Error estimators for Density Functional Theory

Eric CANCES

Ecole des Ponts et Inria Paris, France

IPAM, Los Angeles, March 27-31, 2023

Extreme-scale

Numerical challenges in DFT

- very large systems with high accuracy
- metallic / heterogeneous systems
- databases for materials and drug discovery and design (machine learning) Ex.: open catalyst data set (Chanussot et al. '20)

264,890,000 Density Functional Theory (DFT) calculations

Need for fast, reliable, black-box numerical methods with error estimators

Total error: $\quad \mathbf{e}=\mathbf{e}_{\mathrm{m}}+\mathbf{e}_{\mathrm{d}}+\mathbf{e}_{\mathrm{a}}+\mathbf{e}_{\mathrm{i}}+\mathbf{e}_{\mathrm{c}}$
Example: $s=$ static polarizability of the $\mathbf{C O}_{2}$ molecule
$y=(\# \mathrm{C}$ atoms $=1, \# \mathrm{O}$ atoms $=2$, total charge $=0)$
(+ universal parameters: $\hbar, m_{\mathrm{e}}, e, \varepsilon_{0}, z_{X}, m_{X \text { iso }}$)

Total error: $\quad \mathbf{e}=\mathbf{e}_{\mathrm{m}}+\mathbf{e}_{\mathrm{d}}+\mathbf{e}_{\mathrm{a}}+\mathbf{e}_{\mathrm{i}}+\mathbf{e}_{\mathrm{c}}$
Goal 1: provide error estimates (certification)

Total error: $\quad \mathbf{e}=\mathbf{e}_{\mathrm{m}}+\mathbf{e}_{\mathrm{d}}+\mathbf{e}_{\mathrm{a}}+\mathbf{e}_{\mathrm{i}}+\mathbf{e}_{\mathrm{c}}$
Goal 1: provide error estimates (certification)
Goal 2: optimize dynamically the computational resources (error balancing) (DFT $\sim \mathbf{1 5 \%}$ of CPU time available in HPC centers)

An example of fully guaranteed error bars Herbst, Levitt, EC, Faraday discussions '20

Si band diagram
(non-self-consistent DFT-LDA model with GTH pseudopotentials)

fully guaranteed error bars accounting for

- discretization error
- algorithmic error
- floating-point arithmetics (=implementation error assuming bug-free code)

Numerical methods implemented in DFTK (Density-Functional ToolKit)

- planewave DFT package in juliả (2018-), MIT license
- outcome of the EMC2 ERC Synergy project
- main developers: Michael Herbst (now at EPFL) and Antoine Levitt (now at Paris-Saclay)

- supports mathematical developments (low entrance barrier, $\sim 7 \mathrm{k}$ lines of code) and scale-up to relevant applications ($\sim 1,000$ electrons)
- fully composable with juliáa ecosystem
- arbitrary precision (32bit, 64bit...)
- algorithmic differentiation
- interval arithmetic

1. Geometrical structure of the Kohn-Sham model
2. Practical error bounds on interatomic forces in Kohn-Sham DFT EC, G. Dusson, G. Kemlin and A. Levitt, SIAM J. Sci. Comput. '22
3. Computation of response properties for metals EC, M. Herbst, G. Kemlin, A. Levitt and B. Stamm, Lett. Math. Phys. '23

1 - Geometrical structure of the Kohn-Sham model

Periodic supercell $\Omega=\mathbb{R}^{3} / \mathbb{L}, \quad \mathbb{L}$: Bravais lattice of \mathbb{R}^{3}
M ionic cores, positions $X:=\left(X_{j}\right)_{1 \leq j \leq M} \in \Omega^{M}$
N valence electron pairs (spin-unpolarized state)

Orbital formulation of the continuous Kohn-Sham model

$$
\begin{gathered}
\min \left\{E^{\mathrm{KS}}(X, \Phi) \mid \Phi=\left(\phi_{1}, \cdots, \phi_{N}\right) \in\left(H_{\#}^{1}(\Omega ; \mathbb{C})\right)^{N}, \int_{\Omega} \phi_{i}^{*} \phi_{j}=\delta_{i j}\right\} \\
E^{\mathrm{KS}}(X, \Phi)=\sum_{i=1}^{N} \int_{\Omega}\left|\nabla \phi_{i}\right|^{2}+\int_{\Omega} v(X) \rho_{\Phi}+E_{\mathrm{Hxc}}\left(\rho_{\Phi}\right) \quad \text { with } \quad \rho_{\Phi}(\mathbf{r}):=2 \sum_{i=1}^{N}\left|\phi_{i}(\mathbf{r})\right|^{2}
\end{gathered}
$$

Orbital formulation of the continuous Kohn-Sham model

$$
\begin{gathered}
\min \left\{E^{\mathrm{KS}}(X, \Phi) \mid \Phi=\left(\phi_{1}, \cdots, \phi_{N}\right) \in\left(H_{\#}^{1}(\Omega ; \mathbb{C})\right)^{N}, \int_{\Omega} \phi_{i}^{*} \phi_{j}=\delta_{i j}\right\} \\
E^{\mathrm{KS}}(X, \Phi)=\sum_{i=1}^{N} \int_{\Omega}\left|\nabla \phi_{i}\right|^{2}+\int_{\Omega} v(X) \rho_{\Phi}+E_{\mathrm{Hxc}}\left(\rho_{\Phi}\right) \quad \text { with } \quad \rho_{\Phi}(\mathbf{r}):=2 \sum_{i=1}^{N}\left|\phi_{i}(\mathbf{r})\right|^{2}
\end{gathered}
$$

Discretization in a planewave basis set
Fourier modes: $\quad e_{\boldsymbol{G}}(\mathbf{r}):=|\Omega|^{-1 / 2} e^{i \boldsymbol{G} \cdot \boldsymbol{r}}, \quad \mathbf{G} \in \mathbb{L}^{*} \quad$ (reciprocal lattice)
Approximation spaces: $\mathcal{X}=\operatorname{Span}\left(e_{\mathbf{G}}, \mathbf{G} \in \mathbb{L}^{*}, \frac{|\mathbf{G}|^{2}}{2}<E_{\mathrm{c}}\right)$
energy cut-off

Orbital formulation of the continuous Kohn-Sham model

$$
\begin{gathered}
\min \left\{E^{\mathrm{KS}}(X, \Phi) \mid \Phi=\left(\phi_{1}, \cdots, \phi_{N}\right) \in\left(H_{\#}^{1}(\Omega ; \mathbb{C})\right)^{N}, \int_{\Omega} \phi_{i}^{*} \phi_{j}=\delta_{i j}\right\} \\
E^{\mathrm{KS}}(X, \Phi)=\sum_{i=1}^{N} \int_{\Omega}\left|\nabla \phi_{i}\right|^{2}+\int_{\Omega} v(X) \rho_{\Phi}+E_{\mathrm{Hxc}}\left(\rho_{\Phi}\right) \quad \text { with } \quad \rho_{\Phi}(\mathbf{r}):=2 \sum_{i=1}^{N}\left|\phi_{i}(\mathbf{r})\right|^{2}
\end{gathered}
$$

