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Modelling stochastic processes

= Interplay between thermal fluctuations and mechanical forces
controls many things*

= Two main mathematical modelling approaches:

- Langevin (SDE) /mq(t) +q(t) = —V,(Q) + E(t)\

oP 0 oP
= Fokker-Planck (PDE) E - G_q (V,P i DG_C7>

- /

= Third way: path integral

4 )
Prob.(go — g; t) = /d(paths) Prob.(path)

paths from go — qg; t
\ )

i

i
*Pretty much everything! UNIVERSITY OF LEEDS




Langevin equation

[ ma(t) + Ta(t) = —V'(q) + £(t) }

q(t) is the position of the particle

Inertial term neglected (reaches terminal velocity instantaneously,
“‘overdamped”)

I' is friction, V(q) is potential, € is noise

Simplest option is uncorrelated Gaussian white noise

(€)= 2D8(t ~ 1) |

D is the noise strength;[D = kg T/l } by fluctuation-dissipation
theorem

dQ: = —V'(Qu)dt +d¢  q(t) +V'(q) = &(¢) T
maths physics UNIVERSITY OF LEEDS



Fokker-Planck-Smoluchowski equation

&D o, , oP
e aq (VP—I—Daq> setl'=1

P(q,t) is the probability density
No P or velocity terms — still overdamped, no memory, Markovian

Velocity dependence integrated out

Initial condition [P(q, t=0)=04(q9 — qo) }

Returns to usual diffusion equation when V = 0

“
I‘;
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Simulating stochastic processes

MD: assign random initial velocities according to Boltzmann;

. e . e Many trick
evolve deterministic Hamiltonian dynamics  non-equilibrium " "%
NVE constantenergy i, sccelerate,
_ _ _ . AMD,
Langevin dynamics: change the particle velocity at each metadynamics,

timestep according to a specified thermostat  non-equilibrium ~ path integral

constant temperature vPerdynamics
NVT
T _ : See Danny
kinetic F\{Ic.)nte Carlo.l evolve system from state to state with Perey talk this
probabilities according to rates... morning!

* Much longer timescales accessible, but:

« Rates are based on equilibration at each state

* Problems when rates for different transitions vary widely
 Rates look like Ae_AV/kT, nonlinearity means this is common

« May be OK at one temperature but not at another

« Discards all finite time information for average transition rate n

UNIVERSITY OF LEEDS



Transition rates ﬁ/(q) Y

~
\ 2
a0 =-vi@+ew - a2 ] T\ 7\
N

Particle moving in potential V(q)
Friction scaled to 1 so D = kT \ q/

Usual method: solve Fokker-Planck approximately for flux over barrier in
long-time, weak-noise limit, get Kramers’ rate / Arrhenius function

[ rate  ~ o AV/KT AV K kBT}

Discards all finite time information for average transition rate

Finite time Green function / propagator would be desirable

Would allow cool stuff like first passage MC with nontrivial V z

Bulatov et al PRL 2006 e
UNIVERSITY OF LEED




= Alternative is to use path integral (cf. Feynman-Kac formula)

- Noise distribution functional PlE(T)] ~ exp _m/ £(t)>dt

= Gives probability of a particular realization of £(t), te(toty)

= Substitute for ¢ in Langevin equation to get probability of trajectory q(t)
g(t) +V'(q) = &(t)

1 2 : I\ 2
Pla(e)] ~ o0~ | (V) e

Like a change of measure, Girsanov theorem

Wiener 1920s, Onsager & Machlup 19563, Stratonovich 1971, Graham 197

UNIVERSITY OF LEEDS



= Then write transition probability as:

t

1 1
Prob.(go — q;t) = /d(paths) Prob.(path) = /d(paths) exXp— o = (g + V’)2 dt
to

paths from go — q; t paths from go — qg; t

= where the integral Dq is over functions (paths) q(t) satisfying b.c.s

q(to) = qo; q(t1) = ¢

t1
« this defines an action: S[q(t)] :/ (C7+V’)2dt
to

= S[q] quantifies by how much the trajectory q(t) fails to satisfy the deterministic
equation of motion g = -V’

