Error estimators for Density Functional Theory

Eric CANCES

Ecole des Ponts et Inria Paris, France

IPAM, Los Angeles, March 27-31, 2023

École des Ponts ParisTech

Extreme-scale Mathematically-based Computational Chemistry

Numerical challenges in DFT

- very large systems with high accuracy
- metallic / heterogeneous systems
- databases for materials and drug discovery and design (machine learning)
 - Ex.: open catalyst data set (Chanussot et al. '20)

264,890,000 Density Functional Theory (DFT) calculations

Need for fast, reliable, black-box numerical methods with error estimators

Total error: $\mathbf{e} = \mathbf{e}_{m} + \mathbf{e}_{d} + \mathbf{e}_{a} + \mathbf{e}_{i} + \mathbf{e}_{c}$

Example: s = static polarizability of the CO₂ molecule y = (#C atoms = 1, #O atoms = 2, total charge = 0)(+ universal parameters: $\hbar, m_e, e, \varepsilon_0, z_X, m_{X^{\text{iso}}}$)

Total error: $\mathbf{e} = \mathbf{e}_{m} + \mathbf{e}_{d} + \mathbf{e}_{a} + \mathbf{e}_{i} + \mathbf{e}_{c}$

Goal 1: provide error estimates (certification)

Total error: $\mathbf{e} = \mathbf{e}_{m} + \mathbf{e}_{d} + \mathbf{e}_{a} + \mathbf{e}_{i} + \mathbf{e}_{c}$

Goal 1: provide error estimates (certification)Goal 2: optimize dynamically the computational resources (error balancing) $(DFT \sim 15\% \text{ of CPU time available in HPC centers)}$

An example of fully guaranteed error bars Herbst, Levitt, EC, *Faraday discussions* '20

Si band diagram

(*non-self-consistent* DFT-LDA model with GTH pseudopotentials)

fully guaranteed error bars accounting for

- discretization error
- algorithmic error
- floating-point arithmetics (=implementation error assuming bug-free code)

Numerical methods implemented in DFTK (Density-Functional ToolKit)

- planewave DFT package in julia (2018-), MIT license
- outcome of the EMC2 ERC Synergy project
- main developers: Michael Herbst (now at EPFL) and Antoine Levitt (now at Paris-Saclay)

- supports mathematical developments (low entrance barrier, ~7k lines of code) and scale-up to relevant applications (~ 1,000 electrons)
- fully composable with julia ecosystem
 - arbitrary precision (32bit, 64bit...)
 - algorithmic differentiation
 - interval arithmetic

- •••

1. Geometrical structure of the Kohn-Sham model

- 2. Practical error bounds on interatomic forces in Kohn-Sham DFT EC, G. Dusson, G. Kemlin and A. Levitt, SIAM J. Sci. Comput. '22
- **3.** Computation of response properties for metals

EC, M. Herbst, G. Kemlin, A. Levitt and B. Stamm, Lett. Math. Phys. '23

1 - Geometrical structure of the Kohn-Sham model

Periodic supercell $\Omega = \mathbb{R}^3/\mathbb{L}$, \mathbb{L} : Bravais lattice of \mathbb{R}^3 M ionic cores, positions $X := (X_j)_{1 \le j \le M} \in \Omega^M$

N valence electron pairs (spin-unpolarized state)

Orbital formulation of the continuous Kohn-Sham model

$$\min\left\{E^{\mathrm{KS}}(X,\Phi) \mid \Phi = (\phi_1, \cdots, \phi_N) \in \left(H^1_{\#}(\Omega;\mathbb{C})\right)^N, \ \int_{\Omega} \phi_i^* \phi_j = \delta_{ij}\right\}$$
$$E^{\mathrm{KS}}(X,\Phi) = \sum_{i=1}^N \int_{\Omega} |\nabla \phi_i|^2 + \int_{\Omega} v(X)\rho_{\Phi} + E_{\mathrm{Hxc}}(\rho_{\Phi}) \quad \text{with} \quad \rho_{\Phi}(\mathbf{r}) := 2\sum_{i=1}^N |\phi_i(\mathbf{r})|^2$$

Orbital formulation of the continuous Kohn-Sham model

$$\min\left\{E^{\mathrm{KS}}(X,\Phi) \mid \Phi = (\phi_1, \cdots, \phi_N) \in \left(H^1_{\#}(\Omega;\mathbb{C})\right)^N, \ \int_{\Omega} \phi_i^* \phi_j = \delta_{ij}\right\}$$
$$E^{\mathrm{KS}}(X,\Phi) = \sum_{i=1}^N \int_{\Omega} |\nabla \phi_i|^2 + \int_{\Omega} v(X)\rho_{\Phi} + E_{\mathrm{Hxc}}(\rho_{\Phi}) \quad \text{with} \quad \rho_{\Phi}(\mathbf{r}) := 2\sum_{i=1}^N |\phi_i(\mathbf{r})|^2$$

Discretization in a planewave basis set

Fourier modes: $e_{\mathbf{G}}(\mathbf{r}) := |\Omega|^{-1/2} e^{i\mathbf{G}\cdot\mathbf{r}}, \quad \mathbf{G} \in \mathbb{L}^*$ (reciprocal lattice) Approximation spaces: $\mathcal{X} = \operatorname{Span}\left(e_{\mathbf{G}}, \ \mathbf{G} \in \mathbb{L}^*, \ \frac{|\mathbf{G}|^2}{2} < E_{\mathbf{c}}\right)$ \uparrow

energy cut-off

1 - Geometrical structure of the Kohn-Sham model

Orbital formulation of the continuous Kohn-Sham model

$$\min\left\{E^{\mathrm{KS}}(X,\Phi) \mid \Phi = (\phi_1, \cdots, \phi_N) \in \left(H^1_{\#}(\Omega;\mathbb{C})\right)^N, \ \int_{\Omega} \phi_i^* \phi_j = \delta_{ij}\right\}$$
$$E^{\mathrm{KS}}(X,\Phi) = \sum_{i=1}^N \int_{\Omega} |\nabla \phi_i|^2 + \int_{\Omega} v(X)\rho_{\Phi} + E_{\mathrm{Hxc}}(\rho_{\Phi}) \quad \text{with} \quad \rho_{\Phi}(\mathbf{r}) := 2\sum_{i=1}^N |\phi_i(\mathbf{r})|^2$$

