac{\partial v(\mathbf{r})}{\partial \rho(\mathbf{r}')} \left(\rho_{\alpha}(\mathbf{r}) - \rho_{\rm global}(\mathbf{r}) \right) \cong \frac{\rho_{\alpha}(\mathbf{r}) - \rho_{\rm global}(\mathbf{r})}{\xi}$$

• More rapid energy convergence of LDC-DFT compared with nonadaptive DC-DFT

• Factor 2.03 (for v = 2) ~ 2.89 (for v = 3) reduction of the computational cost with an error tolerance of 5×10⁻³ a.u. (per-domain complexity: n^{v})

Shimojo et al., J. Chem. Phys. 140, 18A529 ('14)

Hierarchical Computing: QMD

GSLF maximally exposes data locality → scalability

• Hierarchical band (*i.e.*, Kohn-Sham orbital) + space + domain (BSD) decomposition

Divide-&-conquer domains

Parallel Performance: QMD

- Weak-scaling parallel efficiency is 0.984 on 786,432 cores for a 50,331,648atom SiC system
- Strong-scale parallel efficiency is 0.803 on 786,432 cores

Nomura et al., IEEE/ACM Supercomputing, SC14 ('14)

Parallel Performance: NNQMD

Trillion-atom scalability: Weakscaling parallel efficiency is 0.984 on 4,224 compute nodes (270,336 cores) of Theta supercomputer at Argonne National Laboratory for a trillionatom neural-network quantum molecular dynamics (NNQMD) of PbTiO₃

 GPU acceleration: 70× speedup on GPU (NVIDIA A100) over CPU (AMD EPYC 7513) of Polaris supercomputer at Argonne

Number of atoms	1,000	10,000	100,000
Speedup (A100 GPU over EPYC CPU)	4.37	24.7	68.9

Nonadiabatic Quantum Molecular Dynamics

Appl. Phys. Lett. **98**, 113301 ('11); ibid. **100**, 203306 ('12); J. Chem. Phys. **136**, 184705 ('12); Comput. Phys. Commun. **184**, 1 ('13); Appl. Phys. Lett. **102**, 093302 ('13); ibid. **102**, 173301 ('13); J. Chem. Phys. **140**, 18A529 ('14); IEEE Computer **48(11)**, 33 ('15); Sci. Rep. **5**, 19599 ('16); Nature Commun. **8**, 1745 ('17); Nano Lett. **18**, 4653 ('18); Nature Photon. **13**, 425 ('19)

Zn porphyrin

Rubrene/C₆₀

quasi-electron; quasi-hole

Excited states: Linear-response time-dependent density functional theory [Casida, '95]
Interstate transitions: Surface hopping [Tully, '90; Jaeger, Fisher & Prezhdo, '12]

Singlet Fission in Amorphous DPT

- Photo-current doubling by splitting a singlet exciton into 2 triplet excitons
- Singlet fission in mass-produced disordered organic solid → efficient low-cost solar cells
- Experimental breakthrough: SF found in amorphous diphenyl tetracene (DPT)

W. Mou et al., Appl. Phys. Lett. 102, 173301 ('13)

• Divide-conquer-recombine nonadiabatic QMD (phonon-assisted exciton dynamics) + time-dependent perturbation theory (singlet-fission rate) + kinetic Monte Carlo calculations of exciton population dynamics in 6,400-atom amorphous DPT

DCR-NAQMD Informed Kinetic Monte Carlo

• DCR-NAQMD-KMC exciton population dynamics reproduces the experimentally observed two time-scales (~1 & 100 ps) in amorphous DPT

INCITEIAURORA-MAGICS-LCLS Synergy

Strong Electron-Lattice Coupling in MoSe₂

 NAQMD simulations reproduce (1) rapid photo-induced lattice dynamics & (2) mono- to bi-exponential transition at higher electron-hole density

- Rapid lattice dynamics is explained by the softening of M-point (1/2 0 0) phonon
- Bi-exponential transition is explained by the softening of additional phonon modes at higher electron-hole densities

Lin *et al.*, *Nature Commun.* **8**, 1745 ('17) Bassman *et al.*, *Nano Lett.* **18**, 4653 ('18)

