Multi-Reference Coupled Cluster Method

Reinhold Schneider (TU Berlin) \& S. Kvaal (\& A. Laestadius (University of Oslo) \& F. Faulstich)

IPAM; 2023

DFG Research Center MATHEON
Mathematics for key technologies

Overview:

I. Motivation

IIa. Coupled Cluster Method (TCCSD)
Ila. Complete Active Space Coupled Cluster Method (CAS-SS)
III. Bivariational Formulation

IV Theoretical Results and Conclusions

Motivation

Given the electronic Schrödinger equation

$$
H \Psi=E \Psi
$$

the wave function Ψ can be approximated

- by a possible nonlinear parametrization, e.g. as tensor network (matrix product) states $\Psi \in \mathcal{M} \Rightarrow$ DMRG
- or nonlinear parametrization, e.g. single reference coupled cluster CC $\Psi=e^{T} \Phi_{0}, \Phi_{0}$ reference Slater determinant.
- multi-reference CC ansatz

$$
\Psi \in \operatorname{span}\left\{e^{T_{j}} \Phi_{j}: \Phi_{j} \in \mathscr{H}_{c a s}, j=0, \ldots, n-1\right\}
$$

where $\mathscr{H}_{\text {cas }}$ is a possibly not too large subspace generated by Slater determinants (Full CI Space)

- here we are interested in the first n Eigenfunctions for E_{0}, \ldots, E_{n-1}

Motivation - single reference Coupled Cluster (CC)

We try to replace $H: \mathscr{H} \rightarrow \mathscr{H}$ by a model operator $\bar{H}_{0}: \mathscr{V} \rightarrow \mathscr{V}$ where $\mathscr{V} \subset \mathscr{H}$ is a suitable subspace of \mathscr{H}. We are searching a transformation $\varphi: \mathscr{H} \rightarrow \mathscr{H}$ and consider

$$
\bar{H}_{0}:=P_{0} \bar{H} P_{0}=:=P_{0} \varphi^{-1} \circ H \circ \varphi P_{0}: \mathscr{V} \rightarrow \mathscr{V}
$$

where $P_{0}: \mathscr{H} \rightarrow \mathscr{V}$. For example the CC ansatz

$$
\begin{gathered}
\Psi=e^{T} \Phi \in \mathscr{H} \text { where } \Phi \in \mathscr{V} \\
\bar{H}:=\varphi^{-1} \circ H \circ \varphi=e^{-T} H e^{T}, \mathscr{H} \rightarrow \mathscr{H}
\end{gathered}
$$

Notice that \bar{H} is NOT Hermitean (or symmetric) !
Example: $\mathscr{V}:=\operatorname{span}\left\{\phi_{0}\right\}$ where ϕ_{0} is a single Slater determinant e.g HF determinant: standard CC

$$
\bar{H}_{0} \phi_{0}=E_{C C} \phi_{0}
$$

State Universal CC with CASCC

Manifold of oblique n-dimensional projectors:

$$
\begin{gathered}
\mathscr{P}_{n}:=\left\{P=P^{2} \mid \text { Trace } P=n\right\} \subset \mathscr{L}(\mathscr{H} \rightarrow \mathscr{H}), \\
P \in \mathscr{P}_{n}
\end{gathered}
$$

if and only if there are biorthogonal sets $\tilde{B}=\left\{\tilde{\psi}_{i}\right\}_{i=1}^{n} \subset \mathscr{H}$ and
$B=\left\{\psi_{i}\right\}_{i=1}^{n} \subset \mathscr{H}$ such that

$$
u \mapsto P u=\sum_{i=1}^{n} \psi_{i}\left\langle\tilde{\psi}_{i}, u\right\rangle, P=\sum_{i=1}^{n}\left|\psi_{i}\right\rangle\left\langle\tilde{\psi}_{i}\right|,\left\langle\tilde{\psi}_{i}, \psi_{j}\right\rangle=\delta_{i, j}
$$

- For any pair of n-dimensional non-orthogonal subspaces $\mathscr{V} \subset \mathscr{H}$ and $\tilde{V} \subset \mathscr{H}$, there is a unique projector P with these spaces as left/right ranges.
- P - density matrix

State Universal CC Bivariational principle

Consider the functional $S: \mathscr{P}_{n} \rightarrow \mathbb{C}$ given by

$$
S(P)=\operatorname{Tr}(H P)=\sum_{i=1}^{n}\left\langle\tilde{\psi}_{i}, H \psi_{i}\right\rangle
$$

Problem: find $P_{*} \in \mathscr{P}_{n}$ such that $S^{\prime}\left(P_{*}\right)=0$ are stationary, is equivalent to the two-sided Bloch equation

$$
\left(I-P_{*}\right) H P_{*}=0, \quad P_{*} H\left(I-P_{*}\right)=0
$$

Equivalently, $\mathscr{V}=P_{*} \mathscr{H}$ is a right invariant subspace and $\tilde{V}=P_{*}^{\dagger} \mathscr{H}$ is a left invariant subspace, simultaneously.
The projected effective Hamiltonian $H_{\text {eff }}=P_{*} H P_{*}$ has n exact eigenvalues E_{i} of H, and that $S\left(P_{*}\right)=\sum_{i=1}^{n} E_{i}$.

- In the literature, only the right Bloch equation is usually considered when developing SU-MRCC theories. This is a major component of the novelty here.
- The bivariational principle given here is a search for invariant spaces - not individual eigenvectors.