Orbital formulation of the discretized KS model (used in most simulations)

$$\phi_i(\mathbf{r}) = \sum_{\mathbf{G} \in \mathbb{L}^* \mid |\mathbf{G}| < \sqrt{2E_c}} C_{\mathbf{G}i} e_{\mathbf{G}}(\mathbf{r}) \in \mathcal{X}, \qquad N_c := \dim(\mathcal{X})$$

minimization set: $St(N, N_c) := \{ C = [C_{G_i}] \in \mathbb{C}^{N_c \times N} \mid C^*C = I_N \}$

drawback: gauge invariance (C and CU have same energy $\forall U \in U(N_c)$)

Orbital formulation of the continuous Kohn-Sham model

$$\min\left\{E^{\mathrm{KS}}(X,\Phi) \mid \Phi = (\phi_1, \cdots, \phi_N) \in \left(H^1_{\#}(\Omega;\mathbb{C})\right)^N, \ \int_{\Omega} \phi_i^* \phi_j = \delta_{ij}\right\}$$
$$E^{\mathrm{KS}}(X,\Phi) = \sum_{i=1}^N \int_{\Omega} |\nabla \phi_i|^2 + \int_{\Omega} v(X)\rho_{\Phi} + E_{\mathrm{Hxc}}(\rho_{\Phi}) \quad \text{with} \quad \rho_{\Phi}(\mathbf{r}) := 2\sum_{i=1}^N |\phi_i(\mathbf{r})|^2$$

Orbital formulation of the discretized KS model (used in most simulations)

$$\phi_i(\mathbf{r}) = \sum_{\mathbf{G} \in \mathbb{L}^* \mid |\mathbf{G}| < \sqrt{2E_c}} C_{\mathbf{G}i} e_{\mathbf{G}}(\mathbf{r}) \in \mathcal{X}, \qquad N_c := \dim(\mathcal{X})$$

minimization set: St $(N, N_c) := \{ C = [C_{\mathbf{G}i}] \in \mathbb{C}^{N_c \times N} \mid C^*C = I_N \}$

drawback: gauge invariance (C and CU have same energy $\forall U \in U(N_c)$)

Density matrix (1-RDM) formulation (math. analysis, linear scaling methods) $P = CC^*$ orthogonal proj. on span(columns of C) minimization set: $Gr(N, N_c) := \left\{ P \in \mathbb{C}_{herm}^{N_c \times N_c} \mid P^2 = P, \ Tr(P) = N \right\}$

Geometrical properties of the Grassmann manifold

The Frobenius inner product on $\mathbb{C}^{N_c imes N_c}_{herm}$ induces a Riemannian metric on

$$\mathcal{M} := \operatorname{Gr}(N, N_{c}) = \{ P \in \mathbb{C}_{\operatorname{herm}}^{N_{c} \times N_{c}} \mid P^{2} = P, \ \operatorname{Tr}(P) = N \}$$

1 - Geometrical structure of the Kohn-Sham model

Geometrical properties of the Grassmann manifold

The Frobenius inner product on $\mathbb{C}_{herm}^{N_c \times N_c}$ induces a Riemannian metric on $\mathcal{M} := \operatorname{Gr}(N, N_c) = \{ P \in \mathbb{C}_{herm}^{N_c \times N_c} \mid P^2 = P, \operatorname{Tr}(P) = N \}$

Remark: we consider a hierarchy of 2 approximation spaces ($E_{calc} \ll E_{ref}$)

• to study the convergence of numerical algorithms, we take $E_c = E_{calc}$

EC, G. Kemlin and A. Levitt, *Convergence analysis of direct minimization and self-consistent iterations*, SIAM J. Mat. Anal. 42 (2021) 243–274

• to derive practical error bounds, we take $E_c = E_{ref}$

1 - Geometrical structure of the Kohn-Sham model

Geometrical properties of the Grassmann manifold

The Frobenius inner product on $\mathbb{C}_{herm}^{N_c \times N_c}$ induces a Riemannian metric on $\mathcal{M} := \operatorname{Gr}(N, N_c) = \{ P \in \mathbb{C}_{herm}^{N_c \times N_c} \mid P^2 = P, \operatorname{Tr}(P) = N \}$

Tangent space

$$\forall P \in \mathcal{M}, \quad T_P \mathcal{M} = \{ Q \in \mathbb{C}_{herm}^{N_c \times N_c} \mid PQP = (I - P)Q(I - P) = 0 \}$$

The orthogonal projector $\Pi_P \in \mathcal{L}(\mathbb{C}^{N_c \times N_c}_{herm})$ on $T_P \mathcal{M}$ if given by

 $\forall M \in \mathbb{C}_{herm}^{N_c \times N_c}, \quad \mathbf{\Pi}_P M = [P, [P, M]]$

Geometrical properties of the Grassmann manifold

The Frobenius inner product on $\mathbb{C}_{herm}^{N_c \times N_c}$ induces a Riemannian metric on $\mathcal{M} := \operatorname{Gr}(N, N_c) = \{P \in \mathbb{C}_{herm}^{N_c \times N_c} \mid P^2 = P, \operatorname{Tr}(P) = N\}$

Tangent space

$$\forall P \in \mathcal{M}, \quad T_P \mathcal{M} = \{Q \in \mathbb{C}_{herm}^{N_c \times N_c} \mid PQP = (I - P)Q(I - P) = 0\}$$

The orthogonal projector $\Pi_P \in \mathcal{L}(\mathbb{C}_{herm}^{N_c \times N_c})$ on $T_P \mathcal{M}$ if given by

$$\forall M \in \mathbb{C}^{N_c \times N_c}_{\text{herm}}, \quad \mathbf{\Pi}_P M = [P, [P, M]]$$

Riemannian gradient and Hessian

Let $\mathcal{E} \in C^1(\mathbb{C}^{N_c \times N_c};\mathbb{R})$ and $E: \mathcal{M} \ni P \mapsto E(P) := \mathcal{E}(P) \in \mathbb{R}$ • Gradient of E at $P \in \mathcal{M}$: $\nabla_{\mathcal{M}} E(P) = \Pi_P(\nabla \mathcal{E}(P)) \in T_P \mathcal{M}$

