Path integral formulation of stochastic processes:

 non-equilibrium reaction pathways, hyperdynamics, and enhanced sampling
Steve Fitzgerald

s.p.fitzgerald@leeds.ac.uk

New Mathematics for the Exascale: Applications to Materials Science

Department of Applied Mathematics

Overview

- Introduction to path integral formulation
- Path integral hyperdynamics
- Celia Reina, S Huang, I Graham, R Riggleman, P Arriata
- Finite-time transitions
- Andy Archer, Amanda Hass, Grisell Díaz Leines

중ㅇㅇㅇㅇㅇ UNIVERSITY OF CAMBRIDGE

- Outlook and future directions

Research funded by EPSRC fellowship

Modelling stochastic processes

- Interplay between thermal fluctuations and mechanical forces controls many things*
- Two main mathematical modelling approaches:
- Langevin (SDE)

$$
\begin{gathered}
m \dot{q}(t)+\Gamma \dot{q}(t)=-V^{\prime}(q)+\xi(t) \\
\frac{\partial P}{\partial t}=\frac{\partial}{\partial q}\left(V^{\prime} P+D \frac{\partial P}{\partial q}\right)
\end{gathered}
$$

- Third way: path integral

$$
\text { Prob. }\left(q_{0} \rightarrow q ; t\right)=\int_{\text {paths from } q_{0} \rightarrow q ; t} \mathrm{~d}(\text { paths }) \text { Prob.(path) }
$$

Langevin equation

$$
m \ddot{q}(t)+\Gamma \dot{q}(t)=-V^{\prime}(q)+\xi(t)
$$

- $q(t)$ is the position of the particle
- Inertial term neglected (reaches terminal velocity instantaneously, "overdamped")
- Γ is friction, $V(q)$ is potential, ξ is noise
- Simplest option is uncorrelated Gaussian white noise

$$
\left\langle\xi(t) \xi\left(t^{\prime}\right)\right\rangle=2 D \delta\left(t-t^{\prime}\right)
$$

- D is the noise strength; $D=k_{\mathrm{B}} T / \Gamma$

$$
\underset{\text { maths }}{\mathrm{d} Q_{t}=-V^{\prime}\left(Q_{t}\right) \mathrm{d} t+\mathrm{d} \xi_{t}} \quad \dot{q}(t)+\underset{V^{\prime}(q)=\xi(t)}{\text { physics }} \mathbf{U}
$$

Fokker-Planck-Smoluchowski equation

$$
\left.\frac{\partial P}{\partial t}=\frac{\partial}{\partial q}\left(V^{\prime} P+D \frac{\partial P}{\partial q}\right)\right) \quad \text { set } \Gamma=1
$$

- $P(q, t)$ is the probability density
- No \ddot{P} or velocity terms - still overdamped, no memory, Markovian
- Velocity dependence integrated out
- Initial condition

$$
P(q, t=0)=\delta\left(q-q_{0}\right)
$$

- Returns to usual diffusion equation when $V=0$

Simulating stochastic processes

- MD: assign random initial velocities according to Boltzmann; evolve deterministic Hamiltonian dynamics
non-equilibrium constant energy
- Langevin dynamics: change the particle velocity at each timestep according to a specified thermostat non-equilibrium

NVT

constant temperature

- kinetic Monte Carlo: evolve system from state to state with probabilities according to rates...

Many tricks
available
to accelerate, AMD,
metadynamics, path integral hyperdynamics

See Danny
Perez talk this morning!

