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Motivation 2
.

Numerical challenges in DFT

• very large systems with high accuracy
• metallic / heterogeneous systems
• databases for materials and drug discovery and design (machine learning)

Ex.: open catalyst data set (Chanussot et al. ’20)
264,890,000 Density Functional Theory (DFT) calculations

Need for fast, reliable, black-box numerical methods with error estimators
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Input y
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Modeling error  e 
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Goal 1: provide error estimates (certification)
Goal 2: optimize dynamically the computational resources (error balancing)

(DFT ∼ 15% of CPU time available in HPC centers)
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An example of fully guaranteed error bars
Herbst, Levitt, EC, Faraday discussions ’20

Si band diagram
(non-self-consistent DFT-LDA model with GTH pseudopotentials)

Γ XX WW KK ΓΓ LL UU WW LL K|U X
−0.2

−0.1

0.0

0.1

0.2 fully guaranteed error bars
accounting for
• discretization error
• algorithmic error
• floating-point arithmetics

(=implementation error
assuming bug-free code)
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Numerical methods implemented in DFTK (Density-Functional ToolKit)
• planewave DFT package in (2018-), MIT license
• outcome of the EMC2 ERC Synergy project
• main developers: Michael Herbst (now at EPFL) and Antoine Levitt

(now at Paris-Saclay)

• supports mathematical developments (low entrance barrier, ∼7k lines of code)
and scale-up to relevant applications (∼ 1,000 electrons)

• fully composable with ecosystem
– arbitrary precision (32bit, 64bit...)
– algorithmic differentiation
– interval arithmetic
– ...



Outline of the talk 6
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1. Geometrical structure of the Kohn-Sham model

2. Practical error bounds on interatomic forces in Kohn-Sham DFT

EC, G. Dusson, G. Kemlin and A. Levitt, SIAM J. Sci. Comput. ’22

3. Computation of response properties for metals

EC, M. Herbst, G. Kemlin, A. Levitt and B. Stamm, Lett. Math. Phys. ’23



1 - Geometrical structure of the Kohn-Sham model

Periodic supercell Ω = R3/L, L: Bravais lattice of R3

M ionic cores, positions X := (Xj)1≤j≤M ∈ ΩM

N valence electron pairs (spin-unpolarized state)
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Orbital formulation of the continuous Kohn-Sham model

min

{
EKS(X,Φ) | Φ = (ϕ1, · · · , ϕN) ∈

(
H1

#(Ω;C)
)N

,

ˆ
Ω

ϕ∗
iϕj = δij

}

EKS(X,Φ) =

N∑

i=1

ˆ
Ω

|∇ϕi|2+
ˆ
Ω

v(X)ρΦ+EHxc(ρΦ) with ρΦ(r) := 2

N∑

i=1

|ϕi(r)|2
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ˆ
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|ϕi(r)|2

Discretization in a planewave basis set

Fourier modes: eG(r) := |Ω|−1/2eiG·r, G ∈ L∗ (reciprocal lattice)

Approximation spaces: X = Span

(
eG, G ∈ L∗,

|G|2
2

< Ec

)

↑
energy cut-off
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ϕi(r) =
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G∈L∗ | |G|<√
2Ec
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drawback: gauge invariance (C and CU have same energy ∀U ∈ U(Nc))
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2Ec

CGieG(r) ∈ X , Nc := dim(X )

minimization set: St(N,Nc) :=
{
C = [CGi] ∈ CNc×N | C∗C = IN

}

drawback: gauge invariance (C and CU have same energy ∀U ∈ U(Nc))

Density matrix (1-RDM) formulation (math. analysis, linear scaling methods)

P = CC∗ orthogonal proj. on span(columns of C)

minimization set: Gr(N,Nc) :=
{
P ∈ CNc×Nc

herm | P 2 = P, Tr(P ) = N
}
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Geometrical properties of the Grassmann manifold

The Frobenius inner product on CNc×Nc
herm induces a Riemannian metric on

M := Gr(N,Nc) = {P ∈ CNc×Nc
herm | P 2 = P, Tr(P ) = N}
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The Frobenius inner product on CNc×Nc
herm induces a Riemannian metric on

