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A growing challenge: what are we going to do with data generated in exascale simulations?  
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My MD storyline

In the 80’s MD simulations of materials

90 - 2015 Multiscale simulations of materials

2015 - present Back to MD simulations
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Predicting, with confidence, the behavior of 
nuclear weapons through comprehensive, 

science-based simulations.

NNSA Advanced Simulation and Computing

Computational Systems & Software
Integrated Codes
Physics and Engineering Models
… Materials aging

Equation of State
Material Strength and Damage
…
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Predictive multiscale simulations of metal strength and plasticity

Bottom-up modeling hierarchy
Compute and pass parameters from the lower to the higher scales 
to bridge length- and time-scale gaps 

In the past, connection of continuum engineering models to underlying 
physics of dislocation motion has been only inspirational/motivational.

Collective dynamics of dislocations at micron scales 
The weakest, most uncertain and highest potential pay-off link
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Grand challenge: predict crystal strength from dislocation physics

Discrete Dislocation Dynamics 

G. Canova and L. P. Kubin (1991)
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Premise and promise of the DDD method

Collective response of statistically 
representative dislocation ensembles 

Dislocation mobility
and interactions

…

Dislocation theory, MD DDD

Strain hardening

Local rules
Patterns

Lots of fun and hard work in DDD method development, 
but coveted connection has remined 10-15 years away!
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Meanwhile

Exaflops

Since DDD launch in 1991 to 2019

• Peak flops rate increased by 7 orders

• World’s computing capacity increased 
by 8 orders (now ~ 1022 flops)

ASC(I) DDD 

Top 500 list

Year

lo
g 1

0(
Fl

op
s)

Cost of computing per Gflop
1963:        $165,000,000,000
1993:                        $400,000
2023: $0.000000003
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Back to good old Molecular Dynamics?

Material dynamics in full glory: every atomic “jiggle and wiggle” (R. Feynman)
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Direct MD simulations of crystal plasticity

6M – 56B atoms, BCC lattice, 3D periodic 

Interatomic potential models for Ta, W, Al, Cu, …

Dislocations sourced for multiplication

Straining along one of the periodic box axes
Constant true rate of straining

Constant temperature

Relaxation of lateral stress (Poisson effect)

MD simulations of such magnitude were 
previously thought to be unthinkable
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A strong metal flows like anisotropic  viscous fluid

Path-independent plastic flow
All straining trajectories converge to the 
same ultimate flow stress (strength)

dislocation density
line geometry
network topology
…
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Kneading the metal

Brick 
geometry

1:2:4 4:1:2 2:4:1 1:2:4 2:4:1 



14DEOS: under stationary straining, a metal attains a state of steady asymptotic plasticity 
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Direct MD simulations of crystal plasticity

Solving two ages-old conundrums of physical metallurgy 

Staged hardening of metals Dislocation patterns in crystals

Work in progress
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Origin of staged hardening

MD simulationsExperiment
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Initial orientation Initial symmetry Rotation observed? Staged hardening?

001 8-fold no no
111 6-fold no no
112 2-fold no no
102 2-fold, breaks yes yes
212 2-fold, holds yes yes
213 No symmetry yes yes
8,5,13 No symmetry yes yes
101 2-fold, breaks yes yes

Summary: origin of 3-stage hardening

Staged hardening is caused by crystal rotation during straining
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MD simulations reveal details not accessible in experiments 
In situ in-bulk microscopy

Straining along 
stable [001] axis
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MD simulations reveal details not accessible in experiments 
In silico in-bulk microscopy

Straining along 
unstable [213] axis
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Origins of 3-stage hardening have been debated for over 60 years

Allan Cottrell: “Strain hardening is perhaps the most difficult remaining problem in 
classical physics.  Harder than turbulence.”

Explanation of staged hardening has been a key aspiration for dislocation theorists, 
thousands of papers published.  

Direct MD simulations close the debate: 
it is all about crystal rotation. 

MD has become the workhorse method for predictive simulations of metal strength at LLNL. 
Is it worth to continue to develop the mesoscale DDD method?  
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Interatomic
potential DDD model Strength

Mechanisms,
rules, parameters

MD DDD

Large & long
simulations

Interatomic
potential Strength

MD

Large & long
simulations

• MD is a mature method, does not require further development.
• Reduces prediction uncertainties to interatomic potential.
• Shortens time from start to delivery, reduces overall cost. 
• Unlimited scalability to exascale computing and beyond. 