Ila

Single Reference Coupled Cluster revisited

IIb

State Specific MR Coupled Cluster

L. Adamowicz, J.-P. Malrieu, and V. V. Ivanov, J. Chem. Phys. 112, 10075 (2000).

Second quantization - revisited

Second quantization: annihilation operators:

$$
a_{j} \Psi[j, 1, \ldots, N]:=\Psi[1, \ldots, N]
$$

and $:=0$ if j not apparent in $\Psi[\ldots]$.
The adjoint of a_{b} is a creation operator v

$$
a_{b}^{\dagger} \Psi[1, \ldots, N]=\Psi[b, 1, \ldots, N]=(-1)^{N} \Psi[1, \ldots, N, b]
$$

Theorem (Slater-Condon Rules)
$H: \mathscr{H} \rightarrow \mathscr{H}$ resp. $H: \mathscr{H}_{F C I} \rightarrow \mathscr{H}_{F C I}$ reads as (basis dependent)

$$
H=F+U=\sum_{p, q} f_{r}^{p} a_{p}^{\dagger} a_{r}+\sum_{p, q, r, s} u_{r s}^{p q} a_{q}^{\dagger} a_{p}^{\dagger} a_{r} a_{s}
$$

Excitation operators

Single excitation operator, Let $\Psi_{0}=\Psi[1, \ldots, N]$ be a reference determinant then e.g.

$$
X_{1}^{k} \Psi_{0}:=a_{k}^{\dagger} a_{1} \Psi_{0}
$$

$(-1)^{-p} \Psi_{1}^{k}=\Psi[k, 2, \ldots, N]=X_{1}^{k} \Psi_{0}=X_{j}^{k} \Psi[1, \ldots, \ldots, N]=a_{k}^{\dagger} a_{1} \Psi_{0}$
higher excitation operators

$$
X_{\mu}:=X_{l_{1}, \ldots, l_{k}}^{b_{1}, \ldots, b_{k}}=\prod_{i=1}^{k} X_{l_{i}}^{b_{i}} \quad, \quad 1 \leq l_{i}<l_{i+1} \leq N, N<b_{i}<b_{i+1}
$$

A Cl solution $\Psi=c_{0} \Psi_{0}+\sum_{\mu \in \mathcal{J}} c_{\mu} \Psi_{\mu}$ can be written by

$$
\Psi=\left(c_{0}+\sum_{\mu \in \mathcal{J}} c_{\mu} X_{\mu}\right) \Psi_{0}, c_{0}, c_{\mu} \in \mathbb{R}
$$

Intermediate normalization: $c_{0}:=1$ i.e. $\left\langle\Psi . \Psi_{0}\right\rangle=1$ and

$$
\left[X_{\mu}, X_{\nu}\right]=0
$$

(Multi-Reference) Coupled-Cluster Ansatz

\triangleright One-particle basis, complete active space (CAS)

$$
\begin{gathered}
B_{\text {cas }}=\{\underbrace{\psi_{1}, \ldots, \psi_{N}}_{\text {occupied }}, \underbrace{\psi_{N+1}, \ldots, \psi_{d}}_{\text {CAS-unoccupied }}\} \\
B_{K}=\{\underbrace{\psi_{1}, \ldots, \psi_{N}, \psi_{N+1}, \ldots, \psi_{d}}_{\text {CAS }}, \underbrace{\psi_{d+1}, \ldots, \psi_{K}}_{\text {external }}\}
\end{gathered}
$$

\triangleright Replacement of occupied by unoccupied orbitals in reference Ψ_{0},
$\Psi\left[1, \ldots, i_{1}, . ., i_{k}, . ., N\right] \xrightarrow{\text { "excitation" }} \Psi_{\alpha}=\Psi\left[1, ., i_{i}, . . . i_{k}, . ., a_{1}, . ., a_{k}\right]$,
gives

$$
\mathbb{B}_{K}=\left\{\Psi_{0}\right\} \cup\left\{\Psi_{\alpha} \mid \alpha \in \mathcal{I}_{K}\right\}
$$

Indices: $i, j:=1, \ldots, N$-occupied ; $a, b:=N+1, \ldots, d$ - (unocc.) CAS ; $u, v=d+1, \ldots, K-$ external,
$z=k+1 \ldots, \infty$ virtual

Coupled-Cluster Ansatz

\triangleright Intermediate normalization $\left\langle\Psi, \Psi_{0}\right\rangle:=1,\left\langle\Psi_{0}, \Psi_{0}\right\rangle:=1$!!!
\triangleright Galerkin Full $\mathrm{CI}(\mathrm{CAS})$ solution Ψ is expressed by excitations,

$$
\psi=\psi_{0}+\psi^{*}=\psi_{0}+\sum_{\mu \in J} s_{\mu} \psi_{\mu}
$$

\triangleright Coupled-Cluster-Ansatz:
Nonlinear Parametrisation for $\Psi=\Psi_{0}+\Psi^{*}$: cluster operator $T=: T(\mathbf{t})=\sum_{\mu \in \mathcal{J}} t_{\mu} X_{\mu}$ such that

$$
\Psi=e^{T(t)} \Psi_{0}
$$

$$
\left.\left\langle X_{\mu} \Psi_{0}, H e^{T(t)} \Psi_{0}\right\rangle \quad E \quad E X_{\mu} \Psi_{0}, e^{T(t)} \Psi_{0}\right\rangle \quad \forall \mu \in \mathcal{J} \cup\{0\}
$$

Remark. The BCH expansion terminates and is computable!

Coupled-Cluster Ansatz

\triangleright Intermediate normalization $\left\langle\Psi, \Psi_{0}\right\rangle:=1,\left\langle\Psi_{0}, \Psi_{0}\right\rangle:=1$!!!
\triangleright Galerkin Full $\mathrm{CI}(\mathrm{CAS})$ solution Ψ is expressed by excitations,

$$
\Psi=\Psi_{0}+\Psi^{*}=\Psi_{0}+\sum_{\mu \in J} s_{\mu} X_{\mu} \Psi_{0}=:(I+S(s)) \Psi_{0}
$$

\triangleright Coupled-Cluster-Ansatz:

Nonlinear Parametrisation for $\Psi=\Psi_{0}+\Psi^{*}$: cluster operator $T=: T(\mathbf{t})=\sum_{\mu \in \mathcal{J}} t_{\mu} X_{\mu}$ such that

$$
\Psi=e^{T(t)} \Psi_{0}
$$

$$
\left\langle X_{\mu} \Psi_{0}, e^{-T(\mathbf{t})} H e^{T(\mathrm{t})} \Psi_{0}\right\rangle=E\left\langle\Psi_{\mu}, \Psi_{0}\right\rangle=E \delta_{0, \mu} \forall \mu
$$

Remark. The BCH expansion terminates and is computable!

