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Motivation

Given the electronic Schrédinger equation
HV = EV

the wave function W can be approximated

> by a possible nonlinear parametrization, e.g. as tensor network
(matrix product) states ¥ € M = DMRG

» or nonlinear parametrization, e.g. single reference coupled
cluster CC W = e dg, ®y reference Slater determinant.

» multi-reference CC ansatz
v espan{echbj D ®j € Hias,j=0,...,n—1}

where 7, is a possibly not too large subspace generated by
Slater determinants (Full Cl Space)

> here we are interested in the first n Eigenfunctions for
Eo,...,En_1



Motivation - single reference Coupled Cluster (CC)

We try to replace H : J# — 2 by a model operator Hy : ¥ — ¥V
where ¥ C 7 is a suitable subspace of #. We are searching a
transformation ¢ : 7 — ¢ and consider

Po = Poﬁpo == ngo_l oHopPy : ¥V =V
where Py : 57 — V. For example the CC ansatz
V=el®ec# where e ¥

H=¢p loHop=eTHe" , # —#

Notice that H is NOT Hermitean (or symmetric) !
Example: 7 := span{¢o} where ¢y is a single Slater determinant
e.g HF determinant: standard CC

Hogpo = Eccéo



State Universal CC with CASCC

Manifold of oblique n-dimensional projectors:

an::{P:leTraceP:n}C.i”(c%”—%%”%

Pec 2,

if and only if there are biorthogonal sets B = {¢;}7_, C # and
B = {vj}?_; C S such that

ur— Pu= Zlﬂ;(lﬁh , P= Z [9i) (i ¢l7¢1>
i=1

» For any pair of n-dimensional non-orthogonal subspaces ¥ C # and ¥ C A,
there is a unique projector P with these spaces as left/right ranges.
» P - density matrix



State Universal CC Bivariational principle
Consider the functional S : &2, — C given by

S(P) = TH(HP) = 3" (0. Hi)

i=1

Problem: find P, € &2, such that S'(P,) = 0 are stationary, is
equivalent to the two-sided Bloch equation

|(1 = P)HP. =0, P.H(I—P.) =0

Equivalently, ¥ = P, is a right invariant subspace and
¥ = Pl is a left invariant subspace, simultaneously.
The projected effective Hamiltonian Hess = P.HP, has n exact
eigenvalues E; of H, and that S(P.) =>_/_; E
» In the literature, only the right Bloch equation is usually considered when
developing SU-MRCC theories. This is a major component of the novelty here.

» The bivariational principle given here is a search for invariant spaces — not
individual eigenvectors.



lla

Single Reference Coupled Cluster -
revisited

b
State Specific MR Coupled Cluster

L. Adamowicz, J.-P. Malrieu, and V. V. lvanov, J. Chem. Phys. 112, 10075 (2000).



Second quantization - revisited

Second quantization: annihilation operators:
aV[j,1,...,N] :==V[1,...,N]

and := 0 if j not apparent in V[...].
The adjoint of aj is a creation operator v

alW[L,...,N]=V[b,1,....N] = (=1)NW[1,..., N, b]

Theorem (Slater-Condon Rules)
H: 5 — A resp. H: HFci — HFc reads as (basis dependent)

H:F—I—U:Zfrp ar + Z upan Ta,
P.q Pg.r.s




Excitation operators
Single excitation operator , Let Wo = W[1,..., N] be a reference
determinant then e.g.

Xlk\Uo = aJLal\Uo

(—1)7PWE = W[k, 2,..., N] = X{Wo = XFU[L,...,....N] = aa; Vg
higher excitation operators

k

X=X =T XY, 1<li<lgn <N, N<b < by
i=1

A Cl solution W = qWo + >_,,c 7 ¢, Wy, can be written by

V= <CO+ZCMXM> Vo, c,cu €ER.

nedg

Intermediate normalization: ¢ :=1i.e. (V.Wp) =1 and

(X, X,] =0



(Multi-Reference) Coupled-Cluster Ansatz

> One-particle basis, complete active space (CAS)

Bcas = {7/)17 "'vaa 7/)N+1a qu/)d}a

occupied  CAS-unoccupied

BK = {¢1) "'7¢N3¢N+15 --~»7/)d,1/)d+17 "'7¢K}7

CAS external

> Replacement of occupied by unoccupied orbitals in reference
Vo,

WL, it i N] RO = WL, i iy s a1, e Ak

ives
g Bk = {Wo} U{V, | a € Ix}.
Indices: i,j:=1,..., N -occupied ; a,b:=N+1,...,d - (unocc.) CAS ;
u,v=d+1,...,K - external,

z =K+ 1..., 00 virtual



Coupled-Cluster Ansatz
> Intermediate normalization (W, Wy) 1= 1, (Wg, Wy) := 111

> Galerkin Full Cl (CAS) solution W is expressed by excitations,

V=W U =W+ > sV,
ned

> Coupled-Cluster-Ansatz:

Nonlinear Parametrisation for WV = Wy + W*:
cluster operator T =: T(t) = _ ¢ 7 t, X, such that

V= My,

(X, Vo, He "Wy = E(X,Wo,e"Mwg) v pe JU{0}.

