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Modelling stochastic processes
§ Interplay between thermal fluctuations and mechanical forces 

controls many things*

§ Two main mathematical modelling approaches:

§ Langevin (SDE)

§ Fokker-Planck (PDE)

§ Third way: path integral

*Pretty much everything!



Langevin equation

§ q(t) is the position of the particle

§ Inertial term neglected (reaches terminal velocity instantaneously, 
“overdamped”)

§ Γ is friction, V(q) is potential, ξ is noise

§ Simplest option is uncorrelated Gaussian white noise

§ D is the noise strength;                          by fluctuation-dissipation 
theorem

maths physics



Fokker-Planck-Smoluchowski equation

§ 𝑃 𝑞, 𝑡 is the probability density

§ No 𝑃̈ or velocity terms – still overdamped, no memory, Markovian

§ Velocity dependence integrated out

§ Initial condition

§ Returns to usual diffusion equation when 𝑉 = 0

set Γ = 1



• MD: assign random initial velocities according to Boltzmann; 
evolve deterministic Hamiltonian dynamics      non-equilibrium

• Langevin dynamics: change the particle velocity at each 
timestep according to a specified thermostat      non-equilibrium

• kinetic Monte Carlo: evolve system from state to state with 
probabilities according to rates… 
• Much longer timescales accessible, but: 

• Rates are based on equilibration at each state

• Problems when rates for different transitions vary widely

• Rates look like                   , nonlinearity means this is common

• May be OK at one temperature but not at another

• Discards all finite time information for average transition rate

Simulating stochastic processes

Many tricks 
available 
to accelerate, 
AMD, 
metadynamics, 
path integral 
hyperdynamics

See Danny
Perez talk this
morning!  

constant energy

constant temperature

NVE

NVT



Transition rates

§ Particle moving in potential V(q)
§ Friction scaled to 1 so 𝐷 = 𝑘𝑇

§ Usual method: solve Fokker-Planck approximately for flux over barrier in 
long-time, weak-noise limit, get Kramers’ rate / Arrhenius function

§ Discards all finite time information for average transition rate

§ Finite time Green function / propagator would be desirable 

§ Would allow cool stuff like first passage MC with nontrivial V

V(q)

q

Bulatov et al PRL 2006

rate



§ Alternative is to use path integral (cf. Feynman-Kac formula)

§ Noise distribution functional 

§ Gives probability of a particular realization of 

§ Substitute for ξ in Langevin equation to get probability of trajectory q(t)

⇠(t), t 2 (t0, t1)

Wiener 1920s, Onsager & Machlup 1953, Stratonovich 1971, Graham 1970s

Like a change of measure, Girsanov theorem



§ Then write transition probability as: 

§ where the integral Dq is over functions (paths) q(t) satisfying b.c.s

§ this defines an action: 

§ S[q] quantifies by how much the trajectory q(t) fails to satisfy the deterministic 
equation of motion 𝑞̇ = −𝑉!

§ i.e. how large the fluctuations that are required to realize q(t) are 

More recently Ikonen et al JCP2010, PRE2011; Chen & Yin 1999…

Much work Graham, McKane, book by Wio, … 



§ Min. S[q] is the large deviation rate function in the kT → 0 limit 

§ Large deviations isn’t the whole story, however… 

Minimum action method, MAM, Ren & van den Eijnden CPAM 2004

See also Kikuchi and Cates PRR 2020



§ Looks a lot like the QM path integral

§ but
§ real, no i this is a good thing!

§ Noise strength plays role of ℏ

§ No mass (actually it’s 2x the friction squared, which I set = 1)

§ “All-squared” form for “Lagrangian”

§ +V’2 instead of –V   Effective potential F = -V’2

§ cross term 

Lagrangian L = K.E. – P.E.