Coupled Cluster Method - Exponential-ansatz

Theorem (S. 06)

Let Φ_{0} be a reference Slater determinant, e.g. $\Phi_{0}=\Psi_{H F}$ and $\Psi \in \mathscr{H}_{\text {FCI }},(\mathscr{H})$, satisfying

$$
\left\langle\Psi, \Phi_{0}\right\rangle=1 \quad \text { intermediate normalization . }
$$

Then there exists an excitation operator
(T_{1} - single-, T_{2}-double- , ... excitation operators)

$$
\begin{gathered}
T=\sum_{i=1}^{N} T_{i}=\sum_{\mu \in \mathcal{J}} t_{\mu} X_{\mu} \quad \text { such that } \\
\Psi=e^{T} \Phi_{0}=\Pi_{\mu}\left(I+t_{\mu} X_{\mu}\right) \Phi_{0} .
\end{gathered}
$$

Key observations: for analytic functions :

$$
f(T)=\sum_{k=0}^{N} a_{k} T^{k} \text { since }\left[X_{\mu}, X_{\nu}\right]=0, X_{\mu}^{2}=0, T^{N}=0
$$

IIb
 State Specific MR Coupled Cluster

L. Adamowicz, J.-P. Malrieu, and V. V. Ivanov, J. Chem. Phys. 112, 10075 (2000).

State Specific Multi-Reference Coupled Cluster Method

(Adamovicz, Piecuch et al. (2000) - A MR CC keeping all elegance of SR CC
Ansatz: Given FCl solution $\Psi_{\text {cas }}\left(\approx \Psi_{D M R G}\right.$ for example)

$$
\Psi=\Psi_{K}=e^{T^{\text {ext }}+T^{\text {cas }}} \Phi_{0}:=e^{T^{\text {ext }}} \Psi_{\text {cas }}
$$

with allowed (external) excitations $T^{\text {ext }}$ (only single /doubles)

$$
X_{i}^{\alpha}=a_{\alpha}^{\dagger} a_{i}, \alpha=N+1, \ldots K(\text { unoccupied }), i=1, \ldots, N(\text { occupied })
$$

$$
T^{e x t}:=T_{1}^{e x t}+T_{2}^{e x t}
$$

$T_{1}^{\text {ext }}=\sum t_{i}^{v} X_{i}^{v}, v=d+1, \ldots, K$ external, $T_{2}^{\text {ext }}$ contains only $\mu \notin \mathcal{I}_{\text {cas }}$, which are of form

$$
X_{\mu}=X_{i, j}^{u, v}=X_{i}^{u} X_{j}^{v}, X_{i, j}^{a, v}=X_{i}^{a} X_{j}^{v} \quad \text {, i.e. } \Psi_{\mu}=X_{i, j}^{a, v} \Psi_{0} \perp \mathscr{H}_{c a s}
$$

$$
\Psi:=e^{T_{1}^{\text {ext }}+T_{2}^{\text {ext }}} e^{\left(T_{1}^{\text {cas }}+T_{2}^{\text {cas }}+T_{3}^{\text {cas }}+T_{4}^{\text {cas }}+\ldots\right) \Psi_{0}:=e^{T_{1}^{\text {ext }}+T_{2}^{\text {ext }}} \Psi_{c a s}}
$$

State Specific (CAS) Coupled Cluster Method

We introduce the non symmetric CAS Hamiltonian $\bar{H}^{\text {cas }}=\bar{H}^{\text {cas }}(\mathbf{t})$ on the CAS space

$$
\bar{H}^{\text {cas }}(\mathbf{t})=P_{\mathscr{H}_{\text {cas }}} e^{-T^{e x t}(\mathbf{t})} H e^{T^{e x t}(\mathbf{t})} P_{\mathscr{H}_{\text {cas }}}
$$

We us consider the linked (external) CC equations

$$
0=\mathbf{f}_{\mu}(\mathbf{t}):=\left\langle X_{\mu} \phi_{0}, e^{-T_{\text {ext }}(\mathbf{t})} H e^{T_{\text {ext }}(\mathbf{t})} \Phi_{\text {cas }}\right\rangle \quad, \quad \forall \mu \in \mathcal{I}_{\text {ext }}
$$

together with

$$
\bar{H}^{\mathrm{cas}}(\mathbf{t}) \Phi_{c a s}=E \Phi_{c a s}
$$

Then the total (CC) energy $E \approx E_{c c}$ is an eigenvalue of $\bar{H}^{\text {cas }}$ with right eigenvector $\Phi_{\text {cas }}$ i.e.

$$
\bar{H}^{\mathrm{cas}} \Phi_{\text {cas }}=E \Phi_{\text {cas }}
$$

$\bar{H}^{\text {cas }}$ is considered as our model operator acting on $\mathscr{H}_{\text {cas }}$

State Universal CC

We consider n first m (approximate) eigenstates (e.g. the (ground) state is degenerate), (with a positive spectral gap to the next)

$$
H \Psi_{i}=E \Psi_{i}, i=1, \ldots, n, E=E_{0},\left\langle\Psi_{i}, \Psi_{j}\right\rangle=\delta_{i, j}
$$

Consider

$$
\begin{aligned}
\Psi_{j} & :=e^{T_{j}} \Phi_{j}, T_{j}=\sum_{\mu}\left(t_{\mu}\right)_{j} X_{\mu}, \mu \in \mathcal{I}_{e x t}, \Lambda_{j}=\sum_{\mu} \lambda_{j, \mu} X_{\mu} \\
\tilde{\Psi}_{j} & :=e^{-T_{j}^{\dagger}}\left(\tilde{\Phi}_{j}+\Lambda_{j} \phi_{0}\right), \tilde{\Phi}_{j}, \Phi_{j} \in \mathscr{H}_{\text {cas }}
\end{aligned}
$$

we impose (bi-) orthogonality

$$
\begin{gathered}
\left\langle\tilde{\Psi}_{i}, \Psi_{j}\right\rangle=\delta_{i, j} \\
\delta_{i, j}=\left\langle\tilde{\Psi}_{i}, \Psi_{j}\right\rangle=\left\langle\tilde{\Phi}_{i}, e^{T_{j}-T_{i}} \Phi_{j}\right\rangle+\left\langle\Lambda_{i} \phi_{0}, e^{T_{j}-T_{i}} \Phi_{j}\right\rangle \\
=\left\langle\tilde{\Phi}_{i}, \Phi_{j}\right\rangle+\sum \lambda_{i, \mu}\left\langle X_{\mu} \phi_{0}, e^{T_{j}-T_{i}} \Phi_{j}\right\rangle
\end{gathered}
$$

