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Multiphysics Object-Oriented 
Simulation Environment (MOOSE)

A DoE sponsored finite element / finite volume based modeling framework
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• One of 9 large DOE 
multi-program Labs

• DOE’s Lead Lab for 
Nuclear Energy

• ~ 5,700 employees
• ~ 900 mi2

INL is advancing clean, safe, and 
secure energy for the future 

Idaho National Laboratory Position Nationally



Reactor Modeling requires Multiphysics

• Reactors are inherently nonlinear, multiscale, 
multiphysics problems

− Neutron transport, heat conduction, solid-
mechanics, fluid flow, material degradation, 
chemistry, corrosion, etc.

• Predictive reactor simulation requires 
multiphysics (always has)

− Doppler broadening, moderator density, etc.
• Licensing of advanced reactors will heavily rely 

on multiphysics mod/sim
− Uncertainty analysis, accident scenarios, 

refueling, material selection, etc.
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Pebble-bed PLOFC/DLOFC calculations using Pronghorn, Griffin, MOOSE-THM, MOOSE-HC
Credit: Sebastian Schunert, Guillaume Guidicelli, Alexander Lindsay, Paolo Balestra



• A key objective of materials science is to understand the impact of microstructure on 
macroscale material behavior. 

Annealed Stainless Steel Cast Bronze Sintered UO2 Co-Al-W Superalloy Friction stir welded stainless 
steel

Corrosion in stainless steel Micro-cracking in steelIrradiated UO2 fuel Hydride in Zircaloy

Materials Microstructure and Properties

• An essential part of that is predicting the impact of microstructure evolution.



Mechanics
• Dislocations
• Cracking
• Stress-driven

Diffusion

Chemistry
• Corrosion
• Oxidation
• Reactive 

transport

Electricity/Magnetism
• Electromigration
• Ferroelectricity
• Ferromagnetism

Heat Conduction
• Species transport
• Melting
• Precipitation

Material Behavior is Multiphysics
• Material behavior is influenced by many different physics, for example:



• MOOSE is a finite element, multiphysics 
framework that simplifies the development of 
advanced numerical applications.

• It provides a high-level interface to 
sophisticated nonlinear solvers and 
massively parallel computational capability. 

• Open Source, available at
https://mooseframework.inl.gov

MOOSE is in use across the world to solve:

• Phase field 
• Solid mechanics
• Heat conduction
• Neutronics
• Comp. fluid dynamics
• Stochastic modeling
• Thermal hydraulics

• Geomechanics
• Reactive transport
• Corrosion
• Crystal plasticity
• Fracture
• Porous flow
• Electromagnetics

Multiphysics Object Oriented Simulation Environment

https://mooseframework.org/


MOOSE Development and Community

• Active development on
− Transparent development process
− >850 git forks, >300 unique cloners / 2wk, 1.1k ⭐
− >9,000 closed issues

• Active User Community
− Hosted on GitHub Discussions
− 1000s of views / 100-200 unique visitors / day
− Hundreds of unique users contributing 

on Discussions each month
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The last 2 years have been a period of unprecedented growth for the MOOSE community and the
software itself. The number of monthly visitors to the website has grown from just over 3,000 to now
averaging 5,000. In addition, over 1,800 pull requests have been merged since the beginning of 2020,
and the new discussions forum has averaged 600 unique visitors per month. The previous publication
has been cited over 200 times since it was published 2 years ago. This paper serves as an update on
some of the key additions and changes to the code and ecosystem over the last 2 years, as well as
recognizing contributions from the community.

© 2022 The Author(s). Published by Elsevier B.V. All rights reserved.

Code metadata

Current code version V2.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-22-00239
Permanent link to reproducible capsule https://github.com/idaholab/moose/tree/2022-06-10-release
Legal code license GNU LGPL
Code versioning system used git
Software code languages, tools, and services used C++, MPI, OpenMP, python
Compilation requirements, operating environments and dependencies Requirements: GCC/Clang C++17 compliant compiler; 16 GB memory (debug

builds); 64-bit x86 + Apple Silicon support; 30 GB disk space
Operating environments: Linux, macOS > 10.12
Dependencies: PETSc, libMesh

If available, link to developer documentation/manual https://mooseframework.inl.gov/
Support email for questions https://github.com/idaholab/moose/discussions

DOI of original article: https://doi.org/10.1016/j.softx.2020.100430.⇤ Corresponding author.
E-mail address: guillaume.giudicelli@inl.gov (Guillaume L. Giudicelli).