Remark. The BCH expansion terminates and is computable!



Coupled-Cluster Ansatz
> Intermediate normalization (W, Wy) 1= 1, (Wg, Wy) := 111

> Galerkin Full Cl (CAS) solution W is expressed by excitations,

U =W+ VW =W+ 5,X,Vo= (I+5(s))Vo
ned

> Coupled-Cluster-Ansatz:

Nonlinear Parametrisation for WV = Wy + W*:
cluster operator T =: T(t) = _ ¢ 7 t, X, such that

V= My,

(X, Vo, e TOHeTMwg) = E(W,, Vo) = Edy, ¥V p

Remark. The BCH expansion terminates and is computable!



Coupled Cluster Method - Exponential-ansatz

Theorem (S. 06)

Let ®q be a reference Slater determinant, e.g. g = Vyr and
V € Hrc, (), satisfying

(W, ®9) =1 intermediate normalization .

Then there exists an excitation operator
(T1 - single-, T - double-, ... excitation operators)

N
T:ZT,: Z t, X, such that
i=1 neg

VU =eldy|=M,(I+t,X,)Po

Key observations: for analytic functions :

N
=Y aTksince [X,,X,]=0, X:=0, TV=0.



b
State Specific MR Coupled Cluster

L. Adamowicz, J.-P. Malrieu, and V. V. Ivanov, J. Chem. Phys. 112, 10075 (2000).



State Specific Multi-Reference Coupled Cluster Method
(Adamovicz, Piecuch et al. (2000) - A MR CC keeping all elegance of SR CC
Ansatz: Given FCl solution WV ,s(~ Wppre for example)

ext cas ext
V=V, = e T dg = el Vs,
with allowed (external) excitations T* (only single /doubles)

X% =ala;, @ =N+1,...K (unoccupied) , i=1,..., N (occupied)

1

Text — 1e><t + Tzext

Tt =St'XY, v=d+1,..., K external, T$* contains only
1 & Zcas, which are of form

Xy = X5 = XEX) X3 = XAX) e Wy = XY Wo L s

ext ext cas cas cas cas ext ext
Vo e T (T T4 T3+ T, +"')\U0 = et Vs




State Specific (CAS) Coupled Cluster Method

We introduce the non symmetric CAS Hamiltonian H** = H*(t)
on the CAS space

ﬁcas(t) — Pe%acas e_ Text(t) He Text (t) P(%as

We us consider the linked (external) CC equations
0="F,(t) = (Xupo, e T OHeT M) | VY € Toxt

together with
Pcas(t)q)cas — E(bcas

Then the total (CC) energy E ~ E, is an eigenvalue of H** with
right eigenvector ®.,s i.e.

PC&S (bcas =E <Dcas

J€as . . .
H™" is considered as our model operator acting on 777,



State Universal CC

We consider n first m (approximate) eigenstates ( e.g. the
(ground) state is degenerate), ( with a positive spectral gap to the
next )

H\U,':E\U,', i:1,...,n, E:Eo, <\U,',\Uj>:6,'7j

Consider
v, = elio; | T, Z “,Mezext,/\_zjxmx
\NUJ' = e j ((D_I +Aj¢0) ; CDJ-7(DJ- € Has

we impose (bi-) orthogonality
<WH v > 6’7.]