Ila

Bivariational Principle

A state-specific multi-reference coupled- cluster method based on the bivariational principle J. Chem. Phys. 153, 024106 (2020); Tilmann Bodenstein and Simen Kvaal

Non-Unitary Treatment of Quantum Problems

CAS Coupled Cluster Method - Bivariational Formulation

We consider the bivariational energy functional using
$\left\langle\psi_{0}, \Phi_{\text {cas }}\right\rangle:=1$

- optimize

$$
\mathcal{E}(\tilde{\Phi}, \Phi, \mathbf{t}):=\frac{\left\langle\tilde{\Phi}, \bar{H}^{c a s}(\mathbf{t}) \Phi\right\rangle}{\langle\tilde{\Phi}, \Phi\rangle}
$$

- subordinated to the linked amplitude equation

$$
0=\mathbf{f}(\mu):=\left\langle X_{\mu} \phi_{0}, e^{-T(\mathbf{t})} H e^{T(\mathbf{t})} \Phi\right\rangle \forall \mu \in \mathcal{I}_{\text {ext }}
$$

(constraint optimization)
Following S. Kvaal, let us introduce the Lagrangian

$$
\mathcal{L}(\tilde{\Phi}, \Phi, \mathbf{t}, \lambda):=\mathcal{E}(\tilde{\Phi}, \Phi, \mathbf{t})+\frac{1}{\langle\tilde{\Phi}, \Phi\rangle} \lambda^{T} \mathbf{f}(\mathbf{t})
$$

We are looking for the stationary points $(\tilde{\Phi}, \Phi, \mathbf{t}, \boldsymbol{\lambda})^{*}$ of \mathcal{L}, then $\mathcal{L}\left((\tilde{\Phi}, \Phi, \mathbf{t}, \boldsymbol{\lambda})^{*}\right)$ are (approximate) eigenvalues of the original H

CAS Coupled Cluster Method - Bivariational Formulation

Equivalently we can use the Lagrangian

$$
\mathcal{L}(\tilde{\Phi}, \Phi, \mathbf{t}, \Lambda, E):=\left\langle\tilde{\Phi}, \bar{H}^{c a s}(\mathbf{t}) \Phi\right\rangle+\lambda^{T} \mathbf{f}(\mathbf{t})+E(1-\langle\tilde{\Phi}, \Phi\rangle)
$$

Working equations for $E, \Phi_{\text {cas }} \in \mathscr{H}_{\text {cas }}$ and external amplitudes \mathbf{t} are given by differentiation of \mathcal{L} w.r.t. $\tilde{\Phi}, \boldsymbol{\lambda}, \Phi$ and \mathbf{t} :

$$
\begin{aligned}
\left\langle\delta \tilde{\Phi},\left(\bar{H}^{\text {cas }}(\mathbf{t})-E\right) \Phi_{\text {cas }}\right\rangle & =0 \forall \delta \tilde{\Phi} \in \mathscr{H}_{\text {cas }} \\
\left\langle X_{\mu} \phi_{0}, e^{-T^{\text {ext }}(\mathbf{t})} H e^{T^{\text {ext }}(\mathbf{t})} \Phi_{\text {cas }}\right\rangle & =0 \forall \mu \in \mathcal{I}_{\text {ext }} \\
\left\langle\delta \Phi,\left(\bar{H}^{\text {cas }}(\mathbf{t})-E\right)^{\dagger} \tilde{\Phi}_{\text {cas }}\right\rangle & =\left\langle\delta \Phi, \sum_{\mu} \lambda_{\mu} X_{\mu} \phi_{0}\right\rangle \forall \delta \Phi \in \mathscr{H}_{\text {cas }} \\
(D \mathbf{f})_{\mathbf{t}} \lambda & =\partial_{\mathbf{t}} \mathcal{L}=\partial_{\mathbf{t}} E(\mathbf{t}) \\
\text { where }(D \mathbf{f})_{\nu, \mu} & :=\left\langle X_{\mu} \phi_{0}, e^{-T^{\text {ext }}}\left[H, X_{\nu}\right] e^{T^{\text {ext }}} \Phi_{\text {cas }}\right\rangle
\end{aligned}
$$

denotes the CC Jacobian
In Bodenstein \& Kvaal they considered $\tilde{\Psi}:=e^{-T^{\dagger}}\left(\tilde{\Phi}+\sum_{\mu} \lambda_{\mu} X_{\mu} \tilde{\Phi}\right)$

State Universal CC with CASCC

We consider n first eigenstates (e.g. the (ground) state E_{1} is degenerate), (with a positive spectral gap to the next)

$$
H \Psi_{i}=E_{i} \Psi_{i}, i=1, \ldots, n,,\left\langle\Psi_{i}, \Psi_{j}\right\rangle=\delta_{i, j}
$$

Consider

$$
\begin{aligned}
\Psi_{j} & :=e^{T_{j}(\mathbf{t})} \Phi_{j}, T_{j}=\left(\mathbf{t}_{\mu}\right), \mu \in \mathcal{I}_{e x t}, \Lambda_{j}=\sum_{\mu} \lambda_{j, \mu} X_{\mu} \\
\tilde{\Psi}_{j} & :=e^{-T_{j}^{\dagger}}\left(\tilde{\Phi}_{j}+\Lambda_{j} \phi_{0}\right), \tilde{\Phi}_{j}, \Phi_{j} \in \mathscr{H}_{0}:=\mathscr{H}_{\text {cas }}
\end{aligned}
$$

we impose (bi-) orthogonality

$$
\left\langle\tilde{\Psi}_{i}, \Psi_{j}\right\rangle=\delta_{i, j}
$$

where ϕ_{0} e.g is the HF determinant.

$$
\begin{aligned}
\delta_{i, j}=\left\langle\tilde{\Psi}_{i}, \Psi_{j}\right\rangle & =\left\langle\tilde{\Phi}_{i}, e^{T_{j}-T_{i}} \Phi_{j}\right\rangle+\left\langle\Lambda_{i} \phi_{0}, e^{T_{j}-T_{i}} \Phi_{j}\right\rangle \\
& =\left\langle\tilde{\Phi}_{i}, \Phi_{j}\right\rangle+\sum_{\mu} \lambda_{i, \mu}\left\langle X_{\mu} \phi_{0}, e^{T_{j}-T_{i}} \Phi_{j}\right\rangle
\end{aligned}
$$