M := Gr(N,Nc) = {P ∈ CNc×Nc
herm | P 2 = P, Tr(P ) = N}

Remark: we consider a hierarchy of 2 approximation spaces (Ecalc ≪ Eref)

Xcalc︸︷︷︸
variational approximation space

⊂ Xref︸︷︷︸
error estimation space

• to study the convergence of numerical algorithms, we take Ec = Ecalc

EC, G. Kemlin and A. Levitt, Convergence analysis of direct minimiza-
tion and self-consistent iterations, SIAM J. Mat. Anal. 42 (2021) 243–274

• to derive practical error bounds, we take Ec = Eref
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Riemannian gradient and Hessian

Let E ∈ C1(CNc×Nc
herm ;R) and E : M ∋ P 7→ E(P ) := E(P ) ∈ R

• Gradient of E at P ∈ M: ∇ME(P ) = ΠP (∇E(P )) ∈ TPM
• Hessian of E at P ∈ M: D2

ME(P ) = ΩP +KP ∈ L(TPM)

with ΩP ,KP : TPM → TPM given by

ΩP = −[P, [∇E(P ), •]] and KP = ΠP D2E(P )ΠP



2 - Practical error bounds on interatomic forces

Error bounds on energy and density
• a priori error bounds: EC-Chakir-Maday ’12, Zhou et al. ’13,

EC-Dusson ’17...
• a posteriori error bounds: EC-Dusson-Maday-Stamm-Vohralík ’14-’21,

Chen-Dai-Gong-He-Zhou ’14, Chen-Schneider ’15, Kaye-Lin-Yang ’15,
Herbst-Levitt-EC ’20 ...

This work: error bounds on properties (non-variational)
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Interatomic forces (at the discrete level)
• Manifold of admissible 1-RDM

M = Gr(N,Nref) = {P ∈ CNref×Nref
herm | P 2 = P, Tr(P ) = N}

• Kohn-Sham energy functional EKS : ΩM ×M → R

EKS(X,P ) := Tr (TP ) + Tr (V (X)P ) + EHxc(P )

• Kohn-Sham ground state and interatomic forces (Hellmann-Feynman)

P∗(X) = argmin
P∈M

E(X,P ) Fj(X) := −Tr
(
∇Xj

V (X)P∗(X)
)
+ Fion(X)
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Force component f∗ = [Fjα(X0)]α for a fixed nuclear configuration X0

E(P ) := EKS(X0, P ) f (P ) := −Tr
(
∂Xjα

V (X0)P
)

P∗ := argmin
P∈M

E(P ), f∗ = f (P∗)

First-order optimality condition

∇ME(P∗) = 0

Residual associated with an approximate solution P

R(P ) := ∇ME(P ) = [P, [P,H(P )]]

where H(P ) := T + V (X0) + ∇EHxc(P ) is the Kohn-Sham Hamiltonian,
(∇EHxc(P ) = Frobenius gradient of CNref×Nref

herm ∋ P 7→ EHxc(P ) ∈ R)
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General principle:
• M smooth Riemannian manifold (set of admissible states)
• R : M ∋ P 7→ R(P ) ∈ TPM smooth function (residual)
• f : M → R smooth function (observable)

Equilibrium state : R(P∗) = 0

Quantity of interest (QoI): f∗ := f (P∗)

Error estimators: in the linear regime

P − P∗ ≈ R′(P )−1R(P ) and f (P )− f∗ ≈ ⟨∇Mf (P ),R′(P )−1R(P )⟩

Two practical questions: if P ≈ DM of the KS ground-state in Xcalc ⊂ Xref

1. are we in the linear regime in usual DFT calculations on real materials?
2. if so, how to compute an accurate and computationally efficient bound

for ⟨∇Mf (P ),R′(P )−1R(P )⟩?
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Are we in the linear regime in practice?