- Much longer timescales accessible, but:
- Rates are based on equilibration at each state
- Problems when rates for different transitions vary widely
- Rates look like $\mathrm{Ae}^{-\Delta V / k T}$, nonlinearity means this is common
- May be OK at one temperature but not at another
- Discards all finite time information for average transition rate

Transition rates

$$
\dot{q}(t)=-V^{\prime}(q)+\xi(t) \rightarrow A \mathrm{e}^{-\Delta V / k T}
$$

- Usual method: solve Fokker-Planck approximately for flux over barrier in long-time, weak-noise limit, get Kramers' rate / Arrhenius function

$$
\text { rate } \sim e^{-\Delta V / k T} \quad \Delta V \ll k_{\mathrm{B}} T
$$

- Discards all finite time information for average transition rate
- Finite time Green function / propagator would be desirable
- Would allow cool stuff like first passage MC with nontrivial V Bulatov et al PRL 2006
- Alternative is to use path integral (cf. Feynman-Kac formula)
- Noise distribution functional

$$
\mathcal{P}[\xi(t)] \sim \exp -\frac{1}{4 k T} \int_{t_{0}}^{t_{1}} \xi(t)^{2} \mathrm{~d} t
$$

- Gives probability of a particular realization of

$$
\xi(t), t \in\left(t_{0}, t_{1}\right)
$$

- Substitute for ξ in Langevin equation to get probability of trajectory $q(t)$

$$
\dot{q}(t)+V^{\prime}(q)=\xi(t)
$$

$$
\mathcal{P}[q(t)] \sim \exp -\frac{1}{4 k T} \int_{t_{0}}^{t_{1}}\left(\dot{q}+V^{\prime}\right)^{2} \mathrm{~d} t
$$

Like a change of measure, Girsanov theorem
Wiener 1920s, Onsager \& Machlup 1953, Stratonovich 1971, Graham 1970s 侖 UNIVERSITY OF LEEDS

- Then write transition probability as:

$$
\begin{gathered}
\text { Prob. }\left(q_{0} \rightarrow q ; t\right)=\int d(\text { paths }) \text { Prob.(path) }=\int d(\text { paths }) \exp -\frac{1}{4 k T} \int_{t_{0}}^{t_{1}}\left(\dot{q}+V^{\prime}\right)^{2} d t \\
\text { paths from } q_{0} \rightarrow q ; t \quad \text { paths from } q_{0} \rightarrow q ; t
\end{gathered}
$$

- where the integral $D q$ is over functions (paths) $q(t)$ satisfying b.c.s

$$
q\left(t_{0}\right)=q_{0} ; q\left(t_{1}\right)=q_{1}
$$

- this defines an action:

$$
\mathcal{S}[q(t)]=\int_{t_{0}}^{t_{1}}\left(\dot{q}+V^{\prime}\right)^{2} \mathrm{~d} t
$$

- $S[q]$ quantifies by how much the trajectory $q(t)$ fails to satisfy the deterministic equation of motion $\dot{q}=-V^{\prime}$
- i.e. how large the fluctuations that are required to realize $q(t)$ are

More recently Ikonen et al JCP2010, PRE2011; Chen \& Yin 1999... Much work Graham, McKane, book by Wio, ...

$$
P\left(q_{1}, t_{1} \mid q_{0}, t_{0}\right)=\int \mathcal{D} q \exp -\frac{1}{4 k T} \int_{t_{0}}^{t_{1}}\left(\dot{q}+V^{\prime}\right)^{2} d t
$$

$$
\mathcal{S}[q(t)]=\int_{t_{0}}^{t_{1}}\left(\dot{q}+V^{\prime}\right)^{2} \mathrm{~d} t
$$

- Min. $S[q]$ is the large deviation rate function in the $k T \rightarrow 0$ limit

$$
\lim _{k T \rightarrow 0}-4 k T \log P\left(q_{1}, t_{1} \mid q_{0}, t 0\right)=\min _{\text {paths } q(t)} \mathcal{S}[q(t)]
$$

Minimum action method, MAM, Ren \& van den Eijnden CPAM 2004

- Large deviations isn't the whole story, however...

$$
P\left(q_{1}, t_{1} \mid q_{0}, t_{0}\right)=\int \mathcal{D} q \exp -\frac{1}{4 k T} \int_{t_{0}}^{t_{1}}\left(\dot{q}+V^{\prime}\right)^{2} d t
$$

- Looks a lot like the QM path integral

$$
\left\langle q_{1}, t_{t} \mid q_{0}, t_{0}\right\rangle=\int \mathcal{D} q \exp \frac{i}{\hbar} \int_{t_{0}}^{t_{1}}\left(\frac{m}{2} \dot{q}^{2}-V(q)\right) d t
$$

- but
- real, no i this is a good thing!