State Universal Lagrangian

We modifiy the Lagrangian to enforce bi-orthogonality. Let us introduce the vector valued functions
$\Phi:=\left(\Phi_{i}\right)_{i=1, \ldots, n}, \tilde{\Phi}:=\left(\tilde{\Phi}_{i}\right)_{i=1, \ldots, n}, T:=\left(T_{i}\right)_{i=1, \ldots, n}, \Lambda_{i}=\left(\sum_{\mu} \lambda_{i, \mu} X_{\mu}\right)$
together with a new Lagrange multiplier $\Sigma=\left(\Sigma_{i, j}\right)$

$$
\begin{aligned}
\mathcal{L}(\Phi, \tilde{\Phi}, T, \Lambda):= & \sum_{i, j=1}^{n}\left(\left\langle\tilde{\Phi}_{i}, e^{-T_{i}} H e^{T_{j}} \Phi_{j}\right\rangle+\left\langle\Lambda_{i} \phi_{0}, e^{-T_{i}} H e^{T_{j}} \Phi_{j}\right\rangle\right) \\
& +\sum_{i, j=1}^{n} \Sigma_{i, j}\left(\delta_{i, j}-\left\langle\Lambda_{i} \phi_{0}, e^{T_{j}-T_{i}} \Phi_{j}\right\rangle-\left\langle\tilde{\Phi}_{i}, \Phi_{j}\right\rangle\right) \\
\text { where } \quad & e^{-T_{j}} H e^{T_{j}} \text { is non symmetric! and depends on } j
\end{aligned}
$$

State Universal Lagrangian -Coupled equations

The stationary points of the Lagrangian (1st order conditions) are given in weak form by

$$
\begin{aligned}
\frac{\partial J}{\partial \tilde{\Phi}}\left(\delta \tilde{\Phi}_{i}\right)= & \sum_{j=1}^{n}\left(\left\langle\delta \tilde{\Phi}_{i}, e^{-T_{i}} H^{T_{j}} \Phi_{j}\right\rangle-\left\langle\delta \tilde{\Phi}_{i}, \phi_{j}\right\rangle\right)=0 \quad \forall \delta \tilde{\Phi} \in \mathscr{H}_{c \text { as }}, i=1, \ldots, n \\
\frac{\partial J}{\partial \Lambda_{i}}= & \sum_{j=1}^{n}\left(\left\langle\phi_{0}, e^{-T_{i}} H^{T_{j}} \phi_{j}\right\rangle-\Sigma_{i, j}\left\langle\phi_{0}, e^{T_{j}-T_{i}} \phi_{j}\right\rangle\right)=0 \quad \forall i=1, \ldots, n \\
\frac{\partial J}{\partial \Phi_{j}}(\delta \Phi)= & \sum_{i=1}^{n}\left(\left\langle\tilde{\phi}_{i}, e^{-T_{i}} H e^{T_{j}} \delta \Phi\right\rangle+\left\langle\Lambda_{i} \phi_{0}, e^{-T_{i}} H e^{T_{j}} \delta \Phi\right\rangle\right) \\
& -\sum_{i=1}^{n} \Sigma_{i, j}\left(\left\langle\Lambda_{i} \phi_{0}, e^{T_{j}-T_{i}} \delta \Phi\right\rangle+\left\langle\tilde{\Phi}_{i}, \delta \Phi\right\rangle\right) \forall \delta \Phi \in \mathscr{H}_{\text {cas }} j=1, \ldots, n \\
\frac{\partial J}{\partial T}\left(T_{i}\right)= & \cdots \forall i=1, \ldots, n
\end{aligned}
$$

Complicated set of $4 n$ coupled equations!!! Can it be decoupled?

State Universal Lagrangian

Let us consider a Lagrange to be diagonal

$$
\Sigma=\operatorname{diag}\left(\delta_{i, j}\right) \Rightarrow \Sigma=\operatorname{diag}\left(E_{j}\right)
$$

Then model equations becomes decoupled We differentiate w.r.t. $\tilde{\phi}_{j} \in \mathscr{H}_{c a s}, \Lambda_{j}$ and $T_{j}=T\left(\mathbf{t}_{j}\right)$ and obtain 1st order conditions

$$
\begin{aligned}
\text { we set } \bar{H}_{j} & :=e^{-T_{j}} H e^{T_{j}}, E_{j}:=\frac{\left\langle\tilde{\Psi}_{j}, H \Psi_{j}\right\rangle}{\left\langle\tilde{\Psi}_{j}, \Psi_{j}\right\rangle} \\
\left\langle\delta \tilde{\Phi},\left(\bar{H}_{j}-E_{j}\right) \phi_{j}\right\rangle & =0 \forall \delta \tilde{\phi} \in \mathscr{H}_{\text {cas }} \\
f_{\mu}\left(\mathbf{t}_{j}\right):=\left\langle X_{\mu} \phi_{0}, \bar{H}_{j} \phi_{j}\right\rangle & =0 \forall \mu \in \mathcal{I}_{\text {ext }} \\
\sum_{\mu} \lambda_{\mu}\left\langle X_{\mu} \phi_{0},\left[\bar{H}_{j}, X_{\nu}\right] \phi_{j}\right\rangle & =r h s_{j}(\nu)
\end{aligned}
$$

There is another set of equations for the dual solutions $\tilde{\Phi}_{j}$!