Geometrical properties of the Grassmann manifold

The Frobenius inner product on $\mathbb{C}_{herm}^{N_c \times N_c}$ induces a Riemannian metric on $\mathcal{M} := \operatorname{Gr}(N, N_c) = \{ P \in \mathbb{C}_{herm}^{N_c \times N_c} \mid P^2 = P, \operatorname{Tr}(P) = N \}$

Tangent space

$$\forall P \in \mathcal{M}, \quad T_P \mathcal{M} = \{ Q \in \mathbb{C}_{herm}^{N_c \times N_c} \mid PQP = (I - P)Q(I - P) = 0 \}$$

The orthogonal projector $\Pi_P \in \mathcal{L}(\mathbb{C}_{herm}^{N_c \times N_c})$ on $T_P \mathcal{M}$ if given by

$$\forall M \in \mathbb{C}^{N_c \times N_c}_{\text{herm}}, \quad \mathbf{\Pi}_P M = [P, [P, M]]$$

Riemannian gradient and Hessian

Let $\mathcal{E} \in C^1(\mathbb{C}^{N_c \times N_c};\mathbb{R})$ and $E: \mathcal{M} \ni P \mapsto E(P) := \mathcal{E}(P) \in \mathbb{R}$

- Gradient of E at $P \in \mathcal{M}$: $\nabla_{\mathcal{M}} E(P) = \Pi_P(\nabla \mathcal{E}(P)) \in T_P \mathcal{M}$
- Hessian of E at $P \in \mathcal{M}$: $D^2_{\mathcal{M}}E(P) = \Omega_P + K_P \in \mathcal{L}(T_P\mathcal{M})$

with $\Omega_P, \mathbf{K}_P : T_P \mathcal{M} \to T_P \mathcal{M}$ given by $\Omega_P = -[P, [\nabla \mathcal{E}(P), \bullet]]$ and $\mathbf{K}_P = \mathbf{\Pi}_P \mathbf{D}^2 \mathcal{E}(P) \mathbf{\Pi}_P$

Error bounds on energy and density

- *a priori* error bounds: EC-Chakir-Maday '12, Zhou et al. '13, EC-Dusson '17...
- *a posteriori* error bounds: EC-Dusson-Maday-Stamm-Vohralík '14-'21, Chen-Dai-Gong-He-Zhou '14, Chen-Schneider '15, Kaye-Lin-Yang '15, Herbst-Levitt-EC '20 ...

This work: error bounds on properties (non-variational)

Interatomic forces (at the discrete level)

• Manifold of admissible 1-RDM

 $\mathcal{M} = \operatorname{Gr}(N, N_{\operatorname{ref}}) = \{ P \in \mathbb{C}_{\operatorname{herm}}^{N_{\operatorname{ref}} \times N_{\operatorname{ref}}} \mid P^2 = P, \ \operatorname{Tr}(P) = N \}$

• Kohn-Sham energy functional $E^{\mathrm{KS}} : \Omega^M \times \mathcal{M} \to \mathbb{R}$

 $E^{\mathrm{KS}}(X,P) := \mathrm{Tr}(TP) + \mathrm{Tr}(V(X)P) + E_{\mathrm{Hxc}}(P)$

• Kohn-Sham ground state and interatomic forces (Hellmann-Feynman)

$$P_*(X) = \underset{P \in \mathcal{M}}{\operatorname{argmin}} E(X, P) \qquad F_j(X) := -\operatorname{Tr}\left(\nabla_{X_j} V(X) P_*(X)\right) + F_{\operatorname{ion}}(X)$$

Force component $f_* = [F_{j\alpha}(X_0)]_{\alpha}$ for a fixed nuclear configuration X_0

$$E(P) := E^{\mathrm{KS}}(X_0, P) \qquad f(P) := -\mathrm{Tr}\left(\partial_{X_{j\alpha}} V(X_0)P\right)$$
$$P_* := \operatorname*{argmin}_{P \in \mathcal{M}} E(P), \qquad f_* = f(P_*)$$

First-order optimality condition

$$\nabla_{\mathcal{M}} E(P_*) = 0$$

Residual associated with an approximate solution ${\cal P}$

$$R(P) := \nabla_{\mathcal{M}} E(P) = [P, [P, H(P)]]$$

where $H(P) := T + V(X_0) + \nabla \mathcal{E}_{Hxc}(P)$ is the Kohn-Sham Hamiltonian, $(\nabla \mathcal{E}_{Hxc}(P) =$ Frobenius gradient of $\mathbb{C}_{herm}^{N_{ref} \times N_{ref}} \ni P \mapsto \mathcal{E}_{Hxc}(P) \in \mathbb{R})$

General principle:

- ${\mathcal M}$ smooth Riemannian manifold (set of admissible states)
- $R : \mathcal{M} \ni P \mapsto R(P) \in T_P \mathcal{M}$ smooth function (residual)
- $f: \mathcal{M} \to \mathbb{R}$ smooth function (observable)

Equilibrium state : $R(P_*) = 0$ Quantity of interest (QoI): $f_* := f(P_*)$

Error estimators: in the linear regime

 $P - P_* \approx \mathbf{R}'(P)^{-1}R(P)$ and $f(P) - f_* \approx \langle \nabla_{\mathcal{M}} f(P), \mathbf{R}'(P)^{-1}R(P) \rangle$

Two practical questions: if $P \approx$ **DM of the KS ground-state in** $\mathcal{X}_{calc} \subset \mathcal{X}_{ref}$

1. are we in the linear regime in usual DFT calculations on real materials?

2. if so, how to compute an accurate and computationally efficient bound for $\langle \nabla_{\mathcal{M}} f(P), \mathbf{R}'(P)^{-1} R(P) \rangle$?