Lagrangian $L=K . E .-P . E$.

- Noise strength plays role of \hbar
- No mass (actually it's $2 x$ the friction squared, which l set $=1$)
- "All-squared" form for "Lagrangian"
- $+V^{\prime 2}$ instead of $-V$ Effective potential $F=-V^{\prime 2}$
- cross term

$$
\dot{q}(t)+V^{\prime}(q)=\xi(t)
$$

- Cross term in stochastic action is a total derivative, pulls out a $2 \Delta V$

$$
\begin{gathered}
\int 2 \dot{q} V^{\prime}(q) \mathrm{d} t=\int 2 V^{\prime} \mathrm{d} q=2 \Delta V \\
\mathcal{S}=\int_{t_{0}}^{t_{1}}\left(\dot{q}+V^{\prime}\right)^{2} \mathrm{~d} t=2\left(V\left(q_{1}\right)-V\left(q_{0}\right)\right)+\int_{t_{0}}^{t_{1}}\left(\dot{q}^{2}+V^{\prime 2}\right) \mathrm{d} t \\
P\left(q_{1}, t_{1} \mid q_{0}, t_{0}\right)=\exp \left(-\frac{\Delta V}{2 k T}\right) \int \mathcal{D} q \exp -\frac{1}{4 k T} \int_{t_{0}}^{t_{1}}\left(\dot{q}^{2}+V^{\prime 2}\right) \mathrm{d} t \\
\equiv \exp \left(-\frac{\Delta V}{2 k T}\right) f\left(q_{1}, t_{1} \mid q_{0}, t_{0}\right) \\
\text { defining } f
\end{gathered}
$$

- Substitute this into Fokker-Planck...

See book by H Wio 2013, also Ge \& Qian 2012, many papers of Hanggi, Marchesoni , Bray, McKane et al PR 1990s SPF 2016; SPF 2022, 2023

- Also: can actually keep inertial term from Langevin eq. too:
- Works in $d>1$, fairly general V

$$
P\left(q_{1}, t_{1} \mid q_{0}, t_{0}\right)=\int \mathcal{D} q \exp -\frac{1}{\dot{q}_{1}, \dot{q}_{0}} 4 \int_{k_{\mathrm{B}} T}^{t_{1}}|m \ddot{q}+\Gamma \dot{q}+\nabla V(q)|^{2} d t
$$

- Expanding the square in "Lagrangian" gives total derivative:

$$
\mathcal{L}=2 \Gamma \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{1}{2} m \dot{q}^{2}+V\right)+\Gamma^{2} \dot{q}^{2}+(m \ddot{q}+\nabla V)^{2}
$$

- Instead of ΔV coming out from the total derivative, get ΔE

$$
\Delta E=\left[\frac{1}{2} m \dot{q}^{2}+V\right]_{\text {initial }}^{\text {final }}
$$

$P\left(q_{1}, t_{1} \mid q_{0}, t_{0}\right)$

$$
\stackrel{\dot{q}_{1}, \dot{q}_{0}}{=}\left(\exp -\frac{\Delta E}{2 k_{B} T}\right) \int \mathcal{D} q \exp -\frac{1}{4 k_{B} T} \int_{t_{0}}^{t_{1}}\left(\Gamma^{2} \dot{q}^{2}+(m \ddot{q}+\nabla V)^{2}\right) d t
$$

- Consider a trajectory in phase space and its time reversal
- ΔE flips sign
- other terms in S are time reversal invariant
- Path integrals cancel exactly, so get

$$
\frac{P(\nearrow)}{P(\swarrow)}=\exp -\frac{\Delta E}{k_{B} T}
$$

- Trajectory with positive ΔE is exponentially less likely than its reverse
- a Crooks-like theorem - exact for arbitrary temperature, arbitrary damping, arbitrarily far from equilibrium

This leads to a remarkable relation between trajectories through different potentials...