§ Cross term in stochastic action is a total derivative, pulls out a 2ΔV

§ Substitute this into Fokker-Planck…

See book by H Wio 2013, also Ge & Qian 2012, many papers of Hanggi, 
Marchesoni , Bray, McKane et al PR 1990s
SPF 2016; SPF 2022, 2023

defining f

Path-independent



§ Also: can actually keep inertial term from Langevin eq. too:

§ Works in d > 1, fairly general V

§ Expanding the square in “Lagrangian” gives total derivative:

§ Instead of Δ𝑉 coming out from the total derivative, get Δ𝐸
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§ Consider a trajectory in phase space and its time reversal
§ Δ𝐸 flips sign
§ other terms in S are time reversal invariant

§ Path integrals cancel exactly, so get

§ Trajectory with positive Δ𝐸 is exponentially less likely than its reverse

§ a Crooks-like theorem – exact for arbitrary temperature, arbitrary 
damping, arbitrarily far from equilibrium
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This leads to a remarkable relation between trajectories 
through different potentials…

V(x,y) U = V(x,y) – 0.5 x, say

Suppose you want to simulate rare escapes from a deep 
well in V. Simulate common “escapes” in U instead… 

Exact trajectory-by-trajectory



§ Wish to sample rare event dynamics in V

§ Instead, simulate

§ with a helpful bias force F

§ so

What you want 
to know

Fast to sample Easy to calculate

Chen and Horing,   Nummela and Andricioaei,       

J Chem Phys 2007           Biophys J 2007



§ F need not be conservative

§ F can be different for each 
path sampled

§ F can depend on time

§ Works for entropic as well as 
energetic barriers, no 
transition state required

§ BUT too big an F destroys 
your statistics

§ Depending on what you 
want to know, this may or 
may not be a problem

5000 particles escaping from metastable 
well driven by weak noise. MSD →∼ 9 as 
𝑡 → ∞
No bias;   full bias   cf AMD



§ You can’t get something for nothing!

§ The bigger the bias, the smaller the path weights, the more 
runs are needed to compute ensemble averages

§ This can be quantified with the Kullback-Leibler divergence: 

§ When the averages are taken wrt the biased density this is zero

§ So, need to keep sampling until this gets sufficiently small

§ The bigger the bias and the longer the simulation time, the 
worse this gets

§ But at least it’s quantifiable



Example

al et SPF, C Reina, JMPS 2022

§ Stretching spring (e.g. polymer toy model)

§ Go from equilibrium (λ = 0) simulations to non-equilibrium
predictions 
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S. Huang et al.

Fig. 6. Predicton of the non-equilibrium behavior under pulling velocity Ü�(t) = vp(t) > 0 (process S) from the equilibrium response, i.e., ÜÉ�(t) = 0, (process ÉS)
for the same material with quartic interatomic potential Vs(u) = ÉVs(u) =

1
2 k2u

2 + 1
4 k4u

4, where k2 = 1, k4 = 100 and vp(t) = 0.01. (a-c) Results for the ensemble
averages of three different observables: (a) the displacement of each particle ÍxiÎ, (b) the external force ÍFexÎ and (c) the external work ÍW Î. The blue solid
lines and green dashed lines are the results from Langevin simulations with process S and process ÉS, respectively. The orange dotted lines are the prediction
for process S from process ÉS. (d, e) Validation of the uncertainty quantification estimates by evaluating the time evolution of (d) the standard deviation of Pbias
and (e) the deviation of the empirical factor N from one. The solid blue lines are the exact values from the data and the orange dotted lines are the predictions
using the nonlinear uncertainty quantification method.

Figs. 6(a-c) depict the prediction for the average displacement of each particle, average external force and average work. While
all the predictions are in good agreement with the true results at the beginning, the errors start to become more significant from
about t Ì 6, at which point the ensemble averages appear to be more stochastic in nature. This increased stochasticity results from
a decrease in the number of trajectories that contribute in practice to the ensemble average and is directly related to the heavier
tails of Pbias discussed in Section 2. The larger errors, as compared to Case 1 studied in Section 4.2, are also understandable from
a sampling perspective. In the process to be predicted, all the particles (especially the last few ones) are moving rightward in the
most probable trajectories induced by the positive pulling velocity. However, these trajectories are highly unlikely to be observed
at equilibrium, where the right end is fixed. Hence, the predicted evolution of the observables (especially the average displacement
for the last particle and, consequently, the average external force and work) are biased. Figs. 6(d, e) show the growing standard
deviation of factor Pbias and the deviation of the normalization factor N from one. The latter reaches an error of 0.1 at around
t Ì 8, at which time the prediction for the observables becomes very poor and are no longer reliable. Here, again, the uncertainty
quantification estimates provide an excellent prediction of the sampling errors.