= i.e. how large the fluctuations that are required to realize q(t) are

More recently Ikonen et al JCP2010, PRE2011; Chen & Yin 1999... n
Much work Graham, McKane, book by Wio, ... UNIVERSITY OF LEEDS



[P(Ch,tﬂ%,to):/quXD—M(—T/ (q+V’) dt]

[S[q(t)] = /ttl (g+V')° dt}

= Min. S[q] is the large deviation rate function in the kKT — 0 limit

lim —4kT log P(q;, t;1]ao, t0) = min  S[qg(t
[lergo og P(q1, t1|qo, t0) i [q( )]}

Minimum action method, MAM, Ren & van den Eijnden CPAM 2004

= Large deviations isn’t the whole story, however...

T

See also Kikuchi and Cates PRR 2020 I’
UNIVERSITY OF LEEDS




{P(ql,t1|qo,to):/quXD—4kT/ (q+V’) dt }

= Looks a lot like the QM path integral

[ <Q1,tt|C70,t0>:/quXp%/t ('g 2 V(q))dt}

= but

= real, no i this is a good thing!

Lagrangian L = K.E. — PE.

= Noise strength plays role of #

= No mass (actually it's 2x the friction squared, which | set = 1)
= “All-squared” form for “Lagrangian”

= +V?2instead of -V Effective potential F = -V?

= Cross term

1T

r
UNIVERSITY OF LEEDS



q(t) +V'(q) = &(t)
= Cross term in stochastic action is a total derivative, pulls out a 2AV

L/qu’(q)dt — /2V'dq — 2A\/} Path-independent

5]

(6% + V") dt }
to to

4 N

_ _ .2 2
P(Ch,t1|qo,to)—exp< 2kT)/quXp —4kT (q +V )dt

[Sz/l(CI+V/)2dt:2(V(C71)—V(QO))+/

AV
= exp ( 2kT> f(q1. t1|qo. to) defining f

.

= Substitute this into Fokker-Planck...

/

See book by H Wio 2013, also Ge & Qian 2012, many papers of Hanggi, n
[ﬁ‘

Marchesoni , Bray, McKane et al PR 1990s |
SPF 2016; SPF 2022, 2023 UNIVERSITY OF LEEDS




= AISO: can actually keep inertial term from Langevin eq. too:

= Works ind > 1, fairly general V

1 . |
[P(ql,tllcm,to)/quxp4kBT/ imd + g+ VYV (q)|* dt, }

d1. 9o &

= Expanding the square in “Lagrangian” gives total derivative:

d /1

= Instead of AV coming out from the total derivative, get AE
1 final
BE = [—mq2 — \/]
2 initial
.

UNIVERSITY OF LEEDS




(P(Ch, t1]qo. to)

g1, 9o AE 1 o ,
— (exp— Dgexp — (r26? + (mg + Vv)?)
(exp szT)/ v 4kBT/tO o = g VP ) el

N

= Consider a trajectory in phase space and its time reversal
= AE flips sign
= other terms in S are time reversal invariant

AE
P T

= Path integrals cancel exactly, so get 'D(/()

P()

= Trajectory with positive AE is exponentially less likely than its reverse

= a Crooks-like theorem — exact for arbitrary temperature, arbitrary
damping, arbitrarily far from equilibrium

[
UNIVERSITY OF LEEDS
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This leads to a remarkable relation between trajectories
through different potentials...

-10 - 0 )
0 - 10

20

K V(x,y) U=V(xy) - 0.5 x, &y

Exact trajectory-by-trajectory

-

Suppose you want to simulate rare escapes from a deep ful

Q

well in V. Simulate common “escapes” in U instead... UNIVERSITY OF LEEDS



= Wish to sample rare event dynamics in V

- Instead, simulate [mq(t) +Iq(t) =—-VV(q)+ F +&(t) }

= with a helpful bias force F

to

t1
:/ |mc'j+Fc'7+VV—F|2dt+/

/ 5]
Sla =/ mi+Td+VV — F+ FPdt

t

F(F +28)dt

~

\_ to to -
= SO
— [ F.(F42¢)dt/4kT o
Plaly = Plqly e o F(F+209
What you want E t lculat
\ ol Fast to sample asy to caiculate .