$V(x, y)$

$U=V(x, y)-0.5 x$, say

Exact trajectory-by-trajectory
Suppose you want to simulate rare escapes from a deep well in V. Simulate common "escapes" in U instead...

- Wish to sample rare event dynamics in V
- Instead, simulate

$$
m \ddot{q}(t)+\Gamma \dot{q}(t)=-\nabla V(q)+F+\xi(t)
$$

- with a helpful bias force F

$$
\begin{aligned}
\mathcal{S}[q] & =\int_{t_{0}}^{t_{1}}|m \ddot{q}+\Gamma \dot{q}+\nabla V-F+F|^{2} \mathrm{~d} t \\
& =\int_{t_{0}}^{t_{1}}|m \ddot{q}+\Gamma \dot{q}+\nabla V-F|^{2} \mathrm{~d} t+\int_{t_{0}}^{t_{1}} F \cdot(F+2 \xi) \mathrm{d} t
\end{aligned}
$$

- So

Chen and Horing, Nummela and Andricioaei,

- F need not be conservative
- F can be different for each path sampled
- F can depend on time
- Works for entropic as well as energetic barriers, no transition state required
- BUT too big an F destroys your statistics
- Depending on what you want to know, this may or may not be a problem

5000 particles escaping from metastable
well driven by weak noise. MSD $\rightarrow \sim 9$ as
5000 particles escaping from metastable
well driven by weak noise. MSD $\rightarrow \sim 9$ as
$t \rightarrow \infty$
No bias; full bias cf AMD

- You can't get something for nothing!
- The bigger the bias, the smaller the path weights, the more runs are needed to compute ensemble averages
- This can be quantified with the Kullback-Leibler divergence:

$$
\mathcal{D}_{K L}\left(\mathcal{P}_{U} \| \mathcal{P}_{V}\right)=\left\langle\log \frac{\mathcal{P}_{U}}{\mathcal{P}_{V}}\right\rangle=\frac{1}{k T}\left\langle\int_{t_{0}}^{t_{1}} F \cdot(F+2 \xi) \mathrm{d} t\right\rangle
$$

- When the averages are taken wrt the biased density this is zero
- So, need to keep sampling until this gets sufficiently small
- The bigger the bias and the longer the simulation time, the worse this gets
- But at least it's quantifiable

Example

- Stretching spring (e.g. polymer toy model)
- Go from equilibrium $(\lambda=0)$ simulations to non-equilibrium predictions

--- equilib. non-equilib.
(control)
predicted
External force vs time

External work vs time

Need more runs for longer times

Conclusions I

- Also investigated harmonic to anharmonic springs; caging in Hertzian and L-J colloids (see ref. below)
- Exact relation between stochastic trajectories of two arbitrary systems
- Ensemble averages currently feasible for smallish systems, shortish times (1D, laptop; 10 interacting particles in 2D with PBC, workstation)
- could be more profitably applied to more specific problems
- extension to coloured noise, non-gradient forces...
- Analytical progress possible in weak noise limit
- "semiclassical" evaluation of path integral

Celia Reina, S Huang, I Graham, R Riggleman, P Arriata, SPF
J. Mech. Phys. Solids 161104779 (2022)

Research funded by

Back to overdamped approx.