Apparently yes! ... for planewave calculations with nice pseudopotentials

Numerical test: if P − P∗ ≈ R′(P )−1R(P ), then the QoI computed from

PNewton = R
(
P −R′(P )−1R(P )

)
(R suitable retraction)

should be much better than the ones computed from P

Example: FCC silicon crystal (energies in Hartrees)
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Accurate and efficient approximation of P − P∗

Let P be the variational approximation of the KS ground state in Xcal

P − P∗︸ ︷︷ ︸
not computable

≈ R′(P )−1R(P )︸ ︷︷ ︸
computable but expensive

≈ M−1
P R(P )︸ ︷︷ ︸

computable and cheap

in energy norm

M−1
P very simple operator deduced from mathematical analysis

Equivalence between these three quantities proved in the asymptotic regime
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not computable

≈ R′(P )−1R(P )︸ ︷︷ ︸
computable but expensive

≈ M−1
P R(P )︸ ︷︷ ︸

computable and cheap

in energy norm

P =

N∑

i=1

ϕiϕ
∗
i , ϕi ∈ Xcal, ΠXcal

H(P )ΠXcal
ϕi = εiϕi, ϕ∗

iϕj = δij, ε1 ≤ ε2 ≤ · · ·

P =

N∑

i=1

ϕiϕ
∗
i ∈ M ↔ Φ = (ϕ1| · · · |ϕN) ∈ St(N,Nref) s.t. P = ΦΦ∗

Q =

N∑

i=1

ϕiξ
∗
i + ξiϕ

∗
i ∈ TPM ↔ Ξ = (ξ1| · · · |ξN) ∈ CNref×N s.t. Φ∗Ξ = 0

R(P ) = [P, [P,H(P )]] ∈ TPM ↔ RMO(Φ) = (r1| · · · |rN) = P⊥H(P )Φ ∈ CNref×N

MPQ ∈ TPM ↔ MMO
Φ Ξ := ((−∆− ti)ξi)1⩽i⩽N ti :=

´
Ω |∇ϕi|2
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First (unsuccessful) attempt to compute error bounds on interatomic forces

f (P )− f∗ ≈ ⟨∇Mf (P ), P − P∗⟩ (we are in the linear regime)
?≈⟨∇Mf (P ),M−1

P R(P )⟩ (P − P∗ ≈ M−1
P R(P ) in energy norm)
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First (unsuccessful) attempt to compute error bounds on interatomic forces

f (P )− f∗ ≈ ⟨∇Mf (P ), P − P∗⟩ (we are in the linear regime)
?≈⟨∇Mf (P ),M−1

P R(P )⟩ wrong by several orders of magnitude

because ∇Mf (P ) and P − P∗ are almost orthogonal for nonnegative Sobolev norms

Example: FCC silicon crystal
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Second (successful) attempt to compute error bounds on interatomic forces

f (P )− f∗ ≈ ⟨∇Mf (P ), P − P∗⟩ (we are in the linear regime)
?≈⟨∇Mf (P ),R′(P )−1R(P )⟩ yes, but too computationally expensive
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?≈⟨∇Mf (P ),R′(P )−1R(P )⟩ yes, but too computationally expensive

A Schur complement approach to solve R′(P )Q = R(P )

P =

N∑

i=1

ϕiϕ
∗
i ∈ M, Q =

N∑

i=1

(ϕiξ
∗
i + ξiϕ

∗
i ) ∈ TPM,

Xref = Xcalc ⊕X⊥
calc, ϕi ∈ Xcalc, ξi = ξi,1︸︷︷︸

∈Xcalc

+ ξi,2︸︷︷︸
X⊥
calc

, Q = Q1 +Q2

(
R′(P )11 R′(P )12
R′(P )21 R′(P )22

)(
Q1

Q2

)
=

(
R(P )1
R(P )2

)
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Q1 small (in energy norm) but large impact on the error on interactomic forces
Q2 large (in energy norm) but smaller impact on the error on interactomic forces
Q2 ≈ M−1

P R(P )2 (in energy norm), R(P )1 = 0 if P variational solution in Xcalc
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=
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P R(P )2, (ΩP +KP )11Q
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1 = R(P )1 − (ΩP +KP )12M