4.4. Case 3: From Brownian particles to the non-equilibrium response of an interacting particle system

The third and final case considered is aimed at demonstrating an extreme example for the path reweighting strategy. Specifically,
we choose to predict the non-equilibrium behavior of an anharmonic chain from independent Brownian particles, i.e., ÉV = 0. Here,
material/process S is also set as a quartic interatomic potential Vs(u) =

1
2k2u

2 + 1
4k4u

4 with k2 = 1 and k4 = 100 with pulling velocity
Ü�(t) = vp = 0.01. Figs. 7(a-c) depict the predictions for the average displacement, average external force and average work. Despite
the extreme nature of the example, the predictions are still reasonably good up to t = 10, and actually better than that of Case 2
above. Here, the Brownian particles can freely move, while those of Case 2 are constrained due to the boundary conditions and
interatomic potential for system ÉS. This significantly reduces the sampling errors that govern the accuracy of the predictions. Finally,
Figs. 7(d, e) show the growing standard deviation of Pbias with time and the deviation of N from one. Again, the UQ estimates
perfectly predict both quantities over six decades in �Pbias . Moreover, the error of N * 1 reaches 10% at t Ì 6, after which the
number of realizations of system ÉS is insufficient to accurately make predictions of system S.

5. Example 2: Caging in two-dimensional glassy systems

One of the most ubiquitous examples of out-of-equilibrium behavior, and one that we are regularly familiar with from everyday
experience, is that of glasses (Stillinger and Debenedetti, 2013; Charbonneau et al., 2017). Glassy dynamics is observed in a wide
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External force vs time External work vs time

Need more runs for longer times

equilib.

non-equilib. 
(control)

predicted



Conclusions I 
§ Also investigated harmonic to anharmonic springs; caging in 

Hertzian and L-J colloids (see ref. below)

§ Exact relation between stochastic trajectories of two arbitrary 
systems

§ Ensemble averages currently feasible for smallish systems, 
shortish times (1D, laptop; 10 interacting particles in 2D with 
PBC, workstation)

§ could be more profitably applied to more specific problems
§ extension to coloured noise, non-gradient forces…

§ Analytical progress possible in weak noise limit
§ “semiclassical” evaluation of path integral 

J. Mech. Phys. Solids 161 104779 (2022)

Research funded by                        fellowship

Celia Reina, S Huang, I Graham, R Riggleman, P Arriata, SPF



Back to overdamped approx.

§ Stochastic action:

§ Can analyze “semi-classically” with kT playing role of ℏ

§ Path integral dominated by action-minimizing paths as 𝑘"𝑇 → 0

§ Euler-Lagrange for such a “classical path” most probable path (MPP)

H is conserved on ‘classical’ trajectory 

See book by H Wio 2013, also Ge & Qian 2012, many papers of Hanggi, 
Marchesoni , Bray, McKane et al PR 1990s
SPF 2016; SPF in prep



Back to overdamped approx.

§ Stochastic action:

§ Can analyze “semi-classically” with kT playing role of ℏ

§ Path integral dominated by action-minimizing paths as 𝑘"𝑇 → 0

§ Euler-Lagrange for such a “classical path” most probable path (MPP)

H is conserved on ‘classical’ trajectory 

NB smooth paths are measure zero in space of stochastic paths; really we 
are saying MPPs lie in a tube around smooth path (Stratonovich 1971)



Most probable stochastic paths in V

Hamiltonian mechanics in F



§ Long-time, zero “energy” solution given by H = 0

§ – sign, downhill, no fluctuations required, S = 0

§ + sign, uphill, 

§ recover usual rate

See book by H Wio 2013, also Ge & Qian 2012, 
Bray, McKane et al PR 1990s
SPF 2016; SPF 2022, 2023

c.f. QFT instantons
this is the MEP



What about other paths? Can we keep finite time information?

§ Do other paths with 𝐻 ≠ 0 have meaning? Yes! As kT → 0

§ Find H by extremizing S,                  leads to

§ Don’t need to discard temporal information

§ This gives the solution to Fokker-Planck with initial condition

§ Transition probability / Green function
§ for general potential…

“Given that the transition 
occurred, assume it did so via the most probable path”

What do we mean by the “weak noise limit” in this context?

Or by solving eq. of m.
@S/@H = 0

Ge & Qian 2012



q

Effective potential F = �V 02

• Euler-Lagrange defines paths satisfying 
• Dissipative stochastic dynamics in potential V correspond to 

conservative Hamiltonian trajectories in effective potential
• c.f. inverted potential for QFT instantons

F = �V 02

As 𝐻 → 0
accumulate 
∞ time here 



What about other paths?