WSe₂ Monolayer on Al₂O₃ Substrate

- NAQMD simulation to study photoexcitation dynamics of WSe₂ monolayer on Al₂O₃ substrate 0.30 Se1 n-plane 1.70 out-of-plane 0.25 W $\mathsf{d}_{\mathsf{top}}$ RMSD (Å) WSe₂ 0.20 d (Å) 1.65 0.15 Se₂ 0.10 1.60 Al₂O₃ 0.05 e-h 0.00 **L**_____ -1 0 -2 -1 0 2 Time (ps) Time (ps)
 - Enhanced in-plane atomic displacements upon photoexcitation
 - Photo-induced intralayer contraction of W-Se distances
 - Good agreement with femtosecond surface X-ray scattering experiments at LCLS

Tung, et al., Nature Photonics 13, 425 ('19)

Light-Matter Interaction: DC-MESH

- DC-MESH (divide-&-conquer Maxwell + Ehrenfest + surface-hopping): *O(N)* algorithm to simulate photo-induced quantum materials dynamics
- LFD (local field dynamics) solves Maxwell equations for light & real-time timedependent density functional theory (RT-TDDFT) equations for electrons to describe light-matter interaction
- QXMD (quantum molecular dynamics with excitation) describes nonadiabatic coupling of excited electrons & ionic motions based on surface-hopping approach [Nature Commun. 8, 1745 ('17); Nature Photon., 13, 425 ('19)]
- LFD-QXMD handshaking *via* electronic occupation numbers
- **GSLD:** Globally sparse (interdomain Hartree coupling *via* multigrid) & locally dense (intradomain nonlocal exchange-correlation computation *via* BLAS) solver

Linker et al., Science Advances 8, eabk2625 ('22)

LFD Algorithm

• Hamiltonian in the α -th domain [Yabana, Phys. Rev. B 85, 045134 ('12)] $\hat{h}_{el}(t) = \frac{1}{2} \left(\frac{\nabla}{i} + \frac{1}{c} \mathbf{A}(\mathbf{r}_{\alpha}, t) \right)^{2} - \phi(\mathbf{r}_{\alpha}, t) + \hat{v}_{xc} + v_{ion}(\mathbf{r}, \mathbf{R}) + \Delta \dot{\mathbf{R}} \cdot \frac{\partial}{\partial \mathbf{R}} v_{ion}$ Electromagnetic vector & scalar potentials at the α -th domain Nonadiabatic coupling • Trotter expansion of time propagator

$$\exp(-i\hat{h}\Delta_{\rm MD}) \cong \exp(-i\hat{h}_{\rm el-ion}\Delta_{\rm MD}/2)\mathcal{T}\exp\left(-i\int_{t}^{t+\Delta_{\rm MD}} dt\hat{h}_{\rm el}(t)dt\right)\exp\left(-i\hat{h}_{\rm el-ion}\Delta_{\rm MD}/2\right)$$

$$\begin{array}{c} \text{QXMD} \\ \text{QXMD} \end{array}$$

• Self-consistent propagator [Sato, J. Chem. Phys. 143, 224116 ('15); Lian, Adv. Theo. Sim. 1, 1800055 ('18)]

$$\mathcal{T}\exp\left(-i\int_{t}^{t+\Delta_{\rm MD}} dt\hat{h}_{\rm el}(t)\right) \cong \prod_{n=1}^{N_{\rm QD}=\Delta_{\rm MD}/\Delta_{\rm QD}} \exp\left(-i\Delta_{\rm QD}\hat{h}_{\rm el}\left(t+\left(n-\frac{1}{2}\right)\Delta_{\rm QD}\right)\right)$$

• Nonlocal exchange-correlation propagator [Vlcek, J. Chem. Phys. 150, 184118 ('19)]