- Stochastic action:

$$
\mathcal{S}=\int_{t_{0}}^{t_{1}}\left(\dot{q}+V^{\prime}\right)^{2} \mathrm{~d} t=2\left(V\left(q_{1}\right)-V\left(q_{0}\right)\right)+\int_{t_{0}}^{t_{1}}\left(\dot{q}^{2}+V^{\prime 2}\right) \mathrm{d} t
$$

- Can analyze "semi-classically" with $k T$ playing role of \hbar
- Path integral dominated by action-minimizing paths as $k_{B} T \rightarrow 0$
- Euler-Lagrange for such a "classical path" most probable path (MPP)

$$
\ddot{q}=V^{\prime} V^{\prime \prime} ; \dot{q}^{2}-V^{\prime 2}=H ; \dot{q}= \pm \sqrt{H+V^{\prime 2}}
$$

H is conserved on 'classical' trajectory

See book by H Wio 2013, also Ge \& Qian 2012, many papers of Hanggi, Marchesoni , Bray, McKane et al PR 1990s SPF 2016; SPF in prep

Back to overdamped approx.

- Stochastic action:

$$
\mathcal{S}=\int_{t_{0}}^{t_{1}}\left(\dot{q}+V^{\prime}\right)^{2} \mathrm{~d} t=2\left(V\left(q_{1}\right)-V\left(q_{0}\right)\right)+\int_{t_{0}}^{t_{1}}\left(\dot{q}^{2}+V^{\prime 2}\right) \mathrm{d} t
$$

- Can analyze "semi-classically" with $k T$ playing role of \hbar
- Path integral dominated by action-minimizing paths as $k_{B} T \rightarrow 0$
- Euler-Lagrange for such a "classical path" most probable path (MPP)

$$
\ddot{q}=V^{\prime} V^{\prime \prime} ; \dot{q}^{2}-V^{\prime 2}=H ; \dot{q}= \pm \sqrt{H+V^{\prime 2}}
$$

H is conserved on 'classical' trajectory

NB smooth paths are measure zero in space of stochastic paths; really we are saying MPPs lie in a tube around smooth path (Stratonovich 1971)

$$
V(x, y)
$$

$$
F(x, y)=-|\nabla V(x, y)|^{2}
$$

Most probable stochastic paths in V

$$
\uparrow
$$

Hamiltonian mechanics in F
UNIVERSITY OF LEEDS

$$
\mathcal{S}=\int_{t_{0}}^{t_{1}}\left(\dot{q}+V^{\prime}\right)^{2} \mathrm{~d} t=2\left(V\left(q_{1}\right)-V\left(q_{0}\right)\right)+\int_{t_{0}}^{t_{1}}\left(\dot{q}^{2}+V^{\prime 2}\right) \mathrm{d} t
$$

- Long-time, zero "energy" solution given by $H=0$
c.f. QFT instantons this is the MEP

$$
\ddot{q}=V^{\prime} V^{\prime \prime} ; \dot{q}^{2}-V^{\prime 2}=H \quad \dot{q} \rightarrow \pm V^{\prime} \quad \text { as } H \rightarrow 0
$$

- - sign, downhill, no fluctuations required, $S=0$
- + sign, uphill,

$$
\mathcal{S}[q(t)]=\int_{t_{0}}^{t_{1}} 4 \dot{q} \dot{q} \mathrm{~d} t=4 \int_{q_{0}}^{q_{1}} V^{\prime} \mathrm{d} q=4 \Delta V
$$

- recover usual rate

$$
\exp -\frac{\mathcal{S}}{4 k T}=\exp -\frac{\Delta V}{k T}
$$

See book by H Wio 2013, also Ge \& Qian 2012, Bray, McKane et al PR 1990s SPF 2016; SPF 2022, 2023

What about other paths? Can we keep finite time information?