Orbital formulation of the discretized KS model (used in most simulations)

$$
\phi_{i}(\mathbf{r})=\sum_{\mathbf{G} \in \mathbb{L}^{*}| | \mathbf{G} \mid<\sqrt{2 E_{\mathrm{c}}}} C_{\mathbf{G} i} e_{\mathbf{G}}(\mathbf{r}) \in \mathcal{X}, \quad N_{\mathrm{c}}:=\operatorname{dim}(\mathcal{X})
$$

minimization set: $\quad \operatorname{St}\left(N, N_{\mathrm{c}}\right):=\left\{C=\left[C_{\mathbf{G} i}\right] \in \mathbb{C}^{N_{\mathrm{c}} \times N} \mid C^{*} C=I_{N}\right\}$
drawback: gauge invariance (C and $C U$ have same energy $\forall U \in U\left(N_{\mathrm{c}}\right)$)

Orbital formulation of the continuous Kohn-Sham model

$$
\begin{gathered}
\min \left\{E^{\mathrm{KS}}(X, \Phi) \mid \Phi=\left(\phi_{1}, \cdots, \phi_{N}\right) \in\left(H_{\#}^{1}(\Omega ; \mathbb{C})\right)^{N}, \int_{\Omega} \phi_{i}^{*} \phi_{j}=\delta_{i j}\right\} \\
E^{\mathrm{KS}}(X, \Phi)=\sum_{i=1}^{N} \int_{\Omega}\left|\nabla \phi_{i}\right|^{2}+\int_{\Omega} v(X) \rho_{\Phi}+E_{\mathrm{Hxc}}\left(\rho_{\Phi}\right) \quad \text { with } \quad \rho_{\Phi}(\mathbf{r}):=2 \sum_{i=1}^{N}\left|\phi_{i}(\mathbf{r})\right|^{2}
\end{gathered}
$$

Orbital formulation of the discretized KS model (used in most simulations)

$$
\phi_{i}(\mathbf{r})=\sum_{\mathbf{G} \in \mathbb{L}^{*}| | \mathbf{G} \mid<\sqrt{2 E_{\mathrm{c}}}} C_{\mathbf{G} i} e_{\mathbf{G}}(\mathbf{r}) \in \mathcal{X}, \quad N_{\mathrm{c}}:=\operatorname{dim}(\mathcal{X})
$$

minimization set: $\quad \operatorname{St}\left(N, N_{\mathrm{c}}\right):=\left\{C=\left[C_{\mathbf{G} i}\right] \in \mathbb{C}^{N_{\mathrm{c}} \times N} \mid C^{*} C=I_{N}\right\}$
drawback: gauge invariance (C and $C U$ have same energy $\forall U \in U\left(N_{\mathrm{c}}\right)$)
Density matrix (1-RDM) formulation (math. analysis, linear scaling methods)
$P=C C^{*}$ orthogonal proj. on span(columns of C)
minimization set: $\quad \operatorname{Gr}\left(N, N_{\mathrm{c}}\right):=\left\{P \in \mathbb{C}_{\text {herm }}^{N_{\mathrm{c}} \times N_{\mathrm{c}}} \mid P^{2}=P, \operatorname{Tr}(P)=N\right\}$

Geometrical properties of the Grassmann manifold
The Frobenius inner product on $\mathbb{C}_{\text {herm }}^{N_{c} \times N_{c}}$ induces a Riemannian metric on

$$
\mathcal{M}:=\operatorname{Gr}\left(N, N_{\mathrm{c}}\right)=\left\{P \in \mathbb{C}_{\mathrm{herm}}^{N_{c} \times N_{c}} \mid P^{2}=P, \operatorname{Tr}(P)=N\right\}
$$

Geometrical properties of the Grassmann manifold

The Frobenius inner product on $\mathbb{C}_{\text {herm }}^{N_{c} \times N_{c}}$ induces a Riemannian metric on

$$
\mathcal{M}:=\operatorname{Gr}\left(N, N_{\mathrm{c}}\right)=\left\{P \in \mathbb{C}_{\mathrm{herm}}^{N_{c} \times N_{c}} \mid P^{2}=P, \operatorname{Tr}(P)=N\right\}
$$

Remark: we consider a hierarchy of 2 approximation spaces ($E_{\text {calc }} \ll E_{\text {ref }}$)

- to study the convergence of numerical algorithms, we take $E_{c}=E_{\text {calc }}$ EC, G. Kemlin and A. Levitt, Convergence analysis of direct minimization and self-consistent iterations, SIAM J. Mat. Anal. 42 (2021) 243-274
- to derive practical error bounds, we take $E_{c}=E_{\text {ref }}$

Geometrical properties of the Grassmann manifold
The Frobenius inner product on $\mathbb{C}_{\text {herm }}^{N_{c} \times N_{c}}$ induces a Riemannian metric on

$$
\mathcal{M}:=\operatorname{Gr}\left(N, N_{\mathrm{c}}\right)=\left\{P \in \mathbb{C}_{\mathrm{herm}}^{N_{c} \times N_{c}} \mid P^{2}=P, \operatorname{Tr}(P)=N\right\}
$$

Tangent space

$$
\forall P \in \mathcal{M}, \quad T_{P} \mathcal{M}=\left\{Q \in \mathbb{C}_{\mathrm{herm}}^{N_{c} \times N_{c}} \mid P Q P=(I-P) Q(I-P)=0\right\}
$$

The orthogonal projector $\Pi_{P} \in \mathcal{L}\left(\mathbb{C}_{\mathrm{herm}}^{N_{c} \times N_{c}}\right)$ on $T_{P} \mathcal{M}$ if given by

$$
\forall M \in \mathbb{C}_{\text {herm }}^{N_{c} \times N_{c}}, \quad \Pi_{P} M=[P,[P, M]]
$$

Geometrical properties of the Grassmann manifold
The Frobenius inner product on $\mathbb{C}_{\text {herm }}^{N_{c} \times N_{c}}$ induces a Riemannian metric on

$$
\mathcal{M}:=\operatorname{Gr}\left(N, N_{\mathrm{c}}\right)=\left\{P \in \mathbb{C}_{\mathrm{herm}}^{N_{c} \times N_{c}} \mid P^{2}=P, \operatorname{Tr}(P)=N\right\}
$$

Tangent space

$$
\forall P \in \mathcal{M}, \quad T_{P} \mathcal{M}=\left\{Q \in \mathbb{C}_{\text {herm }}^{N_{c} \times N_{c}} \mid P Q P=(I-P) Q(I-P)=0\right\}
$$

The orthogonal projector $\Pi_{P} \in \mathcal{L}\left(\mathbb{C}_{\mathrm{herm}}^{N_{c} \times N_{c}}\right)$ on $T_{P} \mathcal{M}$ if given by

$$
\forall M \in \mathbb{C}_{\text {herm }}^{N_{c} \times N_{c}}, \quad \Pi_{P} M=[P,[P, M]]
$$

Riemannian gradient and Hessian
Let $\mathcal{E} \in C^{1}\left(\mathbb{C}_{\text {herm }}^{N_{c} \times N_{c}} ; \mathbb{R}\right) \quad$ and $\quad E: \mathcal{M} \ni P \mapsto E(P):=\mathcal{E}(P) \in \mathbb{R}$

- Gradient of E at $P \in \mathcal{M}: \quad \nabla_{\mathcal{M}} E(P)=\Pi_{P}(\nabla \mathcal{E}(P)) \in T_{P} \mathcal{M}$

Geometrical properties of the Grassmann manifold
The Frobenius inner product on $\mathbb{C}_{\text {herm }}^{N_{c} \times N_{c}}$ induces a Riemannian metric on

$$
\mathcal{M}:=\operatorname{Gr}\left(N, N_{\mathrm{c}}\right)=\left\{P \in \mathbb{C}_{\mathrm{herm}}^{N_{c} \times N_{c}} \mid P^{2}=P, \operatorname{Tr}(P)=N\right\}
$$