Chen and Horing, Nummela and Andricioael,

J Chem Phys 2007 Biophys J 2007

“
F:
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F need not be conservative

F can be different for each
path sampled

F can depend on time

Works for entropic as well as
energetic barriers, no
transition state required

BUT too big an F destroys
your statistics

Depending on what you
want to know, this may or
may not be a problem

= =
o =

MSD
O H N W & U1 O N O ©

f

start point

-2 -1 0 1 2 3

0 200 400 600 800 1000
time

5000 particles escaping from metastable
well driven by weak noise. MSD - ~ 9 as
t > o

No bias; full bias cf AMD

n
[‘:
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= You can’t get something for nothing!

= The bigger the bias, the smaller the path weights, the more

runs are needed to compute ensemble averages

This can be quantified with the Kullback-Leibler divergence:

-

\_

.
Drt (Pul[Py) = <Iog 772—5> - = </ | F-(F+2&)dt>
%

When the averages are taken wrt the biased density this is zero
So, need to keep sampling until this gets sufficiently small

The bigger the bias and the longer the simulation time, the
worse this gets

[
UNIVERSITY OF LEEDS

i

But at least it's quantifiable



Example

= Stretching spring (e.g. polymer toy model)

= Go from equilibrium (A = 0) simulations to non-equilibrium

predictions
or0f —y ---  equilib. —
0.084 ~°° % 0.0041 __. vy
V with bias e 0.0031 V with bias /
5008 i non-equilib. s~ /
o004l ~ e ~ 0.0021 y 4
N (control) .
0,00 E s 0.000 —r= =T o mmm oo ,
0.0 2.5 5.0 1.5 10.0 0.0 2.5 5.0 7.5 10.0
t t
External force vs time External work vs time

Need more runs for longer times 2

i
al et SPF, C Reina, JMPS 2022 UNIVERSITY OF LEEDS



Conclusions |

= Also investigated harmonic to anharmonic springs; caging in
Hertzian and L-J colloids (see ref. below)

= Exact relation between stochastic trajectories of two arbitrary
systems

= Ensemble averages currently feasible for smallish systems,
shortish times (1D, laptop; 10 interacting particles in 2D with
PBC, workstation)
= could be more profitably applied to more specific problems
= extension to coloured noise, non-gradient forces...

Analytical progress possible in weak noise limit
= “semiclassical” evaluation of path integral

Celia Reina, S Huang, | Graham, R Riggleman, P Arriata, SPF
J. Mech. Phys. Solids 161 104779 (2022)

Research funded by EPSRC fellowship i
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Back to overdamped approx. S[q]

d

P= [ Dgexp— 2
qexp 4D

t1

= Stochastic action:

to to

ES: 1(6'7—|-V’)2dt:2(V(c71)—V(qo))%-/ (q2+V’2)dt }

= Can analyze “semi-classically” with kT playing role of A D= kT
= Path integral dominated by action-minimizing paths as kgT — 0

= Euler-Lagrange for such a “classical path” most probable path (MPP)

[q:WWQf—w%ﬂﬂq=i¢H+vﬂ }

H is conserved on ‘classical’ trajectory

See book by H Wio 2013, also Ge & Qian 2012, many papers of Hanggi, n
IT?

Marchesoni , Bray, McKane et al PR 1990s |
SPF 2016; SPF in prep UNIVERSITY OF LEEDS



Back to overdamped approx. S[q]
/qux 1D

= Stochastic action:

LS: 1(C7+V’)2dt:2(\/(671)—V(QO))+/( + V") dt }

to to

= Can analyze “semi-classically” with kT playing role of A D= kT
= Path integral dominated by action-minimizing paths as kgT — 0

= Euler-Lagrange for such a “classical path” most probable path (MPP)

[ G=V'V", > V2 =H, =t H+ V7 }

H is conserved on ‘classical’ trajectory

NB smooth paths are measure zero in space of stochastic paths; really we “
'

are saying MPPs lie in a tube around smooth path (Stratonovich 1971)
UNIVERSITY OF LEEDS