State Universal Lagrangian - Dual Equations

Let us consider a diagonal $\Sigma=\operatorname{diag}\left(E_{j}\right)$
In order to compute $\bar{\phi}_{j}$, we introduce $\left.\mathscr{S}:=\operatorname{span} \phi_{j}: j=1, \ldots, n\right\}$ and we $\mathscr{W} \perp \mathscr{S}$ s.t. $\mathscr{H}_{\text {cas }}=\mathscr{S} \oplus \mathscr{W}$ and decompose

$$
\tilde{\phi}_{j}:=\phi_{j}^{\prime}+\chi_{j} \text { where } \chi_{j} \in \mathscr{W}, \phi_{j}^{\prime} \in \mathscr{S}
$$

In order to compute $\chi_{j} \in \mathscr{W}$ we consider

$$
\begin{aligned}
\left\langle\delta \phi,\left(\bar{H}_{j}-E_{j}\right)^{\dagger}\left(\tilde{\phi}_{j}+\Lambda_{j} \phi_{0}\right)\right\rangle & =0 \forall \delta \phi \in \mathscr{W} \\
\left\langle\delta \phi,\left(\bar{H}_{j}-E_{j}\right)^{\dagger} \chi_{j}\right\rangle & =\left\langle\delta \phi, E_{j} \Lambda_{j} \phi_{0}-\bar{H}_{j}^{T} \phi_{j}^{\prime}\right\rangle
\end{aligned}
$$

the unknown $\phi_{j}^{\prime}=\sum_{\ell} c_{j, \ell} \phi_{\ell} \in \mathscr{S}$ can be computed applying bi-orthogonality

$$
\begin{gathered}
\delta_{i, j}=\left\langle\Lambda_{i} \phi_{0}, e^{T_{j}-T_{i}} \phi_{j}\right\rangle+\left\langle\phi_{i}^{\prime}, \phi_{j}\right\rangle=\left\langle\Lambda_{i} \phi_{0}, e^{T_{j}-T_{i}} \phi_{j}\right\rangle+\sum_{\ell} c_{i, \ell}\left\langle\phi_{\ell}, \phi_{j}\right\rangle \\
I=R+C M \Rightarrow C=(I-R) M^{-1} \text { where } m_{i, j}=\left\langle\phi_{i}, \phi_{j}\right\rangle
\end{gathered}
$$

Density Matrix

In order to check the previous results, we compute the matrix entries

$$
\begin{aligned}
\left\langle\tilde{\psi}_{k}, H \psi_{j}\right\rangle & =\left\langle\tilde{\phi}_{k}, e^{-T_{k}} H e^{T_{j}} \phi_{j}\right\rangle+\left\langle\Lambda_{k} \phi_{0}, e^{-T_{k}} H e^{T_{j}} \phi_{j}\right\rangle \\
& =E_{j}\left(\left\langle\phi_{k}^{\prime}, \phi_{j}\right\rangle+\left\langle\chi_{k}, \phi_{j}\right\rangle\right)+E_{j}\left\langle\Lambda_{k} \phi_{0}, e^{T_{j}-T_{k}} \phi_{j}\right\rangle \\
& =E_{j}\left(\left\langle\phi_{k}^{\prime}, \phi_{j}\right\rangle+\left\langle\Lambda_{k} \phi_{0}, e^{T_{j}-T_{k}} \phi_{j}\right\rangle\right)=E_{j} \delta_{k, j}
\end{aligned}
$$

Here we have used

$$
\left\langle\delta, \bar{H}_{j} \phi_{j}\right\rangle=E_{j}\left\langle\delta, \phi_{j}\right\rangle \text { for all } \delta \in \mathscr{H}_{\text {cas }}
$$

since

$$
\left\langle X_{\mu} \phi_{0}, e^{-T_{j}} H e^{T_{j}} \phi_{j}\right\rangle=0 \text { for all } \mu \in \mathcal{I}_{\text {ext }}
$$

This shows that

$$
P=\sum_{j=1}^{n}\left|\psi_{j}\right\rangle\left\langle\tilde{\psi}_{j}\right|
$$

is the desired projection (density matrix). Moreover it is of diagonal form.

Remarks: CC Energy.

Let us suppress the index $j=1, \ldots n$. Let $T^{e x t}=T_{1}+T_{2}$ (CCSD), due to normalization $\left\langle\phi_{0}, \Psi\right\rangle=\left\langle\phi_{0}, \Phi\right\rangle:=1$.

$$
\begin{aligned}
E(\mathbf{t}) & =\left\langle\tilde{\Phi}+\Lambda \phi_{0}, e^{-T} H e^{T} \Phi\right\rangle=\left\langle\phi_{0}, H \Phi\right\rangle+E_{\text {ext }} \\
& =: E_{\text {cas }}+\left\langle\phi_{0}, H\left(I+T_{1}+T_{2}+\frac{1}{2}\left(T_{1}\right)^{2}+T_{1}^{\text {cas }} T_{1}\right) \phi_{0}\right\rangle \\
\text { if } T_{1}^{e x t}=T_{1} & :=0 \text { terms in brown are } 0
\end{aligned}
$$

We frequently choose $T_{1}^{\text {ext }}:=0$.

Remarks: Projected CAS Coupled Cluster Method

Let $T(\mathbf{t}):=T^{e x t}=\sum_{\mu \in \mathcal{I}_{\text {ext }}} t_{\mu} X_{\mu}, 0 \neq \mu \in \mathcal{I}_{\text {ext }} \subset \mathcal{J}$
The unlinked projected Coupled Cluster formulation

$$
0=\left\langle X_{\mu} \phi_{0},(H-E(\mathbf{t})) e^{T(\mathbf{t})+T^{\text {cas }}} \phi_{0}\right\rangle=: g_{\mu}(\mathbf{t}), \mathbf{t}=\left(t_{\nu}\right)_{\nu \in \mathcal{I}_{\text {ext }}}, \mu \in \mathcal{I}_{\text {ext }}
$$

The linked projected Coupled Cluster formulation consists in

$$
0=\left\langle X_{\mu} \phi_{0}, e^{-T(\mathbf{t})} H e^{T(\mathbf{t})} \Phi\right\rangle=: f_{\mu}(\mathbf{t}), \mathbf{t}=\left(t_{\nu}\right)_{\nu \in \mathcal{I}_{\text {ext }}}, \mu \in \mathcal{I}_{\text {ext }}
$$

In the sequel, we suppress (neglect) $T_{1}^{\text {ext }}$ terms
Theorem
(S.\& Faulstich \& Laestadius) If $T_{1}^{\text {ext }}=0$, the both methods are equivalent

$$
\Psi_{\text {linked }}^{C C}=\Psi_{\text {unlinked }}^{C C}
$$

This needs not to hold if $T_{1}^{e x t} \neq 0$!