Are we in the linear regime in practice? Apparently yes! ... for planewave calculations with nice pseudopotentials

Numerical test: if $P - P_* \approx \mathbf{R}'(P)^{-1}R(P)$, then the QoI computed from $P_{\text{Newton}} = \Re \left(P - \mathbf{R}'(P)^{-1}R(P) \right)$ (\Re suitable retraction) should be much better than the ones computed from P

Example: FCC silicon crystal (energies in Hartrees)

Energy

Ground-state density

Interatomic forces

Accurate and efficient approximation of $P - P_*$

Let P be the variational approximation of the KS ground state in \mathcal{X}_{cal}

$$\underbrace{P - P_*}_{\text{not computable}} \approx \underbrace{R'(P)^{-1}R(P)}_{\text{computable but expensive}} \approx \underbrace{M_P^{-1}R(P)}_{\text{computable and cheap}} \text{ in energy norm}$$

${oldsymbol{M}}_P^{-1}$ very simple operator deduced from mathematical analysis

Equivalence between these three quantities proved in the asymptotic regime

Accurate and efficient approximation of $P - P_*$

Let *P* be the variational approximation of the KS ground state in \mathcal{X}_{cal}

$$\begin{split} \underbrace{P - P_*}_{\text{not computable}} &\approx \underbrace{R'(P)^{-1}R(P)}_{\text{computable but expensive}} \approx \underbrace{M_P^{-1}R(P)}_{\text{computable and cheap}} \text{ in energy norm} \\ P = \sum_{i=1}^N \phi_i \phi_i^*, \quad \phi_i \in \mathcal{X}_{\text{cal}}, \quad \Pi_{\mathcal{X}_{\text{cal}}} H(P) \Pi_{\mathcal{X}_{\text{cal}}} \phi_i = \varepsilon_i \phi_i, \quad \phi_i^* \phi_j = \delta_{ij}, \quad \varepsilon_1 \leq \varepsilon_2 \leq \cdots \\ P = \sum_{i=1}^N \phi_i \phi_i^* \in \mathcal{M} \iff \Phi = (\phi_1 | \cdots | \phi_N) \in \text{St}(N, N_{\text{ref}}) \text{ s.t. } P = \Phi \Phi^* \\ Q = \sum_{i=1}^N \phi_i \xi_i^* + \xi_i \phi_i^* \in \mathcal{T}_P \mathcal{M} \iff \Xi = (\xi_1 | \cdots | \xi_N) \in \mathbb{C}^{N_{\text{ref}} \times N} \text{ s.t. } \Phi^* \Xi = 0 \\ R(P) = [P, [P, H(P)]] \in \mathcal{T}_P \mathcal{M} \iff R^{\text{MO}}(\Phi) = (r_1 | \cdots | r_N) = P^{\perp} H(P) \Phi \in \mathbb{C}^{N_{\text{ref}} \times N} \end{split}$$

 $\boldsymbol{M}_{P}Q \in \mathcal{T}_{P}\mathcal{M} \leftrightarrow \boldsymbol{M}_{\Phi}^{\mathrm{MO}}\Xi := ((-\Delta - t_{i})\xi_{i})_{1 \leq i \leq N} \quad t_{i} := \int_{\Omega} |\nabla \phi_{i}|^{2}$

First (unsuccessful) attempt to compute error bounds on interatomic forces

$$\begin{split} f(P) - f_* &\approx \langle \nabla_{\mathcal{M}} f(P), P - P_* \rangle & \text{(we are in the linear regime)} \\ &\stackrel{?}{\approx} \langle \nabla_{\mathcal{M}} f(P), \boldsymbol{M}_P^{-1} R(P) \rangle & (P - P_* &\approx \boldsymbol{M}_P^{-1} R(P) \text{ in energy norm)} \end{split}$$

First (unsuccessful) attempt to compute error bounds on interatomic forces

$$\begin{split} f(P) - f_* &\approx \langle \nabla_{\mathcal{M}} f(P), P - P_* \rangle & \text{(we are in the linear regime)} \\ &\stackrel{?}{\approx} \langle \nabla_{\mathcal{M}} f(P), \boldsymbol{M}_P^{-1} R(P) \rangle & \text{wrong by several orders of magnitude} \end{split}$$

First (unsuccessful) attempt to compute error bounds on interatomic forces $f(P) - f_* \approx \langle \nabla_{\mathcal{M}} f(P), P - P_* \rangle$ (we are in the linear regime) $\stackrel{?}{\approx} \langle \nabla_{\mathcal{M}} f(P), \boldsymbol{M}_{P}^{-1} R(P) \rangle$ wrong by several orders of magnitude

because $\nabla_{\mathcal{M}} f(P)$ and $P - P_*$ are almost orthogonal for nonnegative Sobolev norms

Example: FCC silicon crystal

Second (successful) attempt to compute error bounds on interatomic forces $$\begin{split} f(P) - f_* &\approx \langle \nabla_{\mathcal{M}} f(P), P - P_* \rangle & \text{(we are in the linear regime)} \\ &\stackrel{?}{\approx} \langle \nabla_{\mathcal{M}} f(P), \mathbf{R}'(P)^{-1} R(P) \rangle & \text{yes, but too computationally expensive} \end{split}$$

Second (successful) attempt to compute error bounds on interatomic forces $f(P) - f_* \approx \langle \nabla_{\mathcal{M}} f(P), P - P_* \rangle$ (we are in the linear regime) $\stackrel{?}{\approx} \langle \nabla_{\mathcal{M}} f(P), \mathbf{R}'(P)^{-1} R(P) \rangle$ yes, but too computationally expensive

A Schur complement approach to solve R'(P)Q = R(P)

$$P = \sum_{i=1}^{N} \phi_i \phi_i^* \in \mathcal{M}, \qquad Q = \sum_{i=1}^{N} (\phi_i \xi_i^* + \xi_i \phi_i^*) \in T_P \mathcal{M},$$

$$\begin{aligned} \mathcal{X}_{\text{ref}} &= \mathcal{X}_{\text{calc}} \oplus \mathcal{X}_{\text{calc}}^{\perp}, \qquad \phi_i \in \mathcal{X}_{\text{calc}}, \qquad \xi_i = \underbrace{\xi_{i,1}}_{\in \mathcal{X}_{\text{calc}}} + \underbrace{\xi_{i,2}}_{\mathcal{X}_{\text{calc}}^{\perp}}, \qquad Q = Q_1 + Q_2 \\ \left(\begin{array}{c} \mathbf{R}'(P)_{11} & \mathbf{R}'(P)_{12} \\ \mathbf{R}'(P)_{21} & \mathbf{R}'(P)_{22} \end{array} \right) \left(\begin{array}{c} Q_1 \\ Q_2 \end{array} \right) = \left(\begin{array}{c} R(P)_1 \\ R(P)_2 \end{array} \right) \end{aligned}$$