$$\exp(-i\Delta_{\rm QD}\hat{h}_{\rm el}) \cong \frac{1-i\hat{v}_{\rm nl}\Delta_{\rm QD}/2}{\left\|\left(1-i\hat{v}_{\rm nl}\Delta_{\rm QD}/2\right)|\psi_n(t)\rangle\right\|} \exp(-i\Delta_{\rm QD}\hat{h}_{\rm loc}) \frac{1-i\hat{v}_{\rm nl}\Delta_{\rm QD}/2}{\left\|\left(1-i\hat{v}_{\rm nl}\Delta_{\rm QD}/2\right)|\psi_n(t)\rangle\right\|}$$
$$\hat{v}_{\rm xc} = \hat{v}_{\rm loc} + \hat{v}_{\rm nl}; \ \hat{h}_{\rm el} = \hat{h}_{\rm loc} + \hat{v}_{\rm nl}$$
$$\begin{array}{c} \log \left(-i\Delta_{\rm QD}\hat{h}_{\rm loc}\right) \frac{1-i\hat{v}_{\rm nl}\Delta_{\rm QD}/2}{\left\|\left(1-i\hat{v}_{\rm nl}\Delta_{\rm QD}/2\right)|\psi_n(t)\rangle\right\|} \\ \hat{v}_{\rm xc} = \hat{v}_{\rm loc} + \hat{v}_{\rm nl}; \ \hat{h}_{\rm el} = \hat{h}_{\rm loc} + \hat{v}_{\rm nl}$$

Reduced-Communication Shadow Dynamics

- At each molecular-dynamics step, LFD informs QXMD of occupationnumber change due to light-electron & electron-electron interactions
- QXMD performs excited-state quantum molecular dynamics & informs LFD of local-potential change for the next $N_{\rm QD}$ (= $\Delta_{\rm MD}/\Delta_{\rm QD}$) quantum-dynamics steps
- "Shadow" electronic wave functions in LFD are resident on GPU, while QXMD wave functions on CPU, to minimize CPU-GPU data transfers

Real-time scissor approximation [Wang, J. Phys. Condens. Mat. 31, 214002 ('19)]

$$\hat{v}_{\mathrm{nl}}|\psi_n(t)\rangle \cong \Delta_{\mathrm{sci}} \sum_{m \ge \mathrm{LUMO}} |\psi_m\rangle \langle \psi_m|\psi_n(t)\rangle$$

Multiscaling from DC-MESH to XS-NNQMD

Multiscale QM/MM → NN/MM

- Multiscale quantum challenge: Complex response of ferroelectric topological defects to external stimuli encompasses picosecond-to-nanosecond time & nanometer-to-micrometer length scales
- QM/MM: Overcame the challenge taking cue from multiscale quantummechanics (QM)/molecular mechanics (MM) approach (2013 Nobel chemistry prize)

Warshel, Angew. Chem. 53, 10020 ('14)

QM/MM/FE (finite-element method) Ogata *et al*, *Comput. Phys. Commun.* **138**, 143 ('01) • NN/MM: NNQMD for ferroelectric (PbTiO₃: PTO) embedded in MM for paraelectric (SrTiO₃: STO) to apply appropriate strain boundary condition

Linker *et al., J. Phys. Chem. Lett.* **13**, 11335 ('22)

Application: Ferroelectric Opto-Topotronics

- Quantized ferroelectric topology is protected against thermal noise → future ultralow-power opto-electronics applications
- Billion-atom NNQMD revealed photo-induced topological phase-transition dynamics (*cf.* Kibble-Zurek mechanism in cosmology)
- Symmetry-controlled skyrmion-to-skyrmionium^{*} switching *Composite of skyrmions with opposite topological charges

Linker *et al., Science Adv.* **8**, eabk2625 ('22); *JPCL* **13**, 11335 ('22)

Neural-Network Quantum Molecular Dynamics

• NNQMD@scale could revolutionize atomistic modeling of materials, providing quantum-mechanical accuracy at a fraction of computational cost

• Neural networks predict: (1) atomic forces for performing MD simulations; & (2) maximally-localized Wannier-function (MLWF) centers for computing quantum properties like electronic dipoles

Krishnamoorthy et al., Phys. Rev. Lett. 126, 216403 ('21)

Fast & Robust NNQMD: Allegro-Legato

- Allegro (fast) NNQMD: State-of-the-art *accuracy & speed* founded on grouptheoretical equivariance & local descriptors [Musaelian *et al.*, *Nat. Commun.* 14, 579 ('23)]
- Fidelity-scaling problem: On massively parallel computers, growing number of unphysical (adversarial) force predictions prohibits simulations involving larger numbers of atoms for longer times
- Allegro-Legato (fast and "smooth"): Sharpness aware minimization (SAM) enhances the robustness of Allegro through improved smoothness of loss landscape w_{*} = argmin_w[L(w) + max_{||∈||2}≤ρ{L(w + ε) L(w)}] (L: loss; w: model parameters)
- Elongated time-to-failure scaling, $t_{\text{failure}} = O(N^{-\beta})$, without sacrificing accuracy or speed, thereby achieving spectroscopically stable long-time Hamiltonian trajectory