Projected CAS - Coupled Cluster Method

Let us consider the linked CC equations

$$
0=\mathbf{f}\left(t_{\mu}\right):=\left\langle X_{\mu} \phi_{0}, e^{-T(\mathbf{t})} H e^{T(\mathbf{t})} \Phi\right\rangle \quad, \quad \forall \mu \in \mathcal{I}_{\text {ext }}
$$

Theorem
The solution does not depend on $T_{k}^{\text {cas }}, S_{k}^{\text {cas }}$, for $k>3$ (!), in particular, we obtain the equations
$0=\mathbf{f}\left(t_{\mu}\right)=\left\langle X_{\mu} \phi_{0}, e^{-T} H e^{T} \Phi\right\rangle=\left\langle X_{\mu} \phi_{0},\left(I-T_{2}\right) H\left(I+T_{2}+\frac{1}{2}\left(\hat{T}_{2}\right)^{2}\right) \Phi\right\rangle$
for all $\mu \in \mathcal{I}_{\text {ext }}$.
Solving this problem is not essentially more expensive than single reference CC!
Here we have dropped the index j since the equations decouple The problem is to solve the FCI CAS equations, for large CAS space.

CAS Eigenvalue Problem

For external excitations $T=T_{2}=\sum_{\mu \in \mathcal{I}_{\text {ext }}} t_{\mu} X_{\mu}$ we obtain (we neglect T_{1} in the sequel)
Lemma

$$
\begin{aligned}
\bar{H}^{\mathrm{cas}}(\mathbf{t}) & =P_{\mathscr{H}_{c a s}} e^{-T(\mathrm{t})} H e^{T(\mathbf{t})} P_{\mathscr{H}_{c a s}} \\
& =P_{\mathscr{H}_{c a s}} H P_{\mathscr{H}_{c a s}}+P_{\mathscr{H}_{c a s}} H T_{2} P_{\mathscr{H}_{c a s}}+\frac{1}{2} P_{\mathscr{H}_{c a s}} H \hat{T}_{2}^{2} P_{\mathscr{H}_{c a s}} \\
& =P_{\mathscr{H}_{c a s}} H\left(I+T_{2}+\frac{1}{2} \hat{T}_{2}^{2}\right) P_{\mathscr{H}_{c a s}}
\end{aligned}
$$

$T_{2}=\tilde{T}_{2}+\hat{T}_{2}$ where \hat{T}_{2} contains the mixed excitation terms $u_{i, j}^{a, v} X_{i}^{a} X_{j}^{v}$, and \tilde{T}_{2} no mixed terms.

Numerical Solution of FCI Problem

Remark:

$$
P_{\mathscr{H}_{c a s}} H\left(I+T_{2}+\frac{1}{2} \hat{T}_{2}^{2}\right) P_{\mathscr{H}_{c a s}}
$$

involves 3-particle operators!
We recommend to use an approximate FCl solver either

- QC-DMRG (tensor trains \simeq matrix product states) or
- Monte Carlo FCI (Alavi et al.)

Simplifications: Tailored CC

$\Phi \approx \Phi_{\text {cas }}$

$$
\left\langle\delta \tilde{\Phi},\left(H-E_{c a s}\right) \Phi_{c a s}\right\rangle=0 \forall \delta \tilde{\Phi} \in \mathscr{H}_{c a s}
$$

$\Rightarrow \Phi_{c a s}$ and $E_{c a s}$ do NOT depend on \mathbf{t} !

Numerical results for TCC-DMRG

L. Veis, A. Antalik, J. Brabec, F. Neese, Ö. Legeza, and J. Pittner, Coupled Cluster Method with Single and Double Excitations Tailored by Matrix Product State Wave Functions, J. Phys. Chem. Lett., 2016, 7 (20), pp 4072-4078
In their approach the $T_{3}^{\text {cas }}$ amplitudes are neglected!!!
Table: TCCSD Energies ($\mathrm{E}+2086$ in au) of the Cr_{2} Molecule $(\mathrm{r}=1.5 \AA$)

Method	$\mathrm{E}+2086$	$\Delta \mathrm{E}$
DMRG(12,12)	0.071746	0.373
TCCSD(12,12)	0.424826	0.020
DMRG(12,21)	0.252552	0.192
TCCSD(12,21)	0.437171	0.007
CCSD	0.344277	0.100
CCSD(T)(45)	0.422229	0.022
CCSDTQ(45)	0.430244	0.014
DMRG(48,42)	0.444784	-

Table: Spectroscopic paramet. N_{2}, calculated by cc-pVTZ Basis

	$\omega\left(\mathrm{cm}^{-1}\right)$	$\Delta \omega$	$\omega\left(\mathrm{cm}^{-1}\right)$	$\Delta \omega$	$r_{0}(\AA)$	Δr_{0}
CCSD	2423.3	64.7	12.75	1.57	1.0967	0.0010
TCCSD $(6,6)$	2376.3	17.7	13.57	0.75	1.1009	0.0032
DMRG(10,19)	2298.8	59.8	13.72	0.60	1.1112	0.0135
TCCSD $(10,19)$	2347.3	11.3	13.91	0.41	1.1036	0.0059
experiment	2358.57	-	14.324	-	1.09768	-

Early Numerical Experiments - TCC

Error N_{2} ground state energies at bond length $r=2.118$ equilibrium. $\frac{K}{2}=28, d=2 k$ size of CAS basis set.
FCI Reference solution computed by CCSDTQVH
Numerical and theoretical aspects of the DMRG-TCC method exemplified by the nitrogen dimer,
Journal of chemical theory and computation, 15 (2019), pp. 2206-2220.
F. M. Faulstich, M. Mate, A. Laestadius, M. A. Csirik, L. Veis, A. Antalik, J. Brabec,
R. Schneider, J. Pittner, S. Kvaal,

Theoretical Results

The previous results from tailored CC can be extended to CAS-CC and improved. (work in progress) Numerical and theoretical aspects of the DMRG-TCC method exemplified by the nitrogen dimer, Journal of chemical theory and computation, 15 (2019), pp. 2206-2220.
F. M. Faulstich, M. Mate, A. Laestadius, M. A. Csirik, L. Veis, A. Antalik, J. Brabec, R. Schneider, J. Pittner, S. Kvaal,

Analysis of the tailored coupled-cluster method in quantum chemistry, SIAM Journal on Numerical Analysis, 57 (2019), pp. 2579 - 2607 F. M. Faulstich, A. Laestadius, O. Legeza, R. Schneider, and S. Kvaal, work in progress
The use of (large) spaces $\mathscr{H}_{\text {cas }}$ improves the stability (inf-sup constant) of the amplitude equations