Tangent space

$$
\forall P \in \mathcal{M}, \quad T_{P} \mathcal{M}=\left\{Q \in \mathbb{C}_{\text {herm }}^{N_{c} \times N_{c}} \mid P Q P=(I-P) Q(I-P)=0\right\}
$$

The orthogonal projector $\Pi_{P} \in \mathcal{L}\left(\mathbb{C}_{\text {herm }}^{N_{c} \times N_{c}}\right)$ on $T_{P} \mathcal{M}$ if given by

$$
\forall M \in \mathbb{C}_{\text {herm }}^{N_{c} \times N_{c}}, \quad \Pi_{P} M=[P,[P, M]]
$$

Riemannian gradient and Hessian

$$
\text { Let } \mathcal{E} \in C^{1}\left(\mathbb{C}_{\mathrm{herm}}^{N_{c} \times N_{c}} ; \mathbb{R}\right) \quad \text { and } \quad E: \mathcal{M} \ni P \mapsto E(P):=\mathcal{E}(P) \in \mathbb{R}
$$

- Gradient of E at $P \in \mathcal{M}: \quad \nabla_{\mathcal{M}} E(P)=\Pi_{P}(\nabla \mathcal{E}(P)) \in T_{P} \mathcal{M}$
- Hessian of E at $P \in \mathcal{M}: \quad \boldsymbol{D}_{\mathcal{M}}^{2} E(P)=\boldsymbol{\Omega}_{P}+\boldsymbol{K}_{P} \in \mathcal{L}\left(T_{P} \mathcal{M}\right)$ with $\Omega_{P}, \boldsymbol{K}_{P}: T_{P} \mathcal{M} \rightarrow T_{P} \mathcal{M}$ given by

$$
\boldsymbol{\Omega}_{P}=-[P,[\nabla \mathcal{E}(P), \bullet]] \quad \text { and } \quad \boldsymbol{K}_{P}=\boldsymbol{\Pi}_{P} \boldsymbol{D}^{2} \mathcal{E}(P) \boldsymbol{\Pi}_{P}
$$

2 - Practical error bounds on interatomic forces

Error bounds on energy and density

- a priori error bounds: EC-Chakir-Maday '12, Zhou et al. '13, EC-Dusson '17...
- a posteriori error bounds: EC-Dusson-Maday-Stamm-Vohralík '14-'21, Chen-Dai-Gong-He-Zhou '14, Chen-Schneider '15, Kaye-Lin-Yang '15, Herbst-Levitt-EC '20 ...

This work: error bounds on properties (non-variational)

Interatomic forces (at the discrete level)

- Manifold of admissible 1-RDM

$$
\mathcal{M}=\operatorname{Gr}\left(N, N_{\text {ref }}\right)=\left\{P \in \mathbb{C}_{\mathrm{herm}}^{N_{\text {ref }} \times N_{\text {ref }}} \mid P^{2}=P, \operatorname{Tr}(P)=N\right\}
$$

- Kohn-Sham energy functional $E^{\mathrm{KS}}: \Omega^{M} \times \mathcal{M} \rightarrow \mathbb{R}$

$$
E^{\mathrm{KS}}(X, P):=\operatorname{Tr}(T P)+\operatorname{Tr}(V(X) P)+E_{\mathrm{Hxc}}(P)
$$

- Kohn-Sham ground state and interatomic forces (Hellmann-Feynman)

$$
P_{*}(X)=\underset{P \in \mathcal{M}}{\operatorname{argmin}} E(X, P) \quad F_{j}(X):=-\operatorname{Tr}\left(\nabla_{X_{j}} V(X) P_{*}(X)\right)+F_{\text {ion }}(X)
$$

Force component $f_{*}=\left[F_{j \alpha}\left(X_{0}\right)\right]_{\alpha}$ for a fixed nuclear configuration X_{0}

$$
\begin{aligned}
E(P):= & E^{\mathrm{KS}}\left(X_{0}, P\right) \quad f(P):=-\operatorname{Tr}\left(\partial_{X_{j \alpha}} V\left(X_{0}\right) P\right) \\
& P_{*}:=\underset{P \in \mathcal{M}}{\operatorname{argmin}} E(P), \quad f_{*}=f\left(P_{*}\right)
\end{aligned}
$$

First-order optimality condition

$$
\nabla_{\mathcal{M}} E\left(P_{*}\right)=0
$$

Residual associated with an approximate solution P

$$
R(P):=\nabla_{\mathcal{M}} E(P)=[P,[P, H(P)]]
$$

where $H(P):=T+V\left(X_{0}\right)+\nabla \mathcal{E}_{\mathrm{Hxc}}(P)$ is the Kohn-Sham Hamiltonian, $\left(\nabla \mathcal{E}_{\text {Hxc }}(P)=\right.$ Frobenius gradient of $\left.\mathbb{C}_{\text {herm }}^{N_{\text {ref }} \times N_{\text {ref }}} \ni P \mapsto \mathcal{E}_{\text {Hxc }}(P) \in \mathbb{R}\right)$

General principle:

- \mathcal{M} smooth Riemannian manifold (set of admissible states)
- $R: \mathcal{M} \ni P \mapsto R(P) \in T_{P} \mathcal{M}$ smooth function (residual)
- $f: \mathcal{M} \rightarrow \mathbb{R}$ smooth function (observable)

$$
\begin{array}{ll}
\text { Equilibrium state : } & R\left(P_{*}\right)=0 \\
\text { Quantity of interest (QoI): } & f_{*}:=f\left(P_{*}\right)
\end{array}
$$

Error estimators: in the linear regime

$$
P-P_{*} \approx \boldsymbol{R}^{\prime}(P)^{-1} R(P) \quad \text { and } \quad f(P)-f_{*} \approx\left\langle\nabla_{\mathcal{M}} f(P), \boldsymbol{R}^{\prime}(P)^{-1} R(P)\right\rangle
$$

Two practical questions: if $P \approx \mathbf{D M}$ of the KS ground-state in $\mathcal{X}_{\text {calc }} \subset \mathcal{X}_{\text {ref }}$

1. are we in the linear regime in usual DFT calculations on real materials?
2. if so, how to compute an accurate and computationally efficient bound for $\left\langle\nabla_{\mathcal{M}} f(P), \boldsymbol{R}^{\prime}(P)^{-1} R(P)\right\rangle$?