V(x.y)

Most probable stochastic paths in V

I

Hamiltonian mechanics in F ﬂ
UNIVERSITY OF LEED



[Sz/ttl (q+V’)2dt:2(V(q1)—V(qo))+/l(6'72+V’2)dt }

to

c.f. QFT instantons

= Long-time, zero “energy” solution given by H =20 this is the MEP

[C'l':V’V”; g —V"?=H qg— £V’ as H—0 }

= — sign, downhill, no fluctuations required, S = 0

t1 a1
= + sign, uphill, [S[q(t)] — / 4q th — 4/ \/’dq = 4-AV}
t a

0 0

= recover usual rate [exp _ArkiT = exp ﬁ\;_}

See book by H Wio 2013, also Ge & Qian 2012, i

Bray, McKane et al PR 1990s i
SPF 2016; SPF 2022, 2023 UNIVERSITY OF LEEDS




What about other paths? Can we keep finite time information?

Ge & Qian 2012
= Do other paths with H # 0 have meaning? Yes! As kT — 0

1

a1
P(q1, t1|qo, to) = exp ———= | 24V — H(t1 — ty) + 2/ \/H + V’2dg
4kT a0

\

- Find H by extremizing S, 9S/0H = 0 leads to Lt t /q1 dg
1 — o=
q

Or by solving eq. of m. . VH+ V"2 )

= Don’t need to discard temporal information

= This gives the solution to Fokker-Planck with initial condition

0(q,0) =8(q— qo) [P(q, t| qo, to)}

= Transition probability / Green function
= for general potential...

What do we mean by the “weak noise limit” in this context? -

“Given that the transition (to. qo) — (1, q1) i
occurred, assume it did so via the most probable path” UNIVERSITY OF LEEDS




Effective potential F = —\//?

A
vV AsH -0
accumulate
o fime here
F=-V"
. I\ !
Euler-Lagrange defines paths satisfying [ Gg=VV" =~ (_ ) J

Dissipative stochastic dynamics in potential V correspond to
conservative Hamiltonian trajectories in effective potential [F —

c.f. inverted potential for QFT instantons

i
UNIVERSITY OF LEEDS



What about other paths?

1 ai
L P(q1. t1lqo, to) — exp—m <2AV — H(t1 — to) +2/ \/H + V’qu> }
do

- Find H by extremizing S, - =0 leads to 5 @ dg
do \/H + V/2

= Or by solving eq. of m. j_j = ++/H + V'(q)2

= |f path contains a min/max, V’ contains a zero, so H — 0 corresponds to time
— oo and recovers Arrhenius rate

= Works exactly for simple potentials, gives WKB-like approximation for more
complex ones in principle!

. Validity: S/4kT > 1 |justlike Arrhenius rate validity AV/kT > 1

What do we mean by the “weak noise limit” in this context? n
T

“Given that the transition (to. qo) — (1, q1) |
occurred, assume it did so via the most probable path” UNIVERSITY OF LEEDS




Higher dimensions, geometric min. action method

Foregoing formalism generalizes to d > 1 except path unknown

Solving the equation of motion is less simple when d > 1

BVP with fixed start and end points, and time
gMAM method finds absolute min. action path, t — oo, H =0

= Vanden-Eijnden & Heymann 2008, Diaz Leines & Rogal 2016

Better than e.g. string method

energy V(x, y)

|
A B RN LR

‘0 100 200 300 400 500 600

-20 15 -10 -5 0 5 10 15

From Diaz Leines & Rogal PRE 2016 u
UNIVERSITY OF LEEDS




Finite time paths

= Use geometric method to find finite time H > 0 paths

4 )
S(ql,qo, t) =2V — Ht—|—2/ \/H—l— |VV|2 ds
Y
9 =20V — Ht + 2W y

= Minimize path-dependent term W over curves y linking g, and q;