Benefits

Streamlined workflow for metal strength predictions
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X-scale matching: learning from side-by-side comparison

MD: 1M cpu-hours DDD: 200 cpu-hours

In DDD dislocation network nodes are “sticky” holding the tangles together, but not in MD
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In MD dislocation network nodes are not sticky and move in 3D 

X-scale matching improves 
fidelity of DDD simulations
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X-scale MD simulations

Ingredients for success

Accurate, transferrable and computationally efficient interatomic potentials.

Increasingly large and long MD simulations.

Sufficiently large to be statistically representative of the simulated model system 
and yet resolving every tiniest detail of atomic motion.

Ingredients for success

Accurate, transferrable and computationally efficient interatomic potentials.

Increasingly large and long MD simulations.

Data management: on the fly analyses, reduction, compression, knowledge acquisition. 
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What is MD good for?

An engine to compute a number? 

A fully resolved computational experiment to learn from?  
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68 years of Molecular Dynamics

Trajectory lines of atoms in a melting crystal 
from the very first MD simulation (64 atoms)

S. Campbell, B. Alder, T. Wainwright 
LLNL (1956) 

1957-1967: Seminal papers on melting (64 atoms) and
“long-time tail” hydrodynamic interactions (108 atoms). 
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Livermore Big⊗Big simulation (LBB)

20 days of full Sequoia worth of computing

MD simulation with 231 = 2,147,483,648 atoms

Simulated time = 5 µs (5.10-6 seconds)

Simulation size = 10,000 atoms.seconds

Produced 9.1019 bytes = 90 exabytes of recordable trajectory data

~ 6 googles of data (Google’s worldwide storage capacity is ~ 15 exabytes)

LAMMPS on Sequoia

Developed at Sandia NL  

Massively parallel machine at LLNL

2017
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Fate of LBB simulation data

5000 states saved at equal time intervals 105 time steps apart (~ 1 Pb of data)

Has taken about 2 months to transfer (htar) 1 Pb to tape storage

Has taken about 5 months to process 5000 snapshots to reveal dislocations and other defects 

Hours spent watching the sequence/movie of defect configurations

Observed dynamics is highly intermittent (avalanche-like): 
Nothing happens between most subsequent snapshots.
A whole lot happens between some snapshots, but dynamic details are irrevocably lost.

Few new insights gained using naïve approach to data management and processing
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LBB simulation, if repeated on El Capitan (2023)

LBB would be completed in ~ 5 hrs of full El Cap 

At its maximum efficiency parallel I/O can only write ~0.004 
of concurrently generated MD trajectory

About 40% of the entire disk space will be filled

Would take some 60-80 years to transfer the partial trajectory to long-term storage and 
would exceed LLNL storage capacity (advertised as unlimited) 

Would take a few hundred years to postprocess.  

Even such an immense effort would not reveal relevant details of system dynamics
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Growing disparity between data generation and data utilization rates

Why do we want to run MD simulations on exa-scale and beyond? 
The system needs to experience a statistically representative number of essential dynamic events

Is it hopeless?

Exascale MD trajectory is grossly repetitive and redundant
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How much of the LBB simulated trajectory was essential to retain?

Essential data is of limited size but we don’t know how to extract it from the trajectory

90 Eb   à < 1 Tb 

~ 10-8 reduction
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Desired specs on an exascale data management pipeline

• Intelligent data reduction: filter out redundant but retain essential data.

• Data reduction must be performed on the fly (or indiscriminately lost).

• Computational cost of data reduction should not exceed that of the simulation itself.

• It should be possible to process the reduced data into a form amenable to human analysis. 

A workflow for reduction of exascale trajectory data is in the works 
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Summary

Direct MD simulations are reaching previously unthinkable scales and, where feasible, 
are superseding multiscale simulations.   

X-scale matching: Fidelity of mesoscale simulation methods (DDD) can be improved 
by comparing to direct MD simulations performed on overlapping/mesoscopic scales.  

Knowledge acquisition from MD simulation trajectories is becoming increasingly difficult. 
We are running into an “exa-scale data bottleneck”. 