Are we in the linear regime in practice?
Apparently yes! ... for planewave calculations with nice pseudopotentials
Numerical test: if $P-P_{*} \approx \boldsymbol{R}^{\prime}(P)^{-1} R(P)$, then the QoI computed from

$$
P_{\text {Newton }}=\mathfrak{R}\left(P-\boldsymbol{R}^{\prime}(P)^{-1} R(P)\right) \quad \text { (ß suitable retraction) }
$$

should be much better than the ones computed from P

Example: FCC silicon crystal (energies in Hartrees)

Energy

Ground-state density

Interatomic forces

Accurate and efficient approximation of $P-P_{*}$
Let P be the variational approximation of the $\mathbf{K S}$ ground state in $\mathcal{X}_{\text {cal }}$

M_{P}^{-1} very simple operator deduced from mathematical analysis
Equivalence between these three quantities proved in the asymptotic regime

Accurate and efficient approximation of $P-P_{*}$

Let P be the variational approximation of the KS ground state in $\mathcal{X}_{\text {cal }}$

$$
\underbrace{P-P_{*}}_{\text {not computable }} \approx \underbrace{\boldsymbol{R}^{\prime}(P)^{-1} R(P)}_{\text {computable but expensive }} \approx \underbrace{\boldsymbol{M}_{P}^{-1} R(P)}_{\text {computable and cheap }} \text { in energy norm }
$$

$$
\begin{gathered}
P=\sum_{i=1}^{N} \phi_{i} \phi_{i}^{*}, \quad \phi_{i} \in \mathcal{X}_{\mathrm{cal}}, \quad \Pi_{\mathcal{X}_{\mathrm{cal}}} H(P) \Pi_{\mathcal{X}_{\mathrm{cal}}} \phi_{i}=\varepsilon_{i} \phi_{i}, \quad \phi_{i}^{*} \phi_{j}=\delta_{i j}, \quad \varepsilon_{1} \leq \varepsilon_{2} \leq \cdots \\
P=\sum_{i=1}^{N} \phi_{i} \phi_{i}^{*} \in \mathcal{M} \leftrightarrow \Phi=\left(\phi_{1}|\cdots| \phi_{N}\right) \in \operatorname{St}\left(N, N_{\mathrm{ref}}\right) \text { s.t. } P=\Phi \Phi^{*} \\
Q=\sum_{i=1}^{N} \phi_{i} \xi_{i}^{*}+\xi_{i} \phi_{i}^{*} \in \mathcal{T}_{P} \mathcal{M} \leftrightarrow \Xi=\left(\xi_{1}|\cdots| \xi_{N}\right) \in \mathbb{C}^{N_{\mathrm{ref}} \times N} \text { s.t. } \Phi^{*} \Xi=0 \\
R(P)=[P,[P, H(P)]] \in \mathcal{T}_{P} \mathcal{M} \leftrightarrow R^{\mathrm{MO}}(\Phi)=\left(r_{1}|\cdots| r_{N}\right)=P^{\perp} H(P) \Phi \in \mathbb{C}^{N_{\mathrm{ref}} \times N}
\end{gathered}
$$

$$
\boldsymbol{M}_{P} Q \in \mathcal{T}_{P} \mathcal{M} \leftrightarrow \boldsymbol{M}_{\Phi}^{\mathrm{MO}} \Xi:=\left(\left(-\Delta-t_{i}\right) \xi_{i}\right)_{1 \leqslant i \leqslant N} \quad t_{i}:=\int_{\Omega}\left|\nabla \phi_{i}\right|^{2}
$$

First (unsuccessful) attempt to compute error bounds on interatomic forces

$$
\begin{aligned}
f(P)-f_{*} & \approx\left\langle\nabla_{\mathcal{M}} f(P), P-P_{*}\right\rangle & & \text { (we are in the linear regime) } \\
& \approx\left\langle\nabla_{\mathcal{M}} f(P), \boldsymbol{M}_{P}^{-1} R(P)\right\rangle & & \left(P-P_{*} \approx \boldsymbol{M}_{P}^{-1} R(P) \text { in energy norm }\right)
\end{aligned}
$$

First (unsuccessful) attempt to compute error bounds on interatomic forces

$$
\begin{aligned}
f(P)-f_{*} & \approx\left\langle\nabla_{\mathcal{M}} f(P), P-P_{*}\right\rangle \\
& \approx\left\langle\nabla_{\mathcal{M}} f(P), M_{P}^{-1} R(P)\right\rangle
\end{aligned}
$$

(we are in the linear regime)
wrong by several orders of magnitude

First (unsuccessful) attempt to compute error bounds on interatomic forces

$$
\begin{aligned}
f(P)-f_{*} & \approx\left\langle\nabla_{\mathcal{M}} f(P), P-P_{*}\right\rangle & & \text { (we are in the linear regime) } \\
& \stackrel{?}{\approx}\left\langle\nabla_{\mathcal{M}} f(P), \boldsymbol{M}_{P}^{-1} R(P)\right\rangle & & \text { wrong by several orders of magnitude }
\end{aligned}
$$

because $\nabla_{\mathcal{M}} f(P)$ and $P-P_{*}$ are almost orthogonal for nonnegative Sobolev norms

Example: FCC silicon crystal

Fourier coefficients of $\quad \nabla_{\mathcal{M}} f(P)$ (left), $\quad P-P_{*}$ (center) $\quad M_{P}^{-1} R(P)$ (right)

Second (successful) attempt to compute error bounds on interatomic forces
$f(P)-f_{*} \approx\left\langle\nabla_{\mathcal{M}} f(P), P-P_{*}\right\rangle$
$\stackrel{?}{\approx}\left\langle\nabla_{\mathcal{M}} f(P), \boldsymbol{R}^{\prime}(P)^{-1} R(P)\right\rangle \quad$ yes, but too computationally expensive

Second (successful) attempt to compute error bounds on interatomic forces

$$
\begin{aligned}
f(P)-f_{*} & \approx\left\langle\nabla_{\mathcal{M}} f(P), P-P_{*}\right\rangle & & \text { (we are in the linear regime) } \\
& \stackrel{?}{\approx}\left\langle\nabla_{\mathcal{M}} f(P), \boldsymbol{R}^{\prime}(P)^{-1} R(P)\right\rangle & & \text { yes, but too computationally expensive }
\end{aligned}
$$

A Schur complement approach to solve $\quad \boldsymbol{R}^{\prime}(P) Q=R(P)$

$$
\begin{gathered}
P=\sum_{i=1}^{N} \phi_{i} \phi_{i}^{*} \in \mathcal{M}, \quad Q=\sum_{i=1}^{N}\left(\phi_{i} \xi_{i}^{*}+\xi_{i} \phi_{i}^{*}\right) \in T_{P} \mathcal{M}, \\
\mathcal{X}_{\text {ref }}=\mathcal{X}_{\text {calc }} \oplus \mathcal{X}_{\text {calc }}^{\perp}, \quad \phi_{i} \in \mathcal{X}_{\text {calc }}, \quad \xi_{i}=\underbrace{\xi_{i, 1}}_{\in \mathcal{X}_{\text {calc }}}+\underbrace{\xi_{i, 2}}_{\mathcal{X}_{\text {calc }}^{\perp}}, \quad Q=Q_{1}+Q_{2} \\
\left(\begin{array}{c}
\boldsymbol{R}^{\prime}(P)_{11} \\
\boldsymbol{R}^{\prime}(P)_{21} \\
\boldsymbol{R}^{\prime}(P)_{12} \\
\boldsymbol{R}^{\prime}(P)_{22}
\end{array}\right)\binom{Q_{1}}{Q_{2}}=\binom{R(P)_{1}}{R(P)_{2}}
\end{gathered}
$$

Second (successful) attempt to compute error bounds on interatomic forces $f(P)-f_{*} \approx\left\langle\nabla_{\mathcal{M}} f(P), P-P_{*}\right\rangle \quad$ (we are in the linear regime) $\stackrel{?}{\approx}\left\langle\nabla_{\mathcal{M}} f(P), \boldsymbol{R}^{\prime}(P)^{-1} R(P)\right\rangle \quad$ yes, but too computationally expensive