§ Find H by extremizing S,   #$
#%
= 0 leads to

§ Or by solving eq. of m.

§ If path contains a min/max, V’ contains a zero, so H → 0 corresponds to time 
→ ∞ and recovers Arrhenius rate

§ Works exactly for simple potentials, gives WKB-like approximation for more 
complex ones

§ Validity:                            just like Arrhenius rate validity 

“Given that the transition
occurred, assume it did so via the most probable path”

What do we mean by the “weak noise limit” in this context?

in principle!



Higher dimensions, geometric min. action method

§ Foregoing formalism generalizes to d > 1 except path unknown
§ Solving the equation of motion is less simple when d > 1
§ BVP with fixed start and end points, and time 
§ gMAM method finds absolute min. action path, t → ∞, H = 0

§ Vanden-Eijnden & Heymann 2008, Díaz Leines & Rogal 2016

§ Better than e.g. string method
COMPARISON OF MINIMUM-ACTION AND STEEPEST- . . . PHYSICAL REVIEW E 93, 022307 (2016)

FIG. 2. (a) Initial (green line) and converged MEP and MAP from the SM (red line) and the gMAM (blue line) in an asymmetric model
potential with multiple minima. (b) Three-dimensional plot of the MAP (blue line) and the MEP (red line) on the PES. The MAP follows the
fastest trajectory from minimum A to C. (c) Energy profile along the converged MEP from the SM (red line) and the MAP from the gMAM
(blue line). The MEP enters minima D and B as an intermediate state between A and C and fails to find the direct reaction path.

Although such a path is still considered an MEP as defined by
Eq. (1), it might not be the most likely path.

We use an asymmetric model potential (PES 2) with four
minima to illustrate the different behavior of the MEP and
MAP in a reaction tube with multiple critical points. The PES
is defined as

V (x,y) = x4 + y4

20480
− 5e−0.2[(x+10)2+0.08(y+10)2]

+ 7e−0.2[0.08(x−15)2+(y−6)2]

− 5e−0.2[0.08(x−8)2+(y−10)2]

− 10e−0.2[0.03(x−10)2+0.1(y+3)2]

− 10e−0.2[0.05(x+y+5)2+0.05(y−15)2] (7)

in a region of four minima: A = (−9.84,−8.45), B =
(−12.88,10.65), C = (7.24,9.90), and D = (8.69,−2.94). We
use a linear path as an initial condition of the algorithms.

Figure 2 shows a comparison of the final converged MEP
and MAP. As the initial linear interpolation of the curve ϕ0

crosses the basin of attraction of the intermediate-minimum
D, the MEP follows the potential gradient in SD dynamics
and leads downhill towards the stable state D. Following the
valley floor in the perpendicular mode direction from state D,
the MEP also visits intermediate B across the saddles b and c
and continues towards the stable state C. This path is a solution
to Eq. (2) and therefore a MEP that connects the minima A
and C via the minima D and B, passing through the saddles
a, b, and c. This path also represents three successive MEP
between minima A and D, minima D and B, and minima B
and C. It differs, however, from the most likely path from A
to C.

In this example the MAP approximation derived from a
path integral formulation arrives at a different solution. As
discussed, the MAP is a solution to Eq. (4), and in addition to
being a curve parallel to the potential at all points, it is also a
selected curve that minimizes the scalar work Ws . Since the
scalar work Ws(ϕ) is related to the sum of the barrier heights
along the path, the MAP approximates a curve that maximizes
the likelihood of the reaction along the transition tube. The
difference between the two curves (MEP and MAP) shown

in Fig. 2 thus becomes apparent also in the scalar work Ws

estimated from Eq. (5). Along the MEP the scalar work, Ws =
0.039, is ∼72% larger than that for the MAP, Ws = 0.011. The
MAP is therefore the path of minimum scalar work Ws , which
is also the shortest path in time leading through valley regions
even for initial curves ϕ0 that cross the basin of attraction of
other intermediate states.