Second (successful) attempt to compute error bounds on interatomic forces $f(P) - f_* \approx \langle \nabla_{\mathcal{M}} f(P), P - P_* \rangle$ (we are in the linear regime) $\stackrel{?}{\approx} \langle \nabla_{\mathcal{M}} f(P), \mathbf{R}'(P)^{-1} R(P) \rangle$ yes, but too computationally expensive

A Schur complement approach to solve R'(P)Q = R(P)

$$P = \sum_{i=1}^{N} \phi_i \phi_i^* \in \mathcal{M}, \qquad Q = \sum_{i=1}^{N} (\phi_i \xi_i^* + \xi_i \phi_i^*) \in T_P \mathcal{M},$$

$$\begin{aligned} \mathcal{X}_{\text{ref}} &= \mathcal{X}_{\text{calc}} \oplus \mathcal{X}_{\text{calc}}^{\perp}, \qquad \phi_i \in \mathcal{X}_{\text{calc}}, \qquad \xi_i = \underbrace{\xi_{i,1}}_{\in \mathcal{X}_{\text{calc}}} + \underbrace{\xi_{i,2}}_{\mathcal{X}_{\text{calc}}^{\perp}}, \qquad Q = Q_1 + Q_2 \\ \left(\begin{array}{c} \mathbf{R}'(P)_{11} & \mathbf{R}'(P)_{12} \\ \mathbf{R}'(P)_{21} & \mathbf{R}'(P)_{22} \end{array} \right) \left(\begin{array}{c} Q_1 \\ Q_2 \end{array} \right) = \left(\begin{array}{c} R(P)_1 \\ R(P)_2 \end{array} \right) \end{aligned}$$

 Q_1 small (in energy norm) but large impact on the error on interactomic forces Q_2 large (in energy norm) but smaller impact on the error on interactomic forces $Q_2 \approx M_P^{-1} R(P)_2$ (in energy norm), $R(P)_1 = 0$ if P variational solution in \mathcal{X}_{calc}

Second (successful) attempt to compute error bounds on interatomic forces $f(P) - f_* \approx \langle \nabla_{\mathcal{M}} f(P), P - P_* \rangle$ (we are in the linear regime) $\stackrel{?}{\approx} \langle \nabla_{\mathcal{M}} f(P), \mathbf{R}'(P)^{-1} R(P) \rangle$ yes, but too computationally expensive

A Schur complement approach to solve R'(P)Q = R(P)

$$P = \sum_{i=1}^{N} \phi_i \phi_i^* \in \mathcal{M}, \qquad Q = \sum_{i=1}^{N} (\phi_i \xi_i^* + \xi_i \phi_i^*) \in T_P \mathcal{M},$$

$$\begin{aligned} \mathcal{X}_{\text{ref}} &= \mathcal{X}_{\text{calc}} \oplus \mathcal{X}_{\text{calc}}^{\perp}, \qquad \phi_i \in \mathcal{X}_{\text{calc}}, \qquad \xi_i = \underbrace{\xi_{i,1}}_{\in \mathcal{X}_{\text{calc}}} + \underbrace{\xi_{i,2}}_{\mathcal{X}_{\text{calc}}^{\perp}}, \qquad Q = Q_1 + Q_2 \\ & \left(\begin{array}{c} \mathbf{R}'(P)_{11} & \mathbf{R}'(P)_{12} \\ \mathbf{0} & \mathbf{M}_P \end{array} \right) \left(\begin{array}{c} Q_1^{\text{app}} \\ Q_2^{\text{app}} \end{array} \right) = \left(\begin{array}{c} R(P)_1 \\ R(P)_2 \end{array} \right) \end{aligned}$$

 $Q_2^{\text{app}} = \boldsymbol{M}_P^{-1} R(P)_2, \qquad (\boldsymbol{\Omega}_P + \boldsymbol{K}_P)_{11} Q_1^{\text{app}} = R(P)_1 - (\boldsymbol{\Omega}_P + \boldsymbol{K}_P)_{12} \boldsymbol{M}_P^{-1} R(P)_2$

Numerical results: post-processing

$$\begin{aligned} f - f_* &\coloneqq f(P) - f(P_*) & \text{(red)} \\ f_{\text{res}} - f_* &\coloneqq f(P) - \langle \nabla_{\mathcal{M}} f(P), \boldsymbol{M}^{-1} R(P) \rangle - f(P_*) & \text{(orange)} \\ f_{\text{Schur}} - f_* &\coloneqq f(P) - \langle \nabla_{\mathcal{M}} f(P), \boldsymbol{R}'_{\text{app}}(P)^{-1} R(P) \rangle - f(P_*) & \text{(green)} \end{aligned}$$

$$f_{\text{err}} - f_* \coloneqq f(P) - \langle \nabla_{\mathcal{M}} f(P), P - P_* \rangle - f(P_*)$$
 (blue)

Linear (noninteracting) Schrödinger-like Hamiltonian HPerturbation δV of the potential

 $H \to H + \delta V \quad \Rightarrow \quad \rho \to \rho + \delta \rho + o(\delta V) \quad \text{with } \delta \rho \text{ linear in } \delta V$

$$\delta \rho = \chi_0 \, \delta V$$

 χ_0 : non-interacting density-density response function independent-particle susceptibility irreducible polarizability

Goal: compute $\delta \rho := \chi_0 \, \delta V$ for metals

Unperturbed Hamiltonian H

$$H\phi_n = \varepsilon_n \phi_n, \qquad \int_{\Omega} \phi_m^*(\boldsymbol{r}) \phi_n(\boldsymbol{r}) \mathrm{d}\boldsymbol{r} = \delta_{mn}, \qquad \varepsilon_1 \leqslant \varepsilon_2 \leqslant \varepsilon_3 \leqslant \cdots,$$

Ground-state density

Occupation numbers f_n for T = 0 (left) and T > 0 (right)

$$\varepsilon_{\rm F}$$
 (Fermi level) such that $\int_{\Omega} \rho(\boldsymbol{r}) \mathrm{d}\boldsymbol{r} = \sum_{n=1}^{+\infty} f_n = \sum_{n=1}^{+\infty} f\left(\frac{\varepsilon_n - \varepsilon_{\rm F}}{T}\right) = N_{\rm el}$

Notation:
$$f'_n \coloneqq \frac{1}{T} f'\left(\frac{\varepsilon_n - \varepsilon_F}{T}\right) \eqqcolon \frac{f_n - f_n}{\varepsilon_n - \varepsilon_n}$$