= Parameterize y using normalized arc length a € (0,1)

d(a) = (x1(a), x2(a), ...)
4 I

end 1
w=2[ HTINV(@E|dg| =2 /O g(cr) ¢(a) dax

start

\_ )

See Kikuchi et al, PRR 2020  VHAIVV(9)]2 ;
for alternative algorithm (a) o |¢/ (a)l UNIVERSITY OF LEEDS




= Start from an initial guess (e.g. straight line x, — x;)

ow 2
= Evolve path in direction of [_M' = (VV); (VVV),; +2 (gcbf')j

H = 0 path Large H path l'z‘
UNIVERSITY OF LEEDS



= Start from an initial guess (e.g. straight line x, — x;)

<
SW 2 N
. Evolve path in direction of {—54)_ = (VV); (VVV);; +2(9¢))
I
J
_ Minimum Af:tion Paths wit_h Varytlg_H values ,
whb, T oV _' ' ' ' ' '
H =[0-path e Large H
. ‘ OF | —H20 pathS /
——— H=3.0
H=1.0 /
Al m—— H=10.0
S
> '. g i
of I| 6
== H=0.0
== H=0.5 Al
== H=3.0
== H=5.0
R ’ " “ l 5 30 35 40

Muller potential i
UNIVERSITY OF LEEDS



15

05 1

05 0
y

, intermediate, = Langevin simulations Different saddles*
Kand long time paths confirm

Finite time most probable paths can visit different
intermediate “states”

*exact saddles only visited by co-time paths

SPF, Hass, Diaz Leines, Archer JCP 2023

UNIVERSITY OF LEEDS



Escape pathin V

units of kT

-

5

0.4
0.35 _
03 Left: density at upper and
. 025 lower saddles vs time
s 02

0.15
0.1
0.05

o ENEERET MR R L Ll
0.001  0.01 0.1 1 10

t

Stop simulation/experiment at
t = 0.1 and you’d never know
about the dominant pathway

(density obtained from numerical solution of Smoluchowski)

SPF, Hass, Diaz Leines, Archer JCP 2023 UNIVERSITY OF LEEDS



F(x,y) =—|VV(x,y)I°

= Most probable paths (MPPs) through V correspond to
Hamiltonian trajectories in F = —|VV|?

= Finite time paths avoid the saddle, have higher barriers to
overcome, but are still more probable

= NB smooth paths are measure zero in space of stochastic
paths; really we are saying MPPs lie in a tube around smooth

path (Stratonovich 1971)

UNIVERSITY OF LEEDS



= At short times, higher barrier path
may be more probable

= Murray et al, PCCP 2022, He
diffusion in PuO,:

. V(x,y) (arb. units)

= “In a 1 ns time window, 9 out of

12 transitions proceeded via .o Mgg:g%uszsy
higher barrier pathway” S \ 0l 0
+ 6.6eV vs 2.4eV at 2000K -
= (0.6 + 6 to move O) 05
T S S .magi S
= 1 ns not long enough Murray et al, PCCP 2022

Values from Arrhenius fit — at finite time will be fitting S rather than AV

UNIVERSITY OF LEED



Conclusions I

Finite-time most probable paths are different from the “straight
up the hill” MEP

Whilst nature will take the usual MEP most of the time,
simulations or experiments may miss this if their time window is
too short

= Protein chemists call this “kinetic window effect”
Most important for very rare events eg > ms timescale

Prefactors are also important
= not discussed much here; harmonic approx. doable
= “density of paths” accessible in this limit

SPF, Hass, Diaz Leines, Archer J Chem Phys 158 124114 (2023)

“
F:

UNIVERSITY OF LEEDS



Conclusions

= Path integrals aren’t just for quantum mechanics/QFT
= Provide an intuitive description of classical stochastic processes
= "Semiclassical” (weak noise) limit (kT — 0 rather than #) is interesting

= Many extensions possible (inertia, coloured noise, non-gradient forces,
fields, first passage times...)

= Thanks to Andy Archer, Celia Reina++, Tom Honour, Amanda Hass,
EPSRC

= Please talk to me if you are interested in applications

| have glossed over technical details; happy to share

Research funded by EPSRC fellowship m
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