In Fig. 2(c) the energy profiles along the MEP and the MAP
are shown. The maximum barrier is not the same for both paths.
The energy profile of the MEP found by the SM indicates a
transition mechanism visiting intermediate states D and B
before continuing to state C, with a maximum barrier of 5.74
between D and B. The MAP shows a maximum barrier of 2.21,
i.e., around 60% lower, and more importantly, the transition
mechanism does not visit intermediates B and D but follows
the fastest trajectory or the path of maximum probability. The
identification of new intermediate states and saddles along
the RPs might also be advantageous when trying to explore
different features of the PES. But it might also obscure the true
mechanism, and a careful evaluation of different paths should
be performed to identify the most likely one.

C. Dependence on the initial path

Depending on the initial curve the converged SD path might
not even pass through the true saddle point and has to overcome
unnecessarily high barriers. To illustrate this numerically we
employ the z potential [28] (PES 3) shown in Fig. 3. Due to
the inverse z shape the potential is known as a pathological
test case for determining nonlinear reaction coordinates [28].
The potential has two energy minima, at A = (7.2,5.1) and
B = (−7.2,−5.1). The minima are connected via a saddle
point located at the origin a = (0,0) and the reaction channel
has the shape of an inverse z confined by two high potential
ridges.

Starting from a linear interpolation between the minima
[Figs. 3(a) and 3(b)] both methods converge to nearly the same
MEP connecting A and B. The final paths and the energy
profiles largely overlap, yielding an energy barrier of 4.3.
The slight differences between the MEP and the MAP at the
symmetric positions (−7.6, 5.4) and (7.6, −5.4) originate in a

022307-5
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the inverse z shape the potential is known as a pathological
test case for determining nonlinear reaction coordinates [28].
The potential has two energy minima, at A = (7.2,5.1) and
B = (−7.2,−5.1). The minima are connected via a saddle
point located at the origin a = (0,0) and the reaction channel
has the shape of an inverse z confined by two high potential
ridges.

Starting from a linear interpolation between the minima
[Figs. 3(a) and 3(b)] both methods converge to nearly the same
MEP connecting A and B. The final paths and the energy
profiles largely overlap, yielding an energy barrier of 4.3.
The slight differences between the MEP and the MAP at the
symmetric positions (−7.6, 5.4) and (7.6, −5.4) originate in a
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FIG. 2. (a) Initial (green line) and converged MEP and MAP from the SM (red line) and the gMAM (blue line) in an asymmetric model
potential with multiple minima. (b) Three-dimensional plot of the MAP (blue line) and the MEP (red line) on the PES. The MAP follows the
fastest trajectory from minimum A to C. (c) Energy profile along the converged MEP from the SM (red line) and the MAP from the gMAM
(blue line). The MEP enters minima D and B as an intermediate state between A and C and fails to find the direct reaction path.

Although such a path is still considered an MEP as defined by
Eq. (1), it might not be the most likely path.

We use an asymmetric model potential (PES 2) with four
minima to illustrate the different behavior of the MEP and
MAP in a reaction tube with multiple critical points. The PES
is defined as

V (x,y) = x4 + y4

20480
− 5e−0.2[(x+10)2+0.08(y+10)2]

+ 7e−0.2[0.08(x−15)2+(y−6)2]

− 5e−0.2[0.08(x−8)2+(y−10)2]

− 10e−0.2[0.03(x−10)2+0.1(y+3)2]

− 10e−0.2[0.05(x+y+5)2+0.05(y−15)2] (7)

in a region of four minima: A = (−9.84,−8.45), B =
(−12.88,10.65), C = (7.24,9.90), and D = (8.69,−2.94). We
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crosses the basin of attraction of the intermediate-minimum
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discussed, the MAP is a solution to Eq. (4), and in addition to
being a curve parallel to the potential at all points, it is also a
selected curve that minimizes the scalar work Ws . Since the
scalar work Ws(ϕ) is related to the sum of the barrier heights
along the path, the MAP approximates a curve that maximizes
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difference between the two curves (MEP and MAP) shown

in Fig. 2 thus becomes apparent also in the scalar work Ws

estimated from Eq. (5). Along the MEP the scalar work, Ws =
0.039, is ∼72% larger than that for the MAP, Ws = 0.011. The
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In Fig. 2(c) the energy profiles along the MEP and the MAP
are shown. The maximum barrier is not the same for both paths.
The energy profile of the MEP found by the SM indicates a
transition mechanism visiting intermediate states D and B
before continuing to state C, with a maximum barrier of 5.74
between D and B. The MAP shows a maximum barrier of 2.21,
i.e., around 60% lower, and more importantly, the transition
mechanism does not visit intermediates B and D but follows
the fastest trajectory or the path of maximum probability. The
identification of new intermediate states and saddles along
the RPs might also be advantageous when trying to explore
different features of the PES. But it might also obscure the true
mechanism, and a careful evaluation of different paths should
be performed to identify the most likely one.