Linear response

$$H \to H + \delta V \quad \Rightarrow \quad \rho \to \rho + \delta \rho + o(\delta V) \quad \text{with } \delta \rho \text{ linear in } \delta V$$

Sum-over-state formula

$$\delta\rho(\boldsymbol{r}) \coloneqq (\chi_0 \delta V)(\boldsymbol{r}) = \sum_{n=1}^{+\infty} \sum_{m=1}^{+\infty} \frac{f_n - f_m}{\varepsilon_n - \varepsilon_m} \left(\delta V_{mn} - \delta\varepsilon_{\rm F} \,\delta_{mn} \right) \phi_n^*(\boldsymbol{r}) \phi_m(\boldsymbol{r}),$$

with $\delta V_{mn} \coloneqq \langle \phi_m, \delta V \phi_n \rangle$ and $\delta\varepsilon_{\rm F} = \frac{\sum_{n=1}^{+\infty} f_n' \delta V_{nn}}{\sum_{n=1}^{+\infty} f_n'}$ to satisfy $\int_{\Omega} \delta\rho(\boldsymbol{r}) \mathrm{d}\boldsymbol{r} = 0$

For periodic Schrödinger-like operators $H = -\frac{1}{2}\Delta + V$ in 3D,

In most applications (always except in Warm Dense Matter),

only a number $N \gtrsim N_{\rm el}$ of occupation numbers f_n are non-negligible

$$\rho(\boldsymbol{r}) \simeq \sum_{n=1}^{N} f_n |\phi_n(\boldsymbol{r})|^2$$

$$\delta\rho(\boldsymbol{r}) \simeq \left(\sum_{n=1}^{N} \sum_{m=1}^{+\infty} + \sum_{n=1}^{+\infty} \sum_{m=1}^{N}\right) \frac{f_n - f_m}{\varepsilon_n - \varepsilon_m} \left(\delta V_{mn} - \delta\varepsilon_{\rm F} \delta_{mn}\right) \phi_n^*(\boldsymbol{r}) \phi_m(\boldsymbol{r})$$

but still one infinite sum in the sum-over-state formula

Alternatives to the sum-over-state formula

$$\rho(\boldsymbol{r}) \simeq \sum_{n=1}^{N} f_n \left| \phi_n(\boldsymbol{r}) \right|^2 \quad \Rightarrow \quad \delta \rho(\boldsymbol{r}) \simeq \sum_{n=1}^{N} f_n(\phi_n^*(\boldsymbol{r}) \delta \phi_n(\boldsymbol{r}) + \delta \phi_n^*(\boldsymbol{r}) \phi_n(\boldsymbol{r})) + \delta f_n \left| \phi_n(\boldsymbol{r}) \right|^2$$

the $\delta \phi_n$'s and the δf_n 's are not unique (gauge invariance)

Let *P*: orthogonal projector on $\text{Span}(\phi_n)_{1 \leq n \leq N}$, and Q := 1 - P. We have

$$\delta\phi_n = \underbrace{\delta\phi_n^P}_{\in \operatorname{Ran}(P)} + \underbrace{\delta\phi_n^Q}_{\in \operatorname{Ran}(Q)}$$

and

$$\forall 1 \leq n \leq N, \quad f_n \delta \phi_n = \sum_{m=1}^N \Gamma_{mn} \phi_m + f_n \delta \phi_n^Q \quad \text{with} \quad \Gamma_{mn} \coloneqq f_n \langle \phi_m, \delta \phi_n \rangle$$

Thus

$$\delta\rho(\boldsymbol{r}) \simeq \sum_{n,m=1}^{N} \left(\Gamma_{mn} + \overline{\Gamma_{nm}}\right) \phi_n^*(\boldsymbol{r}) \phi_m(\boldsymbol{r}) + \sum_{n=1}^{N} 2f_n \operatorname{Re}\left(\phi_n^*(\boldsymbol{r})\delta\phi_n^Q(\boldsymbol{r})\right) + \sum_{n=1}^{N} \delta f_n |\phi_n(\boldsymbol{r})|^2$$

Alternatives to the sum-over-state formula (continued)

$$\delta\rho(\boldsymbol{r}) \simeq \sum_{n,m=1}^{N} \left(\Gamma_{mn} + \overline{\Gamma_{nm}}\right) \phi_n^*(\boldsymbol{r}) \phi_m(\boldsymbol{r}) + \sum_{n=1}^{N} 2f_n \operatorname{Re}\left(\phi_n^*(\boldsymbol{r})\delta\phi_n^Q(\boldsymbol{r})\right) + \sum_{n=1}^{N} \delta f_n |\phi_n(\boldsymbol{r})|^2$$
$$= \left(\sum_{n=1}^{N} \sum_{m=1}^{+\infty} + \sum_{n=1}^{+\infty} \sum_{m=1}^{N}\right) \frac{f_n - f_m}{\varepsilon_n - \varepsilon_m} \left(\delta V_{mn} - \delta\varepsilon_{\mathrm{F}} \,\delta_{mn}\right) \phi_n^*(\boldsymbol{r}) \phi_m(\boldsymbol{r})$$

By identification, we get that

- **1.** the Γ_{mn} 's and the δf_n 's must satisfy $\begin{cases}
 2\operatorname{Re}(\Gamma_{nn}) + \delta f_n = f'_n(\delta V_{nn} - \varepsilon_{\mathrm{F}}) & \text{for } m = n \\
 \Gamma_{mn} + \overline{\Gamma_{nm}} = \Delta_{mn} := \frac{f_n - f_m}{\varepsilon_n - \varepsilon_m} \delta V_{mn} & \text{for } m \neq n
 \end{cases} \xrightarrow{} gauge choice needed$
- 2. the $\delta \phi_n^Q$'s must satisfy the Sternheimer equations $Q(H - \varepsilon_n)Q\delta \phi_n^Q = b_n := -Q(\delta V \phi_n) \longrightarrow \text{possibly ill-conditioned}$

Gauge choice for the Γ_{mn} 's and the δf_n 's $2\text{Re}(\Gamma_{nn}) + \delta f_n = f'_n(\delta V_{nn} - \varepsilon_F)$ and $\Gamma_{mn} + \overline{\Gamma_{nm}} = \Delta_{mn}$ with $\Delta_{mn} = \overline{\Delta_{nm}}$ if $m \neq n$