Ge \& Qian 2012

- Do other paths with $H \neq 0$ have meaning? Yes! As $k T \rightarrow 0$

$$
P\left(q_{1}, t_{1} \mid q_{0}, t_{0}\right) \rightarrow \exp -\frac{1}{4 k T}\left(2 \Delta V-H\left(t_{1}-t_{0}\right)+2 \int_{q_{0}}^{q_{1}} \sqrt{H+V^{\prime 2}} \mathrm{~d} q\right)
$$

- Find H by extremizing $S, \partial S / \partial H=0$ leads to Or by solving eq. of m.

$$
t_{1}-t_{0}=\int_{q_{0}}^{q_{1}} \frac{\mathrm{~d} q}{\sqrt{H+V^{\prime 2}}}
$$

- Don't need to discard temporal information
- This gives the solution to Fokker-Planck with initial condition

$$
\rho(q, 0)=\delta\left(q-q_{0}\right)
$$

- Transition probability / Green function

$$
P\left(q, t \mid q_{0}, t_{0}\right)
$$

- for general potential...

What do we mean by the "weak noise limit" in this context?
"Given that the transition $\left(t_{0}, q_{0}\right) \rightarrow\left(t_{1}, q_{1}\right)$ occurred, assume it did so via the most probable path"

Effective potential $F=-V^{\prime 2}$

Euler-Lagrange defines paths satisfying

$$
\ddot{q}=V^{\prime} V^{\prime \prime}=-\left(-V^{\prime 2}\right)^{\prime}
$$

- Dissipative stochastic dynamics in potential V correspond to conservative Hamiltonian trajectories in effective potential

$$
F=-V^{\prime 2}
$$

c.f. inverted potential for QFT instantons

What about other paths?

$$
P\left(q_{1}, t_{1} \mid q_{0}, t_{0}\right) \rightarrow \exp -\frac{1}{4 k T}\left(2 \Delta V-H\left(t_{1}-t_{0}\right)+2 \int_{q_{0}}^{q_{1}} \sqrt{H+V^{\prime 2}} \mathrm{~d} q\right)
$$

- Find H by extremizing $S, \frac{\partial S}{\partial H}=0$ leads to $t_{1}-t_{0}=\int_{q_{0}}^{q_{1}} \frac{d q}{\sqrt{H+V^{\prime 2}}}$
- Or by solving eq. of m. $\frac{\mathrm{d} q}{\mathrm{~d} t}= \pm \sqrt{H+V^{\prime}(q)^{2}}$
- If path contains a min/max, V^{\prime} contains a zero, so $H \rightarrow 0$ corresponds to time $\rightarrow \infty$ and recovers Arrhenius rate
- Works exactly for simple potentials, gives WKB-like approximation for more complex ones in principle!
- Validity: $\mathcal{S} / 4 k T>1$ just like Arrhenius rate validity $\Delta V / k T>1$

What do we mean by the "weak noise limit" in this context?
"Given that the transition $\left(t_{0}, q_{0}\right) \rightarrow\left(t_{1}, q_{1}\right)$ occurred, assume it did so via the most probable path"

Higher dimensions, geometric min. action method

- Foregoing formalism generalizes to $\mathrm{d}>1$ except path unknown
- Solving the equation of motion is less simple when $d>1$
- BVP with fixed start and end points, and time
- gMAM method finds absolute min. action path, $t \rightarrow \infty, H=0$
- Vanden-Eijnden \& Heymann 2008, Díaz Leines \& Rogal 2016
- Better than e.g. string method

From Díaz Leines \& Rogal PRE 2016

Finite time paths

- Use geometric method to find finite time $H>0$ paths

$$
\begin{aligned}
S\left(q_{1}, q_{0}, t\right) & =2 \Delta V-H t+2 \int_{\gamma} \sqrt{H+|\nabla V|^{2}} \mathrm{~d} s \\
& \equiv 2 \Delta V-H t+2 W
\end{aligned}
$$