C. Dependence on the initial path

Depending on the initial curve the converged SD path might
not even pass through the true saddle point and has to overcome
unnecessarily high barriers. To illustrate this numerically we
employ the z potential [28] (PES 3) shown in Fig. 3. Due to
the inverse z shape the potential is known as a pathological
test case for determining nonlinear reaction coordinates [28].
The potential has two energy minima, at A = (7.2,5.1) and
B = (−7.2,−5.1). The minima are connected via a saddle
point located at the origin a = (0,0) and the reaction channel
has the shape of an inverse z confined by two high potential
ridges.

Starting from a linear interpolation between the minima
[Figs. 3(a) and 3(b)] both methods converge to nearly the same
MEP connecting A and B. The final paths and the energy
profiles largely overlap, yielding an energy barrier of 4.3.
The slight differences between the MEP and the MAP at the
symmetric positions (−7.6, 5.4) and (7.6, −5.4) originate in a
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Finite time paths 
§ Use geometric method to find finite time H > 0 paths

§ Minimize path-dependent term W over curves γ linking q0 and q1

§ Parameterize 𝛾 using normalized arc length 𝛼 ∈ (0,1)

See Kikuchi et al, PRR 2020 
for alternative algorithm



§ Start from an initial guess (e.g. straight line x0 → x1)

§ Evolve path in direction of 

Large H pathH = 0 path



§ Start from an initial guess (e.g. straight line x0 → x1)

§ Evolve path in direction of 

Muller potential 

H = 0 path

H = 0 path

Large H
paths

Large H
paths



Finite time most probable paths can visit different 
intermediate “states”

*exact saddles only visited by ∞-time paths

SPF, Hass, Díaz Leines, Archer JCP 2023

Short, intermediate, 
and long time paths

Langevin simulations
confirm

Different saddles*



SPF, Hass, Díaz Leines, Archer JCP 2023

Short, intermediate, 
and long time paths

Langevin simulations
confirm

Different saddles*
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§ Most probable paths (MPPs) through V correspond to 
Hamiltonian trajectories in 𝐹 = − ∇𝑉 &

§ Finite time paths avoid the saddle, have higher barriers to 
overcome, but are still more probable

§ NB smooth paths are measure zero in space of stochastic 
paths; really we are saying MPPs lie in a tube around smooth 
path (Stratonovich 1971)



§ At short times, higher barrier path 
may be more probable

§ Murray et al, PCCP 2022, He 
diffusion in PuO2 :

§ “In a 1 ns time window, 9 out of 
12 transitions proceeded via 
higher barrier pathway”

§ 6.6eV vs 2.4eV at 2000K 
§ (0.6 + 6 to move O)

§ 1 ns not long enough

Values from Arrhenius fit – at finite time will be fitting S rather than 𝛥𝑉

Murray et al, PCCP 2022



Conclusions II
§ Finite-time most probable paths are different from the “straight 

up the hill” MEP

§ Whilst nature will take the usual MEP most of the time, 
simulations or experiments may miss this if their time window is 
too short

§ Protein chemists call this “kinetic window effect”

§ Most important for very rare events eg > ms timescale

§ Prefactors are also important
§ not discussed much here; harmonic approx. doable
§ “density of paths” accessible in this limit

SPF, Hass, Díaz Leines, Archer J Chem Phys 158 124114 (2023)



Conclusions
§ Path integrals aren’t just for quantum mechanics/QFT

§ Provide an intuitive description of classical stochastic processes

§ ”Semiclassical” (weak noise) limit (𝑘𝑇 → 0 rather than ℏ) is interesting

§ Many extensions possible (inertia, coloured noise, non-gradient forces, 
fields, first passage times…)

§ Thanks to Andy Archer, Celia Reina++, Tom Honour, Amanda Hass, 
EPSRC

§ Please talk to me if you are interested in applications

§ I have glossed over technical details; happy to share 

Research funded by                        fellowship