Gauge choice for the Γ_{mn} 's and the δf_n 's $2\operatorname{Re}(\Gamma_{nn}) + \delta f_n = f'_n(\delta V_{nn} - \varepsilon_F)$ and $\Gamma_{mn} + \overline{\Gamma_{nm}} = \Delta_{mn}$ with $\Delta_{mn} = \overline{\Delta_{nm}}$ if $m \neq n$

Natural (and good!) gauge choice for the Γ_{nn} 's (m = n) and the δf_n 's

$$\Gamma_{nn} = 0$$
 and $\delta f_n = f'_n (\delta V_{nn} - \varepsilon_F)$

Gauge choice for the Γ_{mn} 's and the δf_n 's $2\operatorname{Re}(\Gamma_{nn}) + \delta f_n = f'_n(\delta V_{nn} - \varepsilon_F)$ and $\Gamma_{mn} + \overline{\Gamma_{nm}} = \Delta_{mn}$ with $\Delta_{mn} = \overline{\Delta_{nm}}$ if $m \neq n$

Natural (and good!) gauge choice for the Γ_{nn} 's (m = n) and the δf_n 's

$$\Gamma_{nn} = 0$$
 and $\delta f_n = f'_n (\delta V_{nn} - \varepsilon_F)$

Possible gauge choices for the Γ_{mn} 's $(m \neq n)$

1. orthonormal gauge: impose $\delta \langle \phi_m, \phi_n \rangle = 0$

 $\Gamma_{mn}^{\text{orth}} = \frac{f_n}{\varepsilon_n - \varepsilon_m} \delta V_{mn}$ (natural but very bad as the $\Gamma_{mn}^{\text{orth}}$ may blow up)

Gauge choice for the Γ_{mn} 's and the δf_n 's $2\operatorname{Re}(\Gamma_{nn}) + \delta f_n = f'_n(\delta V_{nn} - \varepsilon_F)$ and $\Gamma_{mn} + \overline{\Gamma_{nm}} = \Delta_{mn}$ with $\Delta_{mn} = \overline{\Delta_{nm}}$ if $m \neq n$

Natural (and good!) gauge choice for the Γ_{nn} 's (m = n) and the δf_n 's

$$\Gamma_{nn} = 0$$
 and $\delta f_n = f'_n (\delta V_{nn} - \varepsilon_F)$

Possible gauge choices for the Γ_{mn} 's $(m \neq n)$

1. orthonormal gauge: impose $\delta \langle \phi_m, \phi_n \rangle = 0$

 $\Gamma_{mn}^{\text{orth}} = \frac{f_n}{\varepsilon_n - \varepsilon_m} \delta V_{mn}$ (natural but very bad as the $\Gamma_{mn}^{\text{orth}}$ may blow up)

2. gauges used in Abinit and Quantum Espresso

$$\Gamma_{mn}^{\text{Abinit}} = \mathbb{1}_{f_n > f_m} \Delta_{mn}, \qquad \Gamma_{mn}^{\text{QE}} = \frac{\Delta_{mn}}{1 + e^{(\varepsilon_n - \varepsilon_m)/T}}$$

۸

Gauge choice for the Γ_{mn} 's and the δf_n 's $2\operatorname{Re}(\Gamma_{nn}) + \delta f_n = f'_n(\delta V_{nn} - \varepsilon_F)$ and $\Gamma_{mn} + \overline{\Gamma_{nm}} = \Delta_{mn}$ with $\Delta_{mn} = \overline{\Delta_{nm}}$ if $m \neq n$

Natural (and good!) gauge choice for the Γ_{nn} 's (m = n) and the δf_n 's

$$\Gamma_{nn} = 0$$
 and $\delta f_n = f'_n (\delta V_{nn} - \varepsilon_F)$

Possible gauge choices for the Γ_{mn} 's ($m \neq n$)

1. orthonormal gauge: impose $\delta \langle \phi_m, \phi_n \rangle = 0$

 $\Gamma_{mn}^{\text{orth}} = \frac{f_n}{\varepsilon_n - \varepsilon_m} \delta V_{mn}$ (natural but very bad as the $\Gamma_{mn}^{\text{orth}}$ may blow up)

2. gauges used in Abinit and Quantum Espresso

$$\Gamma_{mn}^{\text{Abinit}} = \mathbb{1}_{f_n > f_m} \Delta_{mn}, \qquad \Gamma_{mn}^{\text{QE}} = \frac{\Delta_{mn}}{1 + e^{(\varepsilon_n - \varepsilon_m)/T}}$$

۸

3. simple gauge and minimal gauge (used in DFTK)

$$\Gamma_{mn}^{\text{simple}} = \frac{1}{2} \Delta_{mn} = \underset{\Gamma_{mn} + \overline{\Gamma_{nm}} = \Delta_{mn}}{\operatorname{argmin}} |\Gamma_{mn}|^{2} + \left|\overline{\Gamma_{nm}}\right|^{2}, \quad \Gamma_{mn}^{\min} = \frac{f_{n}^{2}}{f_{m}^{2} + f_{n}^{2}} \Delta_{mn} = \underset{\Gamma_{mn} + \overline{\Gamma_{nm}} = \Delta_{mn}}{\operatorname{argmin}} \frac{1}{f_{n}^{2}} \left|\Gamma_{mn}\right|^{2} + \frac{1}{f_{m}^{2}} \left|\overline{\Gamma_{nm}}\right|^{2}$$

Gauge choice for the Γ_{mn} 's and the δf_n 's

For all these gauge choices but the orthogonal one, we have

$$|\Gamma_{mn}| \leq |\Delta_{mn}| \leq \max_{x \in \mathbb{R}} \frac{1}{T} |f'(x)| |\delta V_{mn}| = \frac{1}{2T} |\delta V_{mn}|.$$
(1)

If we make an error on δV , it is at most amplified by a factor of $\frac{1}{2T}$

Gauge comparison, $\varepsilon_n = 0$, $\varepsilon_F = 0$, T = 0.1, $\delta V_{mn} = 1$

Solving the Sternheimer equation $Q(H - \varepsilon_n)Q \,\delta\phi_n^Q = b_n$

Output of the numerical diagonalization iterative scheme (ex. LOBPCG) used to compute the density