Nuclear-Quantum NNQMD

 $\frac{1}{n}V(\mathbf{r}_i-\mathbf{r}_i')$

 $\frac{1}{2}m\omega_P^2(\mathbf{r}_i-\mathbf{r}_{i-1})^2$

 $\omega_P = P k_B T / \hbar$

- Allegro-Legato-PIMD: Incorporate nuclear quantum effect (NQE) through path-integral molecular dynamics (PIMD)
- NNQMD trained by QMD achieves the required large number (P) of replicas at low temperature & long-time Hamiltonian dynamics to resolve fine vibrational structures
- NQE down-shifts inter-molecular vibrational modes 1 in ammonia to explain high-resolution inelastic 2 neutron scattering experiments

H. Ibayashi et al., ISC 2023 (arXiv: 2303.08169); Linker et al., under submission

Charge-Transfer NNQMD

• Incorporated charge transfer for accurately describing chemical reactions through charge equilibration (QEq) in reactive molecular dynamics (RMD)

Campbell, Phys. Rev. Lett. 82, 4866 ('99)

$$q_*^N = \underset{q^N}{\operatorname{argmin}} E_{\text{Coulomb}}(\mathbf{r}^N, q^N) \ s. t. \Sigma_i \ q_i = 0$$
$$E_{\text{Coulomb}}(\mathbf{r}^N, q^N) = \Sigma_i \chi_i q_i + \frac{1}{2} \Sigma_{i,j} \ q_i H(r_{ij}) q_j$$
Electronegativity Coulombic interaction

Rappe, J. Phys. Chem. **95**, 3358 ('91); van Duin, J. Phys. Chem. A **105**, 9396 ('01) Nakano, Comput. Phys. Commun. **104**, 59 ('97); Nomura, ibid. **192**, 91 ('15)

- 4G NNQMD: Separate neural network to predict electronegativity Ko, Nat. Commun. 12, 398 ('21)
- Allegro-Legato-4G: Allegro-Legato to achieve smooth loss landscape & robust long-time dynamics in 4G-NNQMD

AIQ-XMaS Software Suite

AI & Quantum-Computing Enabled Exa Quantum Materials Simulator

Reinforcement Learning for Growth

- In a manner AI plays a board game of Go, use reinforcement learning (RL) to design optimal growth conditions (*e.g.*, temperature & gas-pressure control) to achieve desired properties such as minimal defect density
- AI model combines:
 - **1.** RL agent to design actions
 - 2. Neural network-based dynamic model trained by reactive moleculardynamics (RMD) to predict new states

Computational Synthesis of MoS₂

 Found novel transformation pathways to the stable 2H phase via the metastable 1T phase during chemical vapor deposition (CVD) growth of MoS₂

S. Hong et al., J. Phys. Chem. Lett. 10, 2739 ('19)

Active Control of TMDC Oxidation

- Transition-metal dichalcogenide (TMDC) semiconductors form the basis of future lowpower two-dimensional (2D) electronics
- Oxidation of TMDC was proposed as a scalable synthetic pathway to critical semiconductorinsulator interfaces [Jo, Yang *et al.*, *Nano Lett.* **20**, 8592 ('20); Illarionov, *Nat. Commun.* **11**, 3385 ('20); Liu, *IEEE T. Electron. Dev.*, early edition ('23)]
- Active oxidation (enhanced by plasma, ultraviolet, laser & pressure) is being explored for controlled oxidation of TMDC [Lai, Nanoscale 10, 18758 ('18); Reidy, arXiv:2211.16789 ('23)]
- Reactive molecular dynamics simulations reveal pressure control of oxidation stages during oxidation of ZrS₂: (I) layer-by-layer to (II) reaction-controlled to (III) diffusioncontrolled

Jo, Yang *et al.*, *Nano Lett.* **20**, 8592 ('20) Yang, *ACS Nano*, accepted ('23)

Reinforcement Learning for Long-Time Dynamics

- Reinforcement learning agents autonomously discover low-activation-barrier migration pathways to study long-time dynamics
- Multiple agents share experience using an asynchronously updated replay buffer [Silver *et al.*, *Nature* **529**, 484 ('16)]
- Estimate migration time based on the transitionstate theory:

$$t_{\text{migration}} = \sum_{i \in \{\text{activation events}\}} \frac{\hbar}{k_{\text{B}}T} \exp\left(\frac{E_i^{\text{activation}}}{k_{\text{B}}T}\right)$$