1. Application developer-oriented changes

The automatic differentiation [1] system has moved toward in-
serting derivatives based off the global degree of freedom indices.
This allows construction of residuals that have highly arbitrary

https://doi.org/10.1016/j.softx.2022.101202
2352-7110/© 2022 The Author(s). Published by Elsevier B.V. All rights reserved.



Yes, we can test YOUR app!

MOOSE Testing and Continuous Integration

• Continuous integration and testing
− Public: https://civet.inl.gov
− Continuous integration with

~10,000 tests in framework and modules
− Tested in various…

• …parallelization schemes
• …mesh modes, AD modes
• …compilers, operating systems, 

CPU architectures
• …documentation and code coverage

− Test on HPC
• pull requests (before code is merged)
• master merge (production code)

(Valgrind, parallel sweeps)
− Test >50 internal and external apps
− Going on 3k cores for CI (Linux/mac,Arm/x64)

http://civet.inl.gov/


Some MOOSE-Based Applications

Marmot
Mesoscale Materials

Grizzly
Structural Mechanics for

Component Aging

Griffin
Radiation Transport

Pronghorn
Medium-fidelity CFD

Sockeye
Heat pipe Simulation

Bison
Nuclear Fuel Performance

Bioinspired
Vascular Networks 1

Frontal Polymerization 2

Solid-state
Electrolytes 3

1. Garg, Mayank, et al. "Rapid synchronized fabrication of vascularized thermosets and composites." Nature communications 12.1 (2021): 1-9.
2. Lloyd, Evan M., et al. "Spontaneous Patterning during Frontal Polymerization." ACS central science 7.4 (2021): 603-612.
3. Liu, Yao, et al. "Impedance Modeling of Solid-State Electrolytes: Influence of the Contacted Space Charge Layer." ACS Applied Materials & Interfaces 
13.4 (2021): 5895-5906.
4. Veveakis, E., S. Alevizos, and T. Poulet. "Episodic tremor and slip (ETS) as a chaotic multiphysics spring." Physics of the Earth and Planetary Interiors
264 (2017): 20-34.
5. K. Wandke, Y Z, ”MOOSE-Based Finite Element Hyperelastic Modeling for Soft Robot Simulations.” IEEE Access 9 (2021), 139627 - 139635

REDBACK
Geomechanics 4

Soft Robotics 5



The MOOSE “Framework”
• MOOSE is not an “application”, but a 

“framework” that provides 

− C++ infrastructure to write your own… 
• physics (PDE weak forms)
• Initial and boundary conditions
• On-the-fly postprocessing (e.g.

max/min concentration, precipitate 
counting, line scans)

− An input file parser to combine the 
MOOSE C++ objects into a simulation at 
runtime, and add/configure

• Variables
• Solver and solver parameters
• Outputs

[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10

[]

[Variables]
[u]
[]

[]

[Kernels]
[diff]
type = Diffusion
variable = u

[]
[]

[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0

[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1

[]
[]

[Executioner]
type = Steady
solve_type = 'PJFNK’
petsc_options_iname = '-pc_type -pc_hypre_type’
petsc_options_value = 'hypre boomeramg'

[]

[Outputs]
exodus = true

[]



Implementing your physics in MOOSE 
1. Derive your PDE term weak form
2. Create small boilerplate C++ .C and .h file 
3. Type in weak form

registerMooseObject("MyAwesomeApp", ADAdvection);

InputParameters
ADAdvection::validParams()
{
InputParameters params = ADKernel::validParams();
params.addRequiredParam<MaterialPropertyName>("velocity_vector", 
”Advection velocity vector");

return params;
}

ADAdvection::ADAdvection(const InputParameters & parameters)
: ADKernel(parameters),
_v(getADMaterialProperty<RealVectorValue>("velocity_vector"))

{
}

ADReal
ADAdvection ::computeQpResidual()
{
return _test[_i][_qp] * _v[_qp] * _grad_u[_qp];