A Schur complement approach to solve $\quad \boldsymbol{R}^{\prime}(P) Q=R(P)$

$$
\begin{gathered}
P=\sum_{i=1}^{N} \phi_{i} \phi_{i}^{*} \in \mathcal{M}, \quad Q=\sum_{i=1}^{N}\left(\phi_{i} \xi_{i}^{*}+\xi_{i} \phi_{i}^{*}\right) \in T_{P} \mathcal{M} \\
\mathcal{X}_{\text {ref }}=\mathcal{X}_{\text {calc }} \oplus \mathcal{X}_{\text {calc }}^{\perp}, \quad \phi_{i} \in \mathcal{X}_{\text {calc }}, \quad \xi_{i}=\underbrace{\xi_{i, 1}}_{\in \mathcal{X}_{\text {calc }}}+\underbrace{\xi_{i, 2}}_{\mathcal{X}_{\text {calc }}^{\perp}}, \quad Q=Q_{1}+Q_{2} \\
\left(\begin{array}{c}
\boldsymbol{R}^{\prime}(P)_{11} \\
\boldsymbol{R}^{\prime}(P)_{21} \\
\boldsymbol{R}^{\prime}(P)_{12} \\
\boldsymbol{R}^{\prime}(P)_{22}
\end{array}\right)\binom{Q_{1}}{Q_{2}}=\binom{R(P)_{1}}{R(P)_{2}}
\end{gathered}
$$

Q_{1} small (in energy norm) but large impact on the error on interactomic forces
Q_{2} large (in energy norm) but smaller impact on the error on interactomic forces $Q_{2} \approx M_{P}^{-1} R(P)_{2}$ (in energy norm), $\quad R(P)_{1}=0$ if P variational solution in $\mathcal{X}_{\text {calc }}$

Second (successful) attempt to compute error bounds on interatomic forces

$$
\begin{aligned}
f(P)-f_{*} & \approx\left\langle\nabla_{\mathcal{M}} f(P), P-P_{*}\right\rangle & & \text { (we are in the linear regime) } \\
& \stackrel{?}{\approx}\left\langle\nabla_{\mathcal{M}} f(P), \boldsymbol{R}^{\prime}(P)^{-1} R(P)\right\rangle & & \text { yes, but too computationally expensive }
\end{aligned}
$$

A Schur complement approach to solve $\quad \boldsymbol{R}^{\prime}(P) Q=R(P)$

$$
\begin{gathered}
P=\sum_{i=1}^{N} \phi_{i} \phi_{i}^{*} \in \mathcal{M}, \quad Q=\sum_{i=1}^{N}\left(\phi_{i} \xi_{i}^{*}+\xi_{i} \phi_{i}^{*}\right) \in T_{P} \mathcal{M}, \\
\mathcal{X}_{\text {ref }}=\mathcal{X}_{\text {calc }} \oplus \mathcal{X}_{\text {calc }}^{\perp}, \quad \phi_{i} \in \mathcal{X}_{\text {calc }}, \quad \xi_{i}=\underbrace{\xi_{i, 1}}_{\in \mathcal{X}_{\text {calc }}}+\underbrace{\xi_{i, 2}}_{\mathcal{X}_{\text {calc }}^{\perp}}, \quad Q=Q_{1}+Q_{2} \\
\left(\begin{array}{cc}
\boldsymbol{R}^{\prime}(P)_{11} & \boldsymbol{R}^{\prime}(P)_{12} \\
0 & \boldsymbol{M}_{P}
\end{array}\right)\binom{Q_{1}^{\text {app }}}{Q_{2}^{\text {app }}}=\binom{R(P)_{1}}{R(P)_{2}}
\end{gathered}
$$

$$
Q_{2}^{\mathrm{app}}=\boldsymbol{M}_{P}^{-1} R(P)_{2}, \quad\left(\boldsymbol{\Omega}_{P}+\boldsymbol{K}_{P}\right)_{11} Q_{1}^{\mathrm{app}}=R(P)_{1}-\left(\boldsymbol{\Omega}_{P}+\boldsymbol{K}_{P}\right)_{12} \boldsymbol{M}_{P}^{-1} R(P)_{2}
$$

Numerical results: post-processing

$$
\begin{align*}
f-f_{*} & :=f(P)-f\left(P_{*}\right) \tag{red}\\
f_{\text {res }}-f_{*} & :=f(P)-\left\langle\nabla_{\mathcal{M}} f(P), \boldsymbol{M}^{-1} R(P)\right\rangle-f\left(P_{*}\right) \tag{orange}\\
f_{\text {schur }}-f_{*} & :=f(P)-\left\langle\nabla_{\mathcal{M}} f(P), \boldsymbol{R}_{\text {app }}^{\prime}(P)^{-1} R(P)\right\rangle-f\left(P_{*}\right) \tag{green}\\
f_{\text {err }}-f_{*} & :=f(P)-\left\langle\nabla_{\mathcal{M}} f(P), P-P_{*}\right\rangle-f\left(P_{*}\right) \tag{blue}
\end{align*}
$$

3 - Response properties for metals

Linear (noninteracting) Schrödinger-like Hamiltonian H Perturbation δV of the potential

$$
\begin{gathered}
H \rightarrow H+\delta V \Rightarrow \rho \rightarrow \rho+\delta \rho+o(\delta V) \quad \text { with } \delta \rho \text { linear in } \delta V \\
\delta \rho=\chi_{0} \delta V
\end{gathered}
$$

χ_{0} : non-interacting density-density response function independent-particle susceptibility irreducible polarizability

Goal: compute $\delta \rho:=\chi_{0} \delta V$ for metals

Unperturbed Hamiltonian H

$$
H \phi_{n}=\varepsilon_{n} \phi_{n}, \quad \int_{\Omega} \phi_{m}^{*}(\boldsymbol{r}) \phi_{n}(\boldsymbol{r}) \mathrm{d} \boldsymbol{r}=\delta_{m n}, \quad \varepsilon_{1} \leqslant \varepsilon_{2} \leqslant \varepsilon_{3} \leqslant \cdots
$$

Ground-state density

$$
\rho(\boldsymbol{r})=\sum_{n=1}^{+\infty} f_{n}\left|\phi_{n}(\boldsymbol{r})\right|^{2} \quad \text { with } \quad f_{n}:=f\left(\frac{\varepsilon_{n}-\varepsilon_{F}}{T}\right) \quad \text { and } \quad f(x)=\frac{2}{1+e^{x}}
$$

Occupation numbers f_{n} for $T=0$ (left) and $T>0$ (right)
$\varepsilon_{\mathrm{F}}($ Fermi level $)$ such that $\int_{\Omega} \rho(\boldsymbol{r}) \mathrm{d} \boldsymbol{r}=\sum_{n=1}^{+\infty} f_{n}=\sum_{n=1}^{+\infty} f\left(\frac{\varepsilon_{n}-\varepsilon_{\mathrm{F}}}{T}\right)=N_{\mathrm{el}}$
Notation: $\quad f_{n}^{\prime}:=\frac{1}{T} f^{\prime}\left(\frac{\varepsilon_{n}-\varepsilon_{\mathrm{F}}}{T}\right)=: \frac{f_{n}-f_{n}}{\varepsilon_{n}-\varepsilon_{n}}$

Linear response

$$
H \rightarrow H+\delta V \quad \Rightarrow \quad \rho \rightarrow \rho+\delta \rho+o(\delta V) \quad \text { with } \delta \rho \text { linear in } \delta V
$$