-144.85

Otential Energy (kcal/mol) -144.95 -145.00 -145.05

50

100

150

of Actions

200

250

Episode: 243

2-seconds trajectory

Agent

Quantum Computing (QC) for Science

Quantum computing utilizes quantum properties such as superposition & entanglement for computation

- U.S. Congress (Dec. 21, '18) signed National Quantum Initiative Act to ensure leadership in quantum computing & its applications
- Quantum supremacy demonstrated by Google F. Arute, *Nature* **574**, 505 ('19)
- Quantum computing for science: Universal simulator of quantum manybody systems

R. P. Feynman, *Int. J. Theo. Phys.* **21**, 467 ('82); S. Lloyd, *Science* **273**, 1073 ('96)

- Success in simulating *static* properties of quantum systems (*i.e.*, ground-state energy of small molecules) A. Aspuru-Guzik *et al.*, *Science* 309, 1704 ('05)
- Challenge: Simulate quantum manybody *dynamics* on current-to-near-future noisy intermediate-scale quantum (NISQ) computers

J. Preskill, Quantum 2, 79 ('18)

54-qubit Google Sycamore

Quantum Computing of Magnetism

- Simulated quantum many-body dynamics on IBM's Q16 Melbourne & Rigetti's Aspen quantum processors
- Electromagnetic-field control of quantum states in a chain of rheniummagnets in MoSe₂ monolayer to realize desired material properties on demand, thereby pushing the envelope of "quantum materials science"

Emergent Magnetism: Structural Transition via Doping

- Experiment at Rice shows 2H-to-1T' phase transformation by alloying MoSe₂ with Re
- QMD simulations at USC elucidate its electronic origin
- Simulation & experiment show novel magnetism centered at Re atoms

Kochat et al., Adv. Mater. 29, 1703754 ('17)

Quantum Dynamics on Quantum Computers

• Quantum-dynamics simulations on quantum computers show dynamic suppression of magnetization by THz radiation

> Bassman *et al.*, *Phys. Rev.* **101**, 184305 ('20)

• AI-inspired quantum compiler reduced the circuit size by 30% to mitigate environmental noise

Bassman *et al.*, *Quantum Sci. Tech.* **6**, 014007 ('21)

Lindsay Bassman: *Maria Curie Fellow* ('22-); *Science, She Says Award* ('23)

 Full-stack, cross-platform software for quantum dynamics simulations on NISQ computers MISTIQS

MultIplatform Software for Time-dependent Quantum Simulation

Powers *et al.*, *SoftwareX* **14**, 100696 ('21) <u>https://github.com/USCCACS/MISTIQS</u>

Princeton-USC-Howard Future Manufacturing

FMRG: Artificial Intelligence Driven Cybermanufacturing of Quantum Material Architectures \$3.75M NSF project (2020-2025)

Nagpal (Princeton); Kalia, Nakano, Wang (USC); Rawat (Howard)

Training Cyber Science Workforce

- New generation of computational scientists at the nexus of exascale computing, quantum computing & AI
- Unique dual-degree program: Ph.D. in materials science or physics, along with MS in computer science specialized in high-performance computing & simulations, MS in quantum information science or MS in materials engineering with AI Horse Ridge II

USC-Howard Cybertraining

CyberMAGICS: Cyber Training on Materials Genome Innovation for Computational Software

• Train a new generation of materials cyberworkforce, who will solve challenging materials genome problems through innovative use of advanced cyberinfrastructure at the exa-quantum-AI nexus

\$1M NSF CyberTraining (2021-25) project

Nakano, Nomura, Vashishta (USC); Dev, Wei (Howard) External advisors: T. Germann, S. Plimpton, *et al.*

Other Applications

Conclusion

- **1.** Large spatiotemporal-scale quantum, reactive & neural molecular dynamics simulations based on a common algorithmic framework
- 2. Broad applications of (exa+AI+quantum)4Science

Research supported by DOE-CMS/Neutron/INCITE/Aurora-ESP, NSF-FM/CyberTraining, ONR-MURI×2, Sony