}

_test[_i][_qp] * _v[_qp] * _grad_u[_qp];

𝑣⃑∇𝑢 −
𝜕𝑢
𝜕𝑡

= 0

𝜓, 𝑣⃑∇𝑢 − 𝜓,
𝜕𝑢
𝜕𝑡

= 0 [Kernels]
[convection]
type = ADCoupledConvection
variable = u
velocity_vector = v

[]
[dt]
type = ADTimeDerivative
variable = u

[]
[]

Writing MOOSE Code



Mesoscale Materials Modeling

Brief overview over MOOSE mesoscale modeling capabilities



Tensor Mechanics Module
• Provides the tools necessary for modeling mechanical 

deformation and stress at the mesoscale.
• Strain (small, finite, incremental)
• Eigenstrains / Eigenstresses
• Elastic stress, Modular inelastic stress system

• Creep
• Plasticity (J2, Crystal Plasticity)
• Fracture

• Strain periodicity (representative volume elements)
• Fully couplable to phase field



Phase Field Module

• Provides all the tools necessary to develop a massively parallel phase field code using FEM.
• Base classes for solving Cahn Hilliard equations

• Direct solution / Split solution
• Grand Potential, KKS

• Base classes for Allen-Cahn equations
• Grain growth model
• Grain remapping algorithm for efficient models
• Initial conditions
• Postprocessors for characterizing microstructure
• Nucleation



Phase Field Examples

Grain growth model (6000 grains) with OP remapping
150 million DOFs on ~580 CPU cores

Grain boundaries decorated with growing gas 
bubbles. (Larry Aagesen)



Phase Field / Laser Melting

Void lattice formation due to anisotropic interstitial 
diffusion. (D. Schwen)

Local laser melting – heat transport, ablation, and Navier-Stokes 
using ALE. (Alexander Lindsey)



1 Å 10 nm–
1 μm

atomic scale mesoscale

Simulating radiation and microstructure
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No irradiation Irradiation

• Phase separating 
immiscible alloy (CuAg)

• 100,000s of recoil 
cascades run
(50 keV Xenon ions)

• Steady-state length scale
• Applications: fission-gas 

bubbles, FeCrAl
precipitates

5 nm
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Enrique et al. 2001

Dashed line by R. Enrique 
and P. Bellon (2001)

Patterning, mixing, coarsening in 
an immiscible alloy under 
irradiation. Axes are 
displacement rate and distance

Coupling to FFTW3 to get 
Fourier space data, such as 
power spectrum and 
characteristic length scale.

Nanoscale ballistic mixing 



Thermodynamic Database Coupling

CALPHAD approach 
⇢ Free energy description of countless systems!
⇢ de facto standard TDB file

Compound Energy Formalism
• No sublattices / internal DOFs

− Directly export free energy expressions
• Solve local equilibrium

− Concurrently couple thermodynamic software 
(OpenCalphad, pycalphad, ThermoCalc)

− Parabolic fits
− Tabulate free energy (and chemical potentials) 

in state space 
• Polyadic Tensor decomposition 

(Moelans, KU Leuven) ⇢ MOOSE
• Neural Networks

The free energy surface G(x,T) as function of chromium concen-
tration x and temperature T is given by the following set of equa-
tions, where Hv are the composition dependent coefficients of a
polynomial fit to the enthalpy calculated using molecular dynam-
ics, and G0 is the free energy at the switching temperature, ob-
tained using the Hamiltonian switching method. All fitting
parameters are listed in Table 1, a plot of the free energy surface
is given in Fig. 1.
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The final expression results from applying the Gibbs–Duhem
equation and adding the configurational entropy of an ideal solution.
The form of the equations closely follows the CALPHAD [12] stan-
dard. We note that although in alloys with a negative heat of forma-
tion short range order in the solid solution may develop, it has been
shown that the random solution approximation still adequately
models the free energy and resulting phase diagram [11]. Fig. 3
shows the phase diagram for the FeCr system as modeled by our po-
tential constructed using the common tangent method. The solid
curve marks the miscibility gap of the FeCr system, the dashed curve
marks the spinodal line (the boundary of the thermodynamically
unstable region, given by d2G