Sum-over-state formula

$$
\delta \rho(\boldsymbol{r}):=\left(\chi_{0} \delta V\right)(\boldsymbol{r})=\sum_{n=1}^{+\infty} \sum_{m=1}^{+\infty} \frac{f_{n}-f_{m}}{\varepsilon_{n}-\varepsilon_{m}}\left(\delta V_{m n}-\delta \varepsilon_{\mathrm{F}} \delta_{m n}\right) \phi_{n}^{*}(\boldsymbol{r}) \phi_{m}(\boldsymbol{r})
$$

with $\quad \delta V_{m n}:=\left\langle\phi_{m}, \delta V \phi_{n}\right\rangle$ and $\delta \varepsilon_{\mathrm{F}}=\frac{\sum_{n=1}^{+\infty} f_{n}^{\prime} \delta V_{n n}}{\sum_{n=1}^{+\infty} f_{n}^{\prime}}$ to satisfy $\int_{\Omega} \delta \rho(\boldsymbol{r}) \mathrm{d} \boldsymbol{r}=0$

For periodic Schrödinger-like operators $H=-\frac{1}{2} \Delta+V$ in 3D,

$$
\varepsilon_{n} \underset{n \rightarrow \infty}{\sim} C n^{2 / 3} \quad \text { (Weyl formula) }
$$

In most applications (always except in Warm Dense Matter), only a number $N \gtrsim N_{\mathrm{el}}$ of occupation numbers f_{n} are non-negligible

$$
\begin{aligned}
\rho(\boldsymbol{r}) & \simeq \sum_{n=1}^{N} f_{n}\left|\phi_{n}(\boldsymbol{r})\right|^{2} \\
\delta \rho(\boldsymbol{r}) & \simeq\left(\sum_{n=1}^{N} \sum_{m=1}^{+\infty}+\sum_{n=1}^{+\infty} \sum_{m=1}^{N}\right) \frac{f_{n}-f_{m}}{\varepsilon_{n}-\varepsilon_{m}}\left(\delta V_{m n}-\delta \varepsilon_{F} \delta_{m n}\right) \phi_{n}^{*}(\boldsymbol{r}) \phi_{m}(\boldsymbol{r})
\end{aligned}
$$

but still one infinite sum in the sum-over-state formula

Alternatives to the sum-over-state formula
$\rho(\boldsymbol{r}) \simeq \sum_{n=1}^{N} f_{n}\left|\phi_{n}(\boldsymbol{r})\right|^{2} \Rightarrow \delta \rho(\boldsymbol{r}) \simeq \sum_{n=1}^{N} f_{n}\left(\phi_{n}^{*}(\boldsymbol{r}) \delta \phi_{n}(\boldsymbol{r})+\delta \phi_{n}^{*}(\boldsymbol{r}) \phi_{n}(\boldsymbol{r})\right)+\delta f_{n}\left|\phi_{n}(\boldsymbol{r})\right|^{2}$ the $\delta \phi_{n}$'s and the δf_{n} 's are not unique (gauge invariance)

Let P : orthogonal projector on $\operatorname{Span}\left(\phi_{n}\right)_{1 \leq n \leq N}$, and $Q:=1-P$. We have

$$
\delta \phi_{n}=\underbrace{\delta \phi_{n}^{P}}_{\in \operatorname{Ran}(P)}+\underbrace{\delta \phi_{n}^{Q}}_{\in \operatorname{Ran}(Q)}
$$

and

$$
\forall 1 \leqslant n \leqslant N, \quad f_{n} \delta \phi_{n}=\sum_{m=1}^{N} \Gamma_{m n} \phi_{m}+f_{n} \delta \phi_{n}^{Q} \quad \text { with } \quad \Gamma_{m n}:=f_{n}\left\langle\phi_{m}, \delta \phi_{n}\right\rangle
$$

Thus

$$
\delta \rho(\boldsymbol{r}) \simeq \sum_{n, m=1}^{N}\left(\Gamma_{m n}+\overline{\Gamma_{n m}}\right) \phi_{n}^{*}(\boldsymbol{r}) \phi_{m}(\boldsymbol{r})+\sum_{n=1}^{N} 2 f_{n} \operatorname{Re}\left(\phi_{n}^{*}(\boldsymbol{r}) \delta \phi_{n}^{Q}(\boldsymbol{r})\right)+\sum_{n=1}^{N} \delta f_{n}\left|\phi_{n}(\boldsymbol{r})\right|^{2}
$$

Alternatives to the sum-over-state formula (continued)

$$
\begin{aligned}
\delta \rho(\boldsymbol{r}) & \simeq \sum_{n, m=1}^{N}\left(\Gamma_{m n}+\overline{\Gamma_{n m}}\right) \phi_{n}^{*}(\boldsymbol{r}) \phi_{m}(\boldsymbol{r})+\sum_{n=1}^{N} 2 f_{n} \operatorname{Re}\left(\phi_{n}^{*}(\boldsymbol{r}) \delta \phi_{n}^{Q}(\boldsymbol{r})\right)+\sum_{n=1}^{N} \delta f_{n}\left|\phi_{n}(\boldsymbol{r})\right|^{2} \\
& =\left(\sum_{n=1}^{N} \sum_{m=1}^{+\infty}+\sum_{n=1}^{+\infty} \sum_{m=1}^{N}\right) \frac{f_{n}-f_{m}}{\varepsilon_{n}-\varepsilon_{m}}\left(\delta V_{m n}-\delta \varepsilon_{\mathrm{F}} \delta_{m n}\right) \phi_{n}^{*}(\boldsymbol{r}) \phi_{m}(\boldsymbol{r})
\end{aligned}
$$

By identification, we get that

1. the $\Gamma_{m n}$'s and the δf_{n} 's must satisfy

$$
\left\{\begin{array}{ll}
2 \operatorname{Re}\left(\Gamma_{n n}\right)+\delta f_{n}=f_{n}^{\prime}\left(\delta V_{n n}-\varepsilon_{\mathrm{F}}\right) & \text { for } m=n \\
\Gamma_{m n}+\overline{\Gamma_{n m}}=\Delta_{m n}:=\frac{f_{n}-f_{m}}{\varepsilon_{n}-\varepsilon_{m}} \delta V_{m n} & \text { for } m \neq n
\end{array} \longrightarrow \quad\right. \text { gauge choice needed }
$$

2. the $\delta \phi_{n}^{Q}$'s must satisfy the Sternheimer equations

$$
Q\left(H-\varepsilon_{n}\right) Q \delta \phi_{n}^{Q}=b_{n}:=-Q\left(\delta V \phi_{n}\right) \quad \longrightarrow \quad \text { possibly ill-conditioned }
$$

Gauge choice for the $\Gamma_{m n}$'s and the δf_{n} 's

$$
2 \operatorname{Re}\left(\Gamma_{n n}\right)+\delta f_{n}=f_{n}^{\prime}\left(\delta V_{n n}-\varepsilon_{\mathrm{F}}\right) \quad \text { and } \quad \Gamma_{m n}+\overline{\Gamma_{n m}}=\Delta_{m n} \text { with } \Delta_{m n}=\overline{\Delta_{n m}} \text { if } m \neq n
$$

Gauge choice for the $\Gamma_{m n}$'s and the δf_{n} 's

$$
2 \operatorname{Re}\left(\Gamma_{n n}\right)+\delta f_{n}=f_{n}^{\prime}\left(\delta V_{n n}-\varepsilon_{\mathrm{F}}\right) \quad \text { and } \quad \Gamma_{m n}+\overline{\Gamma_{n m}}=\Delta_{m n} \text { with } \Delta_{m n}=\overline{\Delta_{n m}} \text { if } m \neq n
$$