0ij = (Wi, Wj) = (B, el7TI0)) & (Nigo, €T T1))
= <¢”¢j> +ZA"1M<XM¢O7 eTJ*T,q)J>



lla
Bivariational Principle

A state-specific multi-reference coupled- cluster method based on the bivariational
principle J. Chem. Phys. 153, 024106 (2020); Tilmann Bodenstein and Simen Kvaal

Non-Unitary Treatment of Quantum Problems



CAS Coupled Cluster Method - Bivariational Formulation

We consider the bivariational energy functional using
<¢Oa q>cas> =1
> optimize

E(,d,t) = W

» subordinated to the linked amplitude equation
0 =f(u) := (Xuo, e "W HeT W)Wy € Ty

(constraint optimization)
Following S. Kvaal, let us introduce the Lagrangian

. . 1
LB, 0,80 = £, 0,t)+ —
( ) ( ) %.9)

ATH(t)

We are looking for the stationary points (CTJ, &, t,\)* of £, then
L((P, P, t, X)*) are (approximate) eigenvalues of the original H



CAS Coupled Cluster Method - Bivariational Formulation

Equivalently we can use the Lagrangian

G 7€as

LD, t,AE) = (&, H(t)d) + ATF(t) + E(1 — (d, )

Working equations for E, ®.,s € 7,5 and external amplitudes t
are given by differentiation of £ w.r.t. ®, A, ® and t:

<5¢ (HCBS( ) - E)q)cas) = 0 V&&) S %as
(X0, e T OHT W L) = 0V € T
(00, (H(t) — E)lbess) = (00 Z)\,L \60) V6D € Hins
(DA — 0L — BE®)
where (Df),,, = (Xupo,e” " [H, X ]eT™ ®ene)

denotes the CC Jacobian ) . )
In Bodenstein & Kvaal they considered W :=e~ 7" (& + ZH AuXu®)



State Universal CC with CASCC

We consider n first eigenstates ( e.g. the (ground) state E; is
degenerate), ( with a positive spectral gap to the next )

H\V,':E,'W,', izl,...,n, s <\U,',\Uj>:5,"j

Consider
Vo= eV Ti= (), ne€Zew, = NuXa
W
~ Tt~ ~
U, = e T (®j+Ao), P, 0 € Hp = Hins

we impose (bi-) orthogonality
(W, v)) = 6,
where ¢g e.g is the HF determinant.
0rj = (Ui, ¥5) = (&, &7 Tid)) + (Nigpo, T Tidy)
= (D1, ) + > Niu(Xudo, e T10))
m



State Universal Lagrangian

We modifiy the Lagrangian to enforce bi-orthogonality.Let us
introduce the vector valued functions

&= ()it n, Pi=(®)ictn T = (Ti)ictn, Ni = (Z NipXy)
B

together with a new Lagrange multiplier ¥ = (¥;)

,C((D, &)7 T7/\) = Z <<&>i’ e iHequ)j> + </\i¢07 e_TiHequ)J))
ij—1
n
+ > %, (5u — (Nigo, e Tidy) — (&, ¢j>)
ij=1

where e~ TiHe'i is non symmetric! and depends on j



State Universal Lagrangian -Coupled equations

The stationary points of the Lagrangian (1st order conditions) are
given in weak form by

n

oJ - i - " ) ,
250%) = Z((étb,-,e’T'Hedey)7(6¢;,¢j)) =0 V6D € Has , i=1,...,n
j=1
o) _ > ((do, e TiHeTi0)) — T, €T Ti0))) =0 Vi=1,....n
aN; :
j=1
8J -
_ S o= TiaTi ) —TigaT;
8T>j(6¢) — Z((cb,,e HeTi6®) + (Nigo, e~ 1 He i 50) )
i=1
_Zz,,j(</\,-¢o,eTf—Tf5¢> +($;,60)) V66 € Hias j=1,...,n
i=1
9y = vwi=1...n
aT

Complicated set of 4n coupled equations!!! Can it be decoupled?



State Universal Lagrangian
Let us consider a Lagrange to be diagonal
Y = diag (9;;) = X = diag (E))
Then model equations becomes decoupled

We differentiate w.r.t. ¢; € #ss, \j and T; = T(t;) and obtain
1st order conditions

weset H; = e TiHe"l | Ej:= M
o ) (W), ¥;)
(6@, (H; — Ej)¢j) = 0V0¢p € Hiass
fu(tj) (Xybo, Hipj)) = 0V € Texe
Z lt /i(z)O?[ j?XV](bj) = rhsj(l/)

“w
There is another set of equations for the dual solutions CT)J-!