−1
P R(P )2
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Numerical results: post-processing

f − f∗ := f (P )− f (P∗) (red)
fres − f∗ := f (P )− ⟨∇Mf (P ),M−1R(P )⟩ − f (P∗) (orange)

fSchur − f∗ := f (P )− ⟨∇Mf (P ),R′
app(P )−1R(P )⟩ − f (P∗) (green)

ferr − f∗ := f (P )− ⟨∇Mf (P ), P − P∗⟩ − f (P∗) (blue)
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3 - Response properties for metals

Linear (noninteracting) Schrödinger-like Hamiltonian H
Perturbation δV of the potential

H → H + δV ⇒ ρ → ρ + δρ + o(δV ) with δρ linear in δV

δρ = χ0 δV

χ0 : non-interacting density-density response function
independent-particle susceptibility
irreducible polarizability

Goal: compute δρ := χ0 δV for metals
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Unperturbed Hamiltonian H

Hϕn = εnϕn,

ˆ
Ω

ϕ∗
m(r)ϕn(r)dr = δmn, ε1 ⩽ ε2 ⩽ ε3 ⩽ · · · ,

Ground-state density

ρ(r) =

+∞∑

n=1

fn |ϕn(r)|2 with fn := f

(
εn − εF

T

)
and f (x) =

2

1 + ex

0

2

×× ×××ε1 ×
εNp

+
εF

× ××× ×××× 0

2

×× ××× ×+
εF

× ××× ××××
f
(
ε−εF
T

)

Occupation numbers fn for T = 0 (left) and T > 0 (right)

εF (Fermi level) such that
ˆ
Ω

ρ(r)dr =

+∞∑

n=1

fn =

+∞∑

n=1

f

(
εn − εF

T

)
= Nel

Notation: f ′
n :=

1

T
f ′
(
εn − εF

T

)
=:

fn − fn
εn − εn
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Linear response

H → H + δV ⇒ ρ → ρ + δρ + o(δV ) with δρ linear in δV

Sum-over-state formula

δρ(r) := (χ0δV )(r) =

+∞∑

n=1

+∞∑

m=1

fn − fm
εn − εm

(δVmn − δεF δmn)ϕ
∗
n(r)ϕm(r),

with δVmn := ⟨ϕm, δV ϕn⟩ and δεF =

+∞∑

n=1

f ′
nδVnn

+∞∑

n=1

f ′
n

to satisfy
ˆ
Ω

δρ(r)dr = 0
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For periodic Schrödinger-like operators H = −1

2
∆ + V in 3D,

εn ∼
n→∞

Cn2/3 (Weyl formula)

0

2

×× ××× ×+
εF

× ××× ××××
f
(
ε−εF
T

)

In most applications (always except in Warm Dense Matter),

only a number N ≳ Nel of occupation numbers fn are non-negligible

ρ(r) ≃
N∑

n=1

fn|ϕn(r)|2

δρ(r) ≃
(

N∑

n=1

+∞∑

m=1

+

+∞∑

n=1

N∑

m=1

)
fn − fm
εn − εm

(δVmn − δεFδmn)ϕ
∗
n(r)ϕm(r)

but still one infinite sum in the sum-over-state formula
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Alternatives to the sum-over-state formula

ρ(r) ≃
N∑

n=1

fn |ϕn(r)|2 ⇒ δρ(r) ≃
N∑

n=1

fn(ϕ
∗
n(r)δϕn(r)+δϕ

∗
n(r)ϕn(r))+δfn |ϕn(r)|2

the δϕn’s and the δfn’s are not unique (gauge invariance)

Let P : orthogonal projector on Span(ϕn)1≤n≤N , and Q := 1− P . We have

δϕn = δϕP
n︸︷︷︸

∈Ran(P )

+ δϕQ
n︸︷︷︸

∈Ran(Q)

and

∀1 ⩽ n ⩽ N, fnδϕn =

N∑

m=1

Γmnϕm + fnδϕ
Q
n with Γmn := fn ⟨ϕm, δϕn⟩

Thus

δρ(r) ≃
N∑

n,m=1

(
Γmn + Γnm

)
ϕ∗
n(r)ϕm(r)+

N∑

n=1

2fnRe
(
ϕ∗
n(r)δϕ

Q
n (r)