dx2 ¼ 0). The diamond symbols with error
bars show the solubility limits as obtained by a semi grand canonical
Monte Carlo simulation. The shaded region gives a range of possible
Cr solubility limits in Fe as obtained by Xiong et al. [3] while the tri-
angles are results from cluster expansion (CE) calculations fitted to
first principles data [17]. In the validity region of the potential we
observe that the results as given by the CD-EAM model agree quite
well with the Xiong values and are similar to those given by the
CE. The CD-EAM potential is fitted to the mixing enthalpy as given
by a coherent potential approximation obtained by Olsson et al.
[18]. The maximum value of this enthalpy of mixing is more than
20 meV larger than the one obtained using special quasi-random
structures [19]. This difference, and the difference in curvature, par-
tially explains the lower Cr solubility obtained with the CD-EAM as
compared to the results by Xiong et al.

To obtain an expression for the interfacial free energy we fit the
second degree polynomial Fi(T) = e1 $ e2T $ e3T2 to the data re-
ported by Sadigh and Erhart [6]. Both the data by Sadigh and

our fit are shown in Fig. 2. The values for the coefficients are
e1 ¼ 441:4385 J

m2 ; e2 ¼ 0:1091 J
K m2 ; e3 ¼ 4:2794' 10$5 J

K2 m2. The
radius dependence of the interfacial free energy is modeled
through a multiplicative decomposition into a purely temperature
dependent term and a purely radius dependent term

Fiðr; TÞ ¼ jðrÞFiðTÞ; jðrÞ ¼ Fiðr;0Þ
Fið0Þ

; ð6Þ

where Fi(r,0) is the interfacial energy at 0 K calculated using molec-
ular statics of coherent spherical Cr precipitates in a pure Fe matrix.
The interfacial area A of the precipitates was determined after relax-
ation using A3 = 36pV2, where V is taken as the sum of the Voronoi
volumina of all precipitate atoms.

The composition ca0 ðTÞ of the terminal phase on the iron rich
side at the temperature T was fit to the calculated phase diagram
shown in Fig. 3 using a third order polynomial

ca0 ðTÞ ¼ v0 þ v1T þ v2T2 þ v3T3; ð7Þ

with the parameters v0 = 2.557 ' 10$2, v1 = 5.120 ' 10$5,
v2 = 8.730 ' 10$9, and v3 = 2.065 ' 10$11. For the chromium rich
side we assume this composition to be independent of temperature
at ca = 0.998.

It was shown by Gibbs [13] that the formation free energy DGn

of a cluster containing n atoms is in a matrix with composition cm

given by

DGn ¼ GnucðT; cmÞVðnÞqþ FiðTÞAðnÞ ð8Þ

where Gnuc is the free energy gain from nucleating an atom of pre-
cipitate material, Fi is the cost of creating one unit of interface sur-
face. V and A are volume and interface area of a particle containing n
atoms. The volume and interface terms are in competition, and in
the thermodynamically meta stable region of the miscibility gap
the interface term wins over the volume term for all cluster sizes

Table 1
Coefficients for the FeCr free energy surface given in Eqs. (1)–(5).

n= a b c d f

n0 0.3856 0.0003 3.1446 ' 10$9 $ 1.7601 ' 10$13 0.3817
n1 $0.0973 4.6956 ' 10$5 $ 2.2031 ' 10$8 5.5788 ' 10$12 $0.1007
n2 $0.0467 $4.9588 ' 10$5 3.9597 ' 10$8 $5.9353 ' 10$12 $0.0485
n3 $0.1945 1.1333 ' 10$5 $ 3.0902 ' 10$8 1.2285 ' 10$11 $0.1541
n4 $0.1856 0.0000 0.0000 0.0000 $0.1684
n5 $0.0044 0.0000 0.0000 0.0000 $0.0416
n6 $3.8366 0.0000 0.0000 0.0000 $3.8602
n7 $4.1231 0.0000 0.0000 0.0000 $4.1671

Fig. 1. Free energy surface G(x,T).

D. Schwen et al. / Journal of Nuclear Materials 439 (2013) 180–184 181



Fitting a neural net to TDB data

c1

c2

T

F

• Universal Approximation Theorem
A feed-forward network with a single hidden layer containing a 
finite number of neurons can approximate continuous functions 