State Universal Lagrangian - Dual Equations

Let us consider a diagonal & = diag (E;)
In order to compute ¢;, we introduce ./ := span ¢; : j=1,...,n}
and we W | . st. Hias = ® W and decompose

gzNSJ- ::(bj-—i-Xj where x; € W, gbj- S
In order to compute x; € #  we consider

(60, (H; — E)'(dj + Njgo)) = 0Vipe W
(66, (Hi— E))'xg) = (3¢, EiNigo — H ¢))

the unknown gbj- =>4y CiePr € 7 can be computed applying
bi-orthogonality

5ij = (Nigo, e Tig)+(df, 67) = (Nio, €T} +D  cielde, b))
¢

I=R+CM= C=(I-R)M ' where mi; = (¢;, ;)



Density Matrix
In order to check the previous results, we compute the matrix
entries

(D, Hpy) = (i, e TkHeTigy) + (Mo, 6™ T HeTigs;)
= Ei({¢) &) + (Xk» 7)) + Ei{Aebo, €77 Thgp))
= Ei((¢)s b5 + (Mo, €7 Tkg;)) = Ejdy
Here we have used

<5, /:Ijqu> = EJ<5, ¢J> for all 6 € %35

since
(Xuo, e TiHe iy = 0 for all 1 € Toxe -

This shows that

P =" |ob) 1)yl
j=1

is the desired projection (density matrix). Moreover it is of
diagonal form.



Remarks: CC Energy.

Let us suppress the index j =1,...n. Let T®! = T1 + T,
(CCSD), due to normalization <¢>0, V) = (¢g, ) =

E(t) = (®+Agg, e THed) = <¢0, H®) + Eoxe

= Ecas+<¢OaH( + IitTa+ (Tl) C35T1)¢0>

if 77" = T; := 0 terms in brown are 0

We frequently choose T := 0.



Remarks: Projected CAS Coupled Cluster Method

Let T(t) =T =3 cr. tuXu, 0 p€Zex C T
The unlinked projected Coupled Cluster formulation

< M¢07 (H E(t)) Tcas(b > - gu(t) t= ( )VEIextuu € Iext

The linked projected Coupled Cluster formulation consists in

0= <Xu¢0: eiT(t)HeT(t)¢> = fu(t) s t=(ty)veToe> M € Lext

In the sequel, we suppress (neglect) T terms

Theorem
(S.& Faulstich & Laestadius ) If T* = 0, the both methods are
equivalent

Vinked = Vini

unlinked

This needs not to hold if Tt # 0!



Projected CAS - Coupled Cluster Method

Let us consider the linked CC equations

0=f(t,) == (X.00, e TOHeTMd) | Ve Ty

Theorem
The solution does not depend on T:*°, 5¢%°, for k > 3 (!),
in particular, we obtain the equations

0=f(t,) = (Xugo, e T He™ ®) = (X0, (I=T2)H(I+To + = (Tg) ))

for all |1 € Text.

Solving this problem is not essentially more expensive than single
reference CC!

Here we have dropped the index j since the equations decouple
The problem is to solve the FCI CAS equations, for large CAS
space.



CAS Eigenvalue Problem

For external excitations T = T, =3~ 7 . t,X,, we obtain
(we neglect T; in the sequel)

Lemma

H(t) = Pye "WHTOP,

1 .
= Pu..HPx. + Pu HT2Px, + E'focas HTZP oy,

1.
= Pu H({I+ T2+ §Tz~2)P%zas

T> = T + T, where Ty contains the mixed excitation terms
uiy X7 X!, and Ty no mixed terms .



Numerical Solution of FCI Problem

Remark: 1
P H + T2 + 5 T3P

involves 3-particle operators!
We recommend to use an approximate FCI solver either

» QC-DMRG (tensor trains ~ matrix product states) or
» Monte Carlo FCI (Alavi et al.)

Simplifications: Tailored CC
b~ by 5 y
<5¢7 (H - Ecas)¢cas> =0 Voo e %as

= O, and E.,s do NOT depend on t!



Numerical results for TCC-DMRG

L. Veis, A. Antalik, J. Brabec, F. Neese, O. Legeza, and J. Pittner, Coupled Cluster
Method with Single and Double Excitations Tailored by Matrix Product State Wave
Functions, J. Phys. Chem. Lett., 2016, 7 (20), pp 4072 - 4078

In their approach the T5% amplitudes are neglected!!!

Table: TCCSD Energies (E+2086 in au) of the CroMolecule(r = 1.5 A)

Method E+2086 | AE
DMRG(12,12) | 0.071746 | 0.373
TCCSD(12,12) | 0.424826 | 0.020
DMRG(12,21) | 0.252552 | 0.192
TCCSD(12,21) | 0.437171 | 0.007

CCSD 0.344277 | 0.100
CCSD(T)(45) | 0.422229 | 0.022
CCSDTQ(45) | 0.430244 | 0.014
DMRG(48,42) | 0.444784 -

Table: Spectroscopic paramet. N, calculated by cc-pVTZ Basis

w(em™ D) [ Aw | w(em™ ) | Aw o (A) An
CCSD 24233 64.7 12.75 1.57 1.0967 0.0010
TCCSD(6,6) 2376.3 17.7 13.57 0.75 1.1009 0.0032
DMRG(10,19) 2298.8 59.8 13.72 0.60 1.1112 0.0135
TCCSD(10,19) 2347.3 11.3 13.91 0.41 1.1036 0.0059
experiment 2358.57 - 14.324 - 1.09768 -




Early Numerical Experiments - TCC

Error N ground state energies at bond length r = 2.118
equilibrium. g = 28, d = 2k size of CAS basis set.