)
+

N∑

n=1

δfn |ϕn(r)|2
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Alternatives to the sum-over-state formula (continued)

δρ(r) ≃
N∑

n,m=1

(
Γmn + Γnm

)
ϕ∗
n(r)ϕm(r) +

N∑

n=1

2fnRe
(
ϕ∗
n(r)δϕ

Q
n (r)

)
+

N∑

n=1

δfn |ϕn(r)|2

=

(
N∑

n=1

+∞∑

m=1

+

+∞∑

n=1

N∑

m=1

)
fn − fm
εn − εm

(δVmn − δεF δmn)ϕ
∗
n(r)ϕm(r)

By identification, we get that

1. the Γmn’s and the δfn’s must satisfy



2Re(Γnn) + δfn = f ′
n(δVnn − εF) for m = n

Γmn + Γnm = ∆mn :=
fn − fm
εn − εm

δVmn for m ̸= n
−→ gauge choice needed

2. the δϕQ
n ’s must satisfy the Sternheimer equations

Q(H − εn)QδϕQ
n = bn := −Q(δV ϕn) −→ possibly ill-conditioned
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Gauge choice for the Γmn’s and the δfn’s

2Re(Γnn)+δfn = f ′
n(δVnn−εF) and Γmn+Γnm = ∆mn with ∆mn = ∆nm if m ̸= n
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Γorth
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fn
εn − εm

δVmn (natural but very bad as the Γorth
mn may blow up)

2. gauges used in Abinit and Quantum Espresso

ΓAbinit
mn = 1fn>fm∆mn, ΓQE

mn =
∆mn

1 + e(εn−εm)/T

3. simple gauge and minimal gauge (used in DFTK)

Γsimple
mn =

1

2
∆mn=argmin

Γmn+Γnm=∆mn

|Γmn|2+
∣∣Γnm

∣∣2, Γmin
mn=

f 2
n

f 2
m + f 2

n

∆mn =argmin
Γmn+Γnm=∆mn

1

f 2
n

|Γmn|2+
1

f 2
m

∣∣Γnm

∣∣2
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Gauge choice for the Γmn’s and the δfn’s

For all these gauge choices but the orthogonal one, we have

|Γmn| ⩽ |∆mn| ⩽ max
x∈R

1

T
|f ′(x)| |δVmn| =

1

2T
|δVmn| . (1)

If we make an error on δV , it is at most amplified by a factor of 1
2T

−2 −1 0 1 2

0

2

4

6

εm

|Γ
m

n
|

Gauge comparison, εn = 0, εF = 0, T = 0.1

1
2T

simple
orthogonal
Abinit
QE
minimal

, δVmn = 1
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Solving the Sternheimer equation Q(H − εn)QδϕQ
n = bn

Output of the numerical diagonalization iterative scheme (ex. LOBPCG)
used to compute the density

• N fully converged orthonormal eigenmodes (εn, ϕn)1≤n≤N

Φ := (ϕ1, · · · , ϕN) orthonormal basis of Ran(P ) = Ker(Q)

• Nex extra, only partially converged, orthonormal eigenvectors

Φex := (ϕℓ
N+1, . . . , ϕ

ℓ
N+Nex

), ℓ : # of iter. of the diagonalization scheme
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• Nex extra, only partially converged, orthonormal eigenvectors

Φex := (ϕℓ
N+1, . . . , ϕ

ℓ
N+Nex

), ℓ : # of iter. of the diagonalization scheme

We can assume without loss of generality that
• (Φ,Φex) is an orthonormal family
• Φ∗

exHρΦex ∈ CNex×Nex is a diagonal matrix whose elements are labelled
εℓm :=

〈
ϕℓ
m, Hϕℓ

m

〉
for N + 1 ⩽ m ⩽ N +Nex

• (ϕℓ
m, ε

ℓ
m)−→

ℓ→∞
(ϕm, εm)



3 - Response properties for metals 27
.