Natural (and good!) gauge choice for the $\Gamma_{n n}$'s $(m=n)$ and the δf_{n} 's

$$
\Gamma_{n n}=0 \quad \text { and } \quad \delta f_{n}=f_{n}^{\prime}\left(\delta V_{n n}-\varepsilon_{\mathrm{F}}\right)
$$

Gauge choice for the $\Gamma_{m n}$'s and the δf_{n} 's

$$
2 \operatorname{Re}\left(\Gamma_{n n}\right)+\delta f_{n}=f_{n}^{\prime}\left(\delta V_{n n}-\varepsilon_{\mathrm{F}}\right) \quad \text { and } \quad \Gamma_{m n}+\overline{\Gamma_{n m}}=\Delta_{m n} \text { with } \Delta_{m n}=\overline{\Delta_{n m}} \text { if } m \neq n
$$

Natural (and good!) gauge choice for the $\Gamma_{n n}$'s $(m=n)$ and the δf_{n} 's

$$
\Gamma_{n n}=0 \quad \text { and } \quad \delta f_{n}=f_{n}^{\prime}\left(\delta V_{n n}-\varepsilon_{\mathrm{F}}\right)
$$

Possible gauge choices for the $\Gamma_{m n}$'s $(m \neq n)$

1. orthonormal gauge: impose $\delta\left\langle\phi_{m}, \phi_{n}\right\rangle=0$

$$
\Gamma_{m n}^{\mathrm{orth}}=\frac{f_{n}}{\varepsilon_{n}-\varepsilon_{m}} \delta V_{m n} \quad \text { (natural but very bad as the } \Gamma_{m n}^{\text {orth }} \text { may blow up) }
$$

Gauge choice for the $\Gamma_{m n}$'s and the δf_{n} 's
$2 \operatorname{Re}\left(\Gamma_{n n}\right)+\delta f_{n}=f_{n}^{\prime}\left(\delta V_{n n}-\varepsilon_{\mathrm{F}}\right) \quad$ and $\quad \Gamma_{m n}+\overline{\Gamma_{n m}}=\Delta_{m n}$ with $\Delta_{m n}=\overline{\Delta_{n m}}$ if $m \neq n$
Natural (and good!) gauge choice for the $\Gamma_{n n}$'s $(m=n)$ and the δf_{n} 's

$$
\Gamma_{n n}=0 \quad \text { and } \quad \delta f_{n}=f_{n}^{\prime}\left(\delta V_{n n}-\varepsilon_{F}\right)
$$

Possible gauge choices for the $\Gamma_{m n}$'s $(m \neq n)$

1. orthonormal gauge: impose $\delta\left\langle\phi_{m}, \phi_{n}\right\rangle=0$

$$
\Gamma_{m n}^{\text {orth }}=\frac{f_{n}}{\varepsilon_{n}-\varepsilon_{m}} \delta V_{m n} \quad \text { (natural but very bad as the } \Gamma_{m n}^{\text {orth }} \text { may blow up) }
$$

2. gauges used in Abinit and Quantum Espresso

$$
\Gamma_{m n}^{\mathrm{Abinit}}=\mathbb{1}_{f_{n}>f_{m}} \Delta_{m n}, \quad \Gamma_{m n}^{\mathrm{QE}}=\frac{\Delta_{m n}}{1+e^{\left(\varepsilon_{n}-\varepsilon_{m}\right) / T}}
$$

Gauge choice for the $\Gamma_{m n}$'s and the δf_{n} 's
$2 \operatorname{Re}\left(\Gamma_{n n}\right)+\delta f_{n}=f_{n}^{\prime}\left(\delta V_{n n}-\varepsilon_{\mathrm{F}}\right) \quad$ and $\quad \Gamma_{m n}+\overline{\Gamma_{n m}}=\Delta_{m n}$ with $\Delta_{m n}=\overline{\Delta_{n m}}$ if $m \neq n$
Natural (and good!) gauge choice for the $\Gamma_{n n}$'s $(m=n)$ and the δf_{n} 's

$$
\Gamma_{n n}=0 \quad \text { and } \quad \delta f_{n}=f_{n}^{\prime}\left(\delta V_{n n}-\varepsilon_{\mathrm{F}}\right)
$$

Possible gauge choices for the $\Gamma_{m n}$'s $(m \neq n)$

1. orthonormal gauge: impose $\delta\left\langle\phi_{m}, \phi_{n}\right\rangle=0$

$$
\Gamma_{m n}^{\text {orth }}=\frac{f_{n}}{\varepsilon_{n}-\varepsilon_{m}} \delta V_{m n} \quad \text { (natural but very bad as the } \Gamma_{m n}^{o r t h} \text { may blow up) }
$$

2. gauges used in Abinit and Quantum Espresso

$$
\Gamma_{m n}^{\text {Abinit }}=\mathbb{1}_{f_{n}>f_{m}} \Delta_{m n}, \quad \Gamma_{m n}^{\mathrm{QE}}=\frac{\Delta_{m n}}{1+e^{\left(\varepsilon_{n}-\varepsilon_{m}\right) / T}}
$$

3. simple gauge and minimal gauge (used in DFTK)

$$
\Gamma_{m n}^{\text {simple }}=\frac{1}{2} \Delta_{m n}=\operatorname{argmin}\left|\Gamma_{m n}\right|^{2}+\left|\overline{\Gamma_{m n}+\overline{\Gamma_{n m}}=\Delta_{m n}}\right|^{2}, \quad \Gamma_{m n}^{\min }=\frac{f_{n}^{2}}{f_{m}^{2}+f_{n}^{2}} \Delta_{m n}=\underset{\Gamma_{m n}+\overline{\Gamma_{n m}}=\Delta_{m n}}{\operatorname{argmin}} \frac{1}{f_{n}^{2}}\left|\Gamma_{m n}\right|^{2}+\frac{1}{f_{m}^{2}}\left|\overline{\Gamma_{n m}}\right|^{2}
$$

Gauge choice for the $\Gamma_{m n}$'s and the δf_{n} 's
For all these gauge choices but the orthogonal one, we have

$$
\begin{equation*}
\left|\Gamma_{m n}\right| \leqslant\left|\Delta_{m n}\right| \leqslant \max _{x \in \mathbb{R}} \frac{1}{T}\left|f^{\prime}(x)\right|\left|\delta V_{m n}\right|=\frac{1}{2 T}\left|\delta V_{m n}\right| . \tag{1}
\end{equation*}
$$

If we make an error on δV, it is at most amplified by a factor of $\frac{1}{2 T}$

Solving the Sternheimer equation $\quad Q\left(H-\varepsilon_{n}\right) Q \delta \phi_{n}^{Q}=b_{n}$
Output of the numerical diagonalization iterative scheme (ex. LOBPCG) used to compute the density

- N fully converged orthonormal eigenmodes $\left(\varepsilon_{n}, \phi_{n}\right)_{1 \leq n \leq N}$

$$
\Phi:=\left(\phi_{1}, \cdots, \phi_{N}\right) \quad \text { orthonormal basis of } \operatorname{Ran}(P)=\operatorname{Ker}(Q)
$$

- $N_{\text {ex }}$ extra, only partially converged, orthonormal eigenvectors
$\Phi_{\text {ex }}:=\left(\phi_{N+1}^{\ell}, \ldots, \phi_{N+N_{\text {ex }}}^{\ell}\right), \quad \ell:$ \# of iter. of the diagonalization scheme