FCI Reference solution computed by CCSDTQVH

Numerical and theoretical aspects of the DMRG-TCC method exemplified by the
nitrogen dimer,

Journal of chemical theory and computation, 15 (2019), pp. 2206 — 2220.

F. M. Faulstich, M. Mate, A. Laestadius, M. A. Csirik, L. Veis, A. Antalik, J. Brabec,
R. Schneider, J. Pittner, S. Kvaal,




Theoretical Results

The previous results from tailored CC can be extended to CAS-CC

and improved. (Work in progress ) Numerical and theoretical aspects
of the DMRG-TCC method exemplified by the nitrogen dimer,

Journal of chemical theory and computation, 15 (2019), pp. 2206 — 2220.

F. M. Faulstich, M. Mate, A. Laestadius, M. A. Csirik, L. Veis, A. Antalik, J. Brabec,
R. Schneider, J. Pittner, S. Kvaal,

Analysis of the tailored coupled-cluster method in quantum chemistry,
SIAM Journal on Numerical Analysis, 57 (2019), pp. 2579 — 2607
F. M. Faulstich, A. Laestadius, O. Legeza, R. Schneider, and S. Kvaal,

work in progress
The use of (large) spaces #Z,s improves the stability (inf-sup
constant) of the amplitude equations



Conclusions

» CAS CC avoids most problems of single reference CCSD,
without compromising the elegant numerical treatment of
single reference formalism

> excited states can be treated well, great improvement
compared to equation of motion (EOM)

» Tailored CC is more a perturbational approach for improving a

reference solution W5, 1st iteration.
» Analysis is only local, i.e. T small, but it shows

» importance of quality of reference solution W .

» importance of of stability

» degenerate and quasi-degenerate ground state can be
computed as well

» computational cost: CCSD (+ DMRG (for FCI) )

» the CAS space must be sufficiently large (DMRG or MCFCI)!

» the solution is (only) slightly biased by the choice of reference
determinant Won. i.e. the choice of the occupied space.



Bi-variational Formulation and Expectation Values

Why we are interested in the dual solution W?
However: approximating expectation values of an operator

O:H — A, (0) = (V,0V), let (U, V) :=1.
> (®,(eT)T0eTd) ~ (W, OV) is not computable!
> alternative: ((® + Adyp), e~ T 0eT ) = (U, OW,.) ~ (W, OV)

We may estimate
(U, 0eT®) — (W, 00)| < c1|W — V|| + | W — eT D]

Note that e~ 7" is a de-excitation operator and e_TT%as = Hlas.
Thus the first term |V — e*TTCTDH is relatively large!!!

(In the single reference case ® = ¢! ) But U is a poor
approximation of W

This shows the importance of computing Wil

to be extended in future!!! - work in progress



Appendix - Two Lagrangian
Better: Consider the CC Lagrangian

(P, LO) 1

.0y (&) (Ado, L)

L(®, P, T A) =

we differentiate w.r.t. ®,A and ® and T = T(t)

L=1L(t) = e THe" , E:= (6, Lo)
(0, )
(60, (L— E)d) = 0Véde Y,
fu(t) = (Xubo, LO) = 0V € Texr
SO+ Audo, [LX]D) = 0 Vv € Tee
I
(LT = E)D,00) = —(A¢o, Ld) Vod € Xu(I1)

here W € V5 & span {Xudo i pt € Lext }



Projection Methods - Petrov Galerkin Methods

Alternative (Bodenstein & Kvaal) Consider the CC Lagrangian

(P, LD)

1

L(®, P, T A) = % o)

&0

(ND, Lb)

we differentiate w.r.t. ®,A and ® and T = T(t), (®,d) =1,

= L(t)

(00 ( E)®)

f(t) = (X, P, L)

(LT — E)®, 60) + </\q> Lod)
DS+ AP, L, X,]P)

VU € Vs @ span {XMCTD Tl € Lext }

e THe™

0V6d € vy,

0 Vi € Zext

0 Vod € Xp(!)
0 Vv € Lot