Solving the Sternheimer equation Q(H − εn)QδϕQ
n = bn

Output of the numerical diagonalization iterative scheme (ex. LOBPCG)
used to compute the density

• N fully converged orthonormal eigenmodes (εn, ϕn)1≤n≤N

Φ := (ϕ1, · · · , ϕN) orthonormal basis of Ran(P ) = Ker(Q)

• Nex extra, only partially converged, orthonormal eigenvectors
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N+1, . . . , ϕ

ℓ
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), ℓ : # of iter. of the diagonalization scheme

We can assume without loss of generality that
• (Φ,Φex) is an orthonormal family
• Φ∗

exHρΦex ∈ CNex×Nex is a diagonal matrix whose elements are labelled
εℓm :=

〈
ϕℓ
m, Hϕℓ

m

〉
for N + 1 ⩽ m ⩽ N +Nex

• (ϕℓ
m, ε

ℓ
m)−→

ℓ→∞
(ϕm, εm)

Let’s use these extra approximate eigenvectors to improve the computation
of response properties!
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Solving the Sternheimer equation Q(H − εn)QδϕQ
n = bn (continued)

0

2

×× ××× ×+
εF

× ××× ××××
f
(
ε−εF
T

)

×× ×××
1

×
N

P

×
N + 1

T R

× ××× ×

Q

×
N +Nex

×××
︸ ︷︷ ︸
eigenvectors Φ

︸ ︷︷ ︸
extra vectors Φℓ

ex

×

Schur complement method δϕQ
n = Φexαn︸ ︷︷ ︸

∈Ran(T )

+ δϕR
n︸︷︷︸

∈Ran(R)

, n ≤ N

coercive, ill−conditioned, but small︷ ︸︸ ︷
(
Φ∗
ex(H − εn)Φex Φ∗

exHR
RHΦex R(H − εn)R

)(
αn

δϕR
n

)
=

(
Φ∗
exbn
R bn

)

︸ ︷︷ ︸
coercive, large, but well−conditioned
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Solving the Sternheimer equation Q(H − εn)QδϕQ
n = bn (continued)

0

2

×× ××× ×+
εF

× ××× ××××
f
(
ε−εF
T

)

×× ×××
1

×
N

P

×
N + 1

T R

× ××× ×

Q

×
N +Nex

×××
︸ ︷︷ ︸
eigenvectors Φ

︸ ︷︷ ︸
extra vectors Φℓ

ex

×

Schur complement method δϕQ
n = Φexαn︸ ︷︷ ︸

∈Ran(T )

+ δϕR
n︸︷︷︸

∈Ran(R)

, n ≤ N

An := (Φ∗
ex(H − εn)Φex)

−1 , αn = An

(
Φ∗
exbn − Φ∗

ex(H − εn)δϕ
R
n

)

[
R(H − εn)

(
1− ΦexAnΦ

∗
ex(H − εn)

)
R

]
δϕR

n = Rbn −R(H − εn)ΦexAnΦ
∗
exbn
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Numerical results: convergence of the Sternheimer solver for Al40

k-point – coordinate [0, 0, 0] [1/3, 0, 0] [1/3, 1/3, 0]
N 69 58 67

εN+1 − εN 0.0320 0.0134 0.0217
# CG iterations n = N Schur 48 44 41
# CG iterations n = N direct 56 83 58

0 20 40 60 80
10−10

10−7

10−4

10−1

102

iterations

re
sid

ua
l

k-point [0.333, 0.0, 0.0]

Schur n = 1
direct n = 1

Schur n = 43
direct n = 43

Schur n = 58
direct n = 58
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Error bounds for DFT
• guaranteed, optimal, cheap error bounds on the ground-state energy

and density for linear Schrödinger equations
• practical (not guaranteed), optimal, cheap error bounds on the ground-

state energy and density for DFT
• practical (not guaranteed), quite accurate, not too expensive error bounds

for non-variational quantities such as forces for DFT
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Response properties
• easy for insulators
• harder for metals

– gauge choice is important

we have clarified this point and proposed new, very simple gauges

– the Sternheimer equation is ill-conditioned

we have improved its resolution using a Schur complement method



Thank you for your attention