• *N* fully converged orthonormal eigenmodes $(\varepsilon_n, \phi_n)_{1 \le n \le N}$

 $\Phi := (\phi_1, \cdots, \phi_N)$ orthonormal basis of $\operatorname{Ran}(P) = \operatorname{Ker}(Q)$

• $N_{\rm ex}$ extra, only partially converged, orthonormal eigenvectors

 $\Phi_{\text{ex}} := (\phi_{N+1}^{\ell}, \dots, \phi_{N+N_{\text{ex}}}^{\ell}), \qquad \ell : \text{ # of iter. of the diagonalization scheme}$

Solving the Sternheimer equation $Q(H - \varepsilon_n)Q \,\delta\phi_n^Q = b_n$

Output of the numerical diagonalization iterative scheme (ex. LOBPCG) used to compute the density

• N fully converged orthonormal eigenmodes $(\varepsilon_n, \phi_n)_{1 \le n \le N}$

 $\Phi := (\phi_1, \cdots, \phi_N)$ orthonormal basis of $\operatorname{Ran}(P) = \operatorname{Ker}(Q)$

• $N_{\rm ex}$ extra, only partially converged, orthonormal eigenvectors

 $\Phi_{\text{ex}} := (\phi_{N+1}^{\ell}, \dots, \phi_{N+N_{\text{ex}}}^{\ell}), \qquad \ell : \text{ # of iter. of the diagonalization scheme}$

We can assume without loss of generality that

- + (Φ, Φ_{ex}) is an orthonormal family
- $\Phi_{\text{ex}}^* H_{\rho} \Phi_{\text{ex}} \in \mathbb{C}^{N_{\text{ex}} \times N_{\text{ex}}}$ is a diagonal matrix whose elements are labelled $\varepsilon_m^{\ell} \coloneqq \langle \phi_m^{\ell}, H \phi_m^{\ell} \rangle$ for $N + 1 \leq m \leq N + N_{\text{ex}}$
- $(\phi_m^\ell, \varepsilon_m^\ell) \xrightarrow[\ell \to \infty]{} (\phi_m, \varepsilon_m)$

Solving the Sternheimer equation $Q(H - \varepsilon_n)Q \,\delta\phi_n^Q = b_n$

Output of the numerical diagonalization iterative scheme (ex. LOBPCG) used to compute the density

• N fully converged orthonormal eigenmodes $(\varepsilon_n, \phi_n)_{1 \le n \le N}$

 $\Phi := (\phi_1, \cdots, \phi_N)$ orthonormal basis of $\operatorname{Ran}(P) = \operatorname{Ker}(Q)$

• $N_{\rm ex}$ extra, only partially converged, orthonormal eigenvectors

 $\Phi_{\text{ex}} := (\phi_{N+1}^{\ell}, \dots, \phi_{N+N_{\text{ex}}}^{\ell}), \qquad \ell : \text{ # of iter. of the diagonalization scheme}$

We can assume without loss of generality that

- + (Φ, Φ_{ex}) is an orthonormal family
- $\Phi_{\text{ex}}^* H_{\rho} \Phi_{\text{ex}} \in \mathbb{C}^{N_{\text{ex}} \times N_{\text{ex}}}$ is a diagonal matrix whose elements are labelled $\varepsilon_m^{\ell} \coloneqq \langle \phi_m^{\ell}, H \phi_m^{\ell} \rangle$ for $N + 1 \leq m \leq N + N_{\text{ex}}$
- $(\phi_m^\ell, \varepsilon_m^\ell) \xrightarrow[\ell \to \infty]{} (\phi_m, \varepsilon_m)$

Let's use these extra approximate eigenvectors to improve the computation of response properties!

Solving the Sternheimer equation $Q(H - \varepsilon_n)Q\,\delta\phi_n^Q = b_n$ (continued)

Solving the Sternheimer equation $Q(H - \varepsilon_n)Q\,\delta\phi_n^Q = b_n$ (continued)

Schur complement method $\delta \phi_n^Q = \underbrace{\Phi_{\text{ex}} \alpha_n}_{\in \text{Ran}(T)} + \underbrace{\delta \phi_n^R}_{\in \text{Ran}(R)}, \quad n \le N$

$$A_{n} := (\Phi_{\text{ex}}^{*}(H - \varepsilon_{n})\Phi_{\text{ex}})^{-1}, \quad \alpha_{n} = A_{n} \left(\Phi_{\text{ex}}^{*}b_{n} - \Phi_{\text{ex}}^{*}(H - \varepsilon_{n})\delta\phi_{n}^{R}\right)$$
$$R(H - \varepsilon_{n})\left(1 - \Phi_{\text{ex}}A_{n}\Phi_{\text{ex}}^{*}(H - \varepsilon_{n})\right)R\right] \delta\phi_{n}^{R} = Rb_{n} - R(H - \varepsilon_{n})\Phi_{\text{ex}}A_{n}\Phi_{\text{ex}}^{*}b_{n}$$

Numerical results: convergence of the Sternheimer solver for Al₄₀

<i>k</i> -point – coordinate	[0, 0, 0]	[1/3, 0, 0]	[1/3, 1/3, 0]
N	69	58	67
$\varepsilon_{N+1} - \varepsilon_N$	0.0320	0.0134	0.0217
# CG iterations $n = N$ Schur	48	44	41
# CG iterations $n = N$ direct	56	83	58

Conclusion

Conclusion

Error bounds for DFT

- guaranteed, optimal, cheap error bounds on the ground-state energy and density for linear Schrödinger equations
- practical (not guaranteed), optimal, cheap error bounds on the groundstate energy and density for DFT
- practical (not guaranteed), quite accurate, not too expensive error bounds for non-variational quantities such as forces for DFT

Conclusion

Error bounds for DFT

- guaranteed, optimal, cheap error bounds on the ground-state energy and density for linear Schrödinger equations
- practical (not guaranteed), optimal, cheap error bounds on the groundstate energy and density for DFT
- practical (not guaranteed), quite accurate, not too expensive error bounds for non-variational quantities such as forces for DFT

Response properties

- easy for insulators
- harder for metals
 - gauge choice is important

we have clarified this point and proposed new, very simple gauges

- the Sternheimer equation is ill-conditioned

we have improved its resolution using a Schur complement method

Thank you for your attention