Conclusions

- CAS CC avoids most problems of single reference CCSD, without compromising the elegant numerical treatment of single reference formalism
- excited states can be treated well, great improvement compared to equation of motion (EOM)
- Tailored CC is more a perturbational approach for improving a reference solution $\Psi_{\text {cas }}$, 1st iteration.
- Analysis is only local, i.e. $T^{\text {ext }}$ small, but it shows
- importance of quality of reference solution $\Psi_{\text {cas }}$
- importance of of stability
- degenerate and quasi-degenerate ground state can be computed as well
- computational cost: CCSD (+ DMRG (for FCI))
- the CAS space must be sufficiently large (DMRG or MCFCI)!
- the solution is (only) slightly biased by the choice of reference determinant Ψ_{0}, i.e. the choice of the occupied space,

Bi-variational Formulation and Expectation Values

Why we are interested in the dual solution $\tilde{\Psi}$?
However: approximating expectation values of an operator
$O: \mathscr{H} \rightarrow \mathscr{H},\langle O\rangle:=\langle\Psi, O \Psi\rangle$, let $\langle\tilde{\Psi}, \Psi\rangle:=1$.

- $\left\langle\tilde{\Phi},\left(e^{T}\right)^{\dagger} O e^{T} \Phi\right\rangle \approx\langle\Psi, O \Psi\rangle$ is not computable!
- alternative: $\left\langle\left(\tilde{\Phi}+\Lambda \phi_{0}\right), e^{-T} O e^{T} \Phi\right\rangle=\left\langle\tilde{\Psi}, O \Psi_{c c}\right\rangle \approx\langle\Psi, O \Psi\rangle$

We may estimate

$$
\left|\left\langle\tilde{\Psi}, O e^{T} \Phi\right\rangle-\langle\Psi, O \Psi\rangle\right| \leq c_{1}\|\Psi-\tilde{\Psi}\|+c_{2}\left\|\Psi-e^{T} \Phi\right\|
$$

Note that $e^{-T^{\dagger}}$ is a de-excitation operator and $e^{-T^{\dagger}} \mathscr{H}_{\text {cas }}=\mathscr{H}_{\text {cas }}$. Thus the first term $\left\|\Psi-e^{-T^{\dagger}} \tilde{\Phi}\right\|$ is relatively large!!! (In the single reference case $\tilde{\Phi}=\phi_{0}$!) But $\tilde{\Psi}$ is a poor approximation of Ψ
This shows the importance of computing $\tilde{\Psi}!!!$
to be extended in future!!! - work in progress

Appendix - Two Lagrangian

Better: Consider the CC Lagrangian

$$
\mathcal{L}(\Phi, \tilde{\Phi}, T, \Lambda):=\frac{\langle\tilde{\Phi}, L \Phi\rangle}{\langle\tilde{\Phi}, \Phi\rangle}+\frac{1}{\langle\tilde{\Phi}, \Phi\rangle}\left\langle\Lambda \phi_{0}, L \Phi\right\rangle
$$

we differentiate w.r.t. $\tilde{\Phi}, \wedge$ and Φ and $T=T(\mathbf{t})$

$$
\begin{aligned}
L=L(\mathbf{t}) & :=e^{-T} H e^{T}, E:=\frac{\langle\tilde{\Phi}, L \Phi\rangle}{\langle\tilde{\Phi}, \Phi\rangle} \\
\langle\delta \tilde{\Phi},(L-E) \Phi\rangle & =0 \forall \delta \tilde{\Phi} \in Y_{h} \\
f_{\mu}(\mathbf{t})=\left\langle X_{\mu} \phi_{0}, L \Phi\right\rangle & =0 \forall \mu \in \mathcal{I}_{\text {ext }} \\
\sum_{\mu}\left\langle\tilde{\Phi}+\Lambda_{\mu} \phi_{0},\left[L, X_{\nu}\right] \Phi\right\rangle & =0 \forall \nu \in \mathcal{I}_{\text {ext }} \\
\left\langle\left(L^{\dagger}-E\right) \tilde{\Phi}, \delta \Phi\right\rangle & =-\left\langle\Lambda \phi_{0}, L \delta \Phi\right\rangle \forall \delta \Phi \in X_{h}(!!!)
\end{aligned}
$$

here $\tilde{\Psi} \in V_{c a s} \oplus \operatorname{span}\left\{X_{\mu} \phi_{0}: \mu \in \mathcal{I}_{\text {ext }}\right\}$

Projection Methods - Petrov Galerkin Methods

Alternative (Bodenstein \& Kvaal) Consider the CC Lagrangian

$$
\mathcal{L}(\Phi, \tilde{\Phi}, T, \Lambda):=\frac{\langle\tilde{\Phi}, L \Phi\rangle}{\langle\tilde{\Phi}, \Phi\rangle}+\frac{1}{\langle\tilde{\Phi}, \Phi\rangle}\langle\Lambda \tilde{\Phi}, L \Phi\rangle
$$

we differentiate w.r.t. $\tilde{\Phi}, \Lambda$ and Φ and $T=T(\mathbf{t}),\langle\tilde{\Phi}, \Phi\rangle:=1$,

$$
\begin{aligned}
L=L(\mathbf{t}) & :=e^{-T} H e^{T} \\
\langle\delta \tilde{\Phi},(L-E) \Phi\rangle & =0 \forall \delta \tilde{\Phi} \in Y_{h} \\
f(\mathbf{t})=\left\langle X_{\mu} \tilde{\Phi}, L \Phi\right\rangle & =0 \forall \mu \in \mathcal{I}_{\text {ext }} \\
\left\langle\left(L^{\dagger}-E\right) \tilde{\Phi}, \delta \Phi\right\rangle+\langle\Lambda \tilde{\Phi}, L \delta \Phi\rangle & =0 \forall \delta \Phi \in X_{h}(!!!) \\
\sum_{\mu}\left\langle\tilde{\Phi}+\Lambda_{\mu} \tilde{\Phi},\left[L, X_{\nu}\right] \Phi\right\rangle & =0 \forall \nu \in \mathcal{I}_{\text {ext }}
\end{aligned}
$$

$$
\tilde{\Psi} \in V_{\text {cas }} \oplus \operatorname{span}\left\{X_{\mu} \tilde{\Phi}: \mu \in \mathcal{I}_{\text {ext }}\right\}
$$