Solving the Sternheimer equation $Q\left(H-\varepsilon_{n}\right) Q \delta \phi_{n}^{Q}=b_{n}$
Output of the numerical diagonalization iterative scheme (ex. LOBPCG) used to compute the density

- N fully converged orthonormal eigenmodes $\left(\varepsilon_{n}, \phi_{n}\right)_{1 \leq n \leq N}$

$$
\Phi:=\left(\phi_{1}, \cdots, \phi_{N}\right) \quad \text { orthonormal basis of } \operatorname{Ran}(P)=\operatorname{Ker}(Q)
$$

- $N_{\text {ex }}$ extra, only partially converged, orthonormal eigenvectors
$\Phi_{\text {ex }}:=\left(\phi_{N+1}^{\ell}, \ldots, \phi_{N+N_{\text {ex }}}^{\ell}\right), \quad \ell:$ \# of iter. of the diagonalization scheme
We can assume without loss of generality that
- $\left(\Phi, \Phi_{\mathrm{ex}}\right)$ is an orthonormal family
- $\Phi_{\text {ex }}^{*} H_{\rho} \Phi_{\text {ex }} \in \mathbb{C}^{N_{\text {ex }} \times N_{\text {ex }}}$ is a diagonal matrix whose elements are labelled
$\varepsilon_{m}^{\ell}:=\left\langle\phi_{m}^{\ell}, H \phi_{m}^{\ell}\right\rangle$ for $N+1 \leqslant m \leqslant N+N_{\text {ex }}$
- $\left(\phi_{m}^{\ell}, \varepsilon_{m}^{\ell}\right) \underset{\ell \rightarrow \infty}{\longrightarrow}\left(\phi_{m}, \varepsilon_{m}\right)$

Solving the Sternheimer equation $Q\left(H-\varepsilon_{n}\right) Q \delta \phi_{n}^{Q}=b_{n}$
Output of the numerical diagonalization iterative scheme (ex. LOBPCG) used to compute the density

- N fully converged orthonormal eigenmodes $\left(\varepsilon_{n}, \phi_{n}\right)_{1 \leq n \leq N}$

$$
\Phi:=\left(\phi_{1}, \cdots, \phi_{N}\right) \quad \text { orthonormal basis of } \operatorname{Ran}(P)=\operatorname{Ker}(Q)
$$

- $N_{\text {ex }}$ extra, only partially converged, orthonormal eigenvectors
$\Phi_{\text {ex }}:=\left(\phi_{N+1}^{\ell}, \ldots, \phi_{N+N_{\text {ex }}}^{\ell}\right), \quad \ell:$ \# of iter. of the diagonalization scheme
We can assume without loss of generality that
- $\left(\Phi, \Phi_{\mathrm{ex}}\right)$ is an orthonormal family
- $\Phi_{\text {ex }}^{*} H_{\rho} \Phi_{\text {ex }} \in \mathbb{C}^{N_{\text {ex }} \times N_{\text {ex }}}$ is a diagonal matrix whose elements are labelled $\varepsilon_{m}^{\ell}:=\left\langle\phi_{m}^{\ell}, H \phi_{m}^{\ell}\right\rangle$ for $N+1 \leqslant m \leqslant N+N_{\text {ex }}$
- $\left(\phi_{m}^{\ell}, \varepsilon_{m}^{\ell}\right) \underset{\ell \rightarrow \infty}{\longrightarrow}\left(\phi_{m}, \varepsilon_{m}\right)$

Let's use these extra approximate eigenvectors to improve the computation of response properties!

Solving the Sternheimer equation $\quad Q\left(H-\varepsilon_{n}\right) Q \delta \phi_{n}^{Q}=b_{n} \quad$ (continued)

Schur complement method $\quad \delta \phi_{n}^{Q}=\underbrace{\Phi_{\operatorname{ex}} \alpha_{n}}_{\in \operatorname{Ran}(T)}+\underbrace{\delta \phi_{n}^{R}}_{\in \operatorname{Ran}(R)}, \quad n \leq N$
coercive, ill-conditioned, but small

$$
\left(\begin{array}{cc}
\Phi_{\mathrm{ex}}^{*}\left(H-\varepsilon_{n}\right) \Phi_{\mathrm{ex}} & \Phi_{\mathrm{ex}}^{*} H R \\
R H \Phi_{\mathrm{ex}} & \underbrace{R\left(H-\varepsilon_{n}\right) R}_{\text {coercive, large, but well-conditioned }}
\end{array}\right)\binom{\alpha_{n}}{\delta \phi_{n}^{R}}=\binom{\Phi_{\mathrm{ex}}^{*} b_{n}}{R b_{n}}
$$

Solving the Sternheimer equation $Q\left(H-\varepsilon_{n}\right) Q \delta \phi_{n}^{Q}=b_{n} \quad$ (continued)

Schur complement method $\quad \delta \phi_{n}^{Q}=\underbrace{\Phi_{\operatorname{ex}} \alpha_{n}}_{\in \operatorname{Ran}(T)}+\underbrace{\delta \phi_{n}^{R}}_{\in \operatorname{Ran}(R)}, \quad n \leq N$

$$
A_{n}:=\left(\Phi_{\mathrm{ex}}^{*}\left(H-\varepsilon_{n}\right) \Phi_{\mathrm{ex}}\right)^{-1}, \quad \alpha_{n}=A_{n}\left(\Phi_{\mathrm{ex}}^{*} b_{n}-\Phi_{\mathrm{ex}}^{*}\left(H-\varepsilon_{n}\right) \delta \phi_{n}^{R}\right)
$$

$$
\left[R\left(H-\varepsilon_{n}\right)\left(1-\Phi_{\mathrm{ex}} A_{n} \Phi_{\mathrm{ex}}^{*}\left(H-\varepsilon_{n}\right)\right) R\right] \delta \phi_{n}^{R}=R b_{n}-R\left(H-\varepsilon_{n}\right) \Phi_{\mathrm{ex}} A_{n} \Phi_{\mathrm{ex}}^{*} b_{n}
$$

Numerical results: convergence of the Sternheimer solver for $\mathbf{A l}_{40}$

k-point - coordinate	$[0,0,0]$	$[1 / 3,0,0]$	$[1 / 3,1 / 3,0]$
N	69	58	67
$\varepsilon_{N+1}-\varepsilon_{N}$	0.0320	0.0134	0.0217
\# CG iterations $n=N$ Schur	48	$\mathbf{4 4}$	41
\# CG iterations $n=N$ direct	56	$\mathbf{8 3}$	58

k-point [0.333, 0.0, 0.0]

Conclusion

Error bounds for DFT

- guaranteed, optimal, cheap error bounds on the ground-state energy and density for linear Schrödinger equations
- practical (not guaranteed), optimal, cheap error bounds on the groundstate energy and density for DFT
- practical (not guaranteed), quite accurate, not too expensive error bounds for non-variational quantities such as forces for DFT

Error bounds for DFT

- guaranteed, optimal, cheap error bounds on the ground-state energy and density for linear Schrödinger equations
- practical (not guaranteed), optimal, cheap error bounds on the groundstate energy and density for DFT
- practical (not guaranteed), quite accurate, not too expensive error bounds for non-variational quantities such as forces for DFT

Response properties

- easy for insulators
- harder for metals
- gauge choice is important
we have clarified this point and proposed new, very simple gauges
- the Sternheimer equation is ill-conditioned
we have improved its resolution using a Schur complement method

Thank you for your attention