- Minimize path-dependent term W over curves γ linking q_{0} and q_{1}
- Parameterize γ using normalized arc length $\alpha \in(0,1)$

$$
\phi(\alpha)=\left(x_{1}(\alpha), x_{2}(\alpha), \ldots\right)
$$

$$
W=2 \int_{\text {start }}^{\text {end }} \sqrt{H+|\nabla V(\phi)|^{2}}|\mathrm{~d} \phi|=2 \int_{0}^{1} g(\alpha) \phi^{\prime 2}(\alpha) \mathrm{d} \alpha
$$

See Kikuchi et al, PRR 2020 for alternative algorithm

$$
g(\alpha)=\frac{\sqrt{H+|\nabla V(\phi)|^{2}}}{\left|\phi^{\prime}(\alpha)\right| \text { UNIV }}
$$

$\left|\phi^{\prime}(\alpha)\right|$ UNIVERSITY OF LEEDS

- Start from an initial guess (e.g. straight line $x_{0} \rightarrow x_{1}$)
- Evolve path in direction of $-\frac{\delta W}{\delta \phi_{i}}=-\frac{2}{g}(\nabla V)_{j}(\nabla \nabla V)_{j i}+2\left(g \phi_{i}^{\prime}\right)^{\prime}$

UNIVERSITY OF LEEDS

- Start from an initial guess (e.g. straight line $x_{0} \rightarrow x_{1}$)
- Evolve path in direction of $-\frac{\delta W}{\delta \phi_{i}}=-\frac{2}{g}(\nabla V)_{j}(\nabla \nabla V)_{j i}+2\left(g \phi_{i}^{\prime}\right)^{\prime}$

Muller potential

Short, intermediate, and long time paths

Langevin simulations confirm

Different saddles*

Finite time most probable paths can visit different intermediate "states"
*exact saddles only visited by o-time paths

SPF, Hass, Díaz Leines, Archer JCP 2023

Left: density at upper and lower saddles vs time

Stop simulation/experiment at $t=0.1$ and you'd never know about the dominant pathway
(density obtained from numerical solution of Smoluchowski)

$$
V(x, y)
$$

$F(x, y)=-|\nabla V(x, y)|^{2}$

- Most probable paths (MPPs) through V correspond to Hamiltonian trajectories in $F=-|\nabla V|^{2}$
- Finite time paths avoid the saddle, have higher barriers to overcome, but are still more probable
- NB smooth paths are measure zero in space of stochastic paths; really we are saying MPPs lie in a tube around smooth path (Stratonovich 1971)
- At short times, higher barrier path may be more probable
- Murray et al, PCCP 2022, He diffusion in PuO_{2} :
- "In a 1 ns time window, 9 out of 12 transitions proceeded via higher barrier pathway"
- 6.6 eV vs 2.4 eV at 2000 K
- ($0.6+6$ to move 0$)$
- 1 ns not long enough

Murray et al, PCCP 2022

Values from Arrhenius fit - at finite time will be fitting S rather than ΔV

Conclusions II

- Finite-time most probable paths are different from the "straight up the hill" MEP
- Whilst nature will take the usual MEP most of the time, simulations or experiments may miss this if their time window is too short
- Protein chemists call this "kinetic window effect"
- Most important for very rare events eg > ms timescale
- Prefactors are also important
- not discussed much here; harmonic approx. doable
- "density of paths" accessible in this limit

SPF, Hass, Díaz Leines, Archer J Chem Phys 158124114 (2023)

Conclusions

- Path integrals aren't just for quantum mechanics/QFT
- Provide an intuitive description of classical stochastic processes
- "Semiclassical" (weak noise) limit ($k T \rightarrow 0$ rather than \hbar) is interesting
- Many extensions possible (inertia, coloured noise, non-gradient forces, fields, first passage times...)
- Thanks to Andy Archer, Celia Reina++, Tom Honour, Amanda Hass, EPSRC
- Please talk to me if you are interested in applications
- I have glossed over technical details; happy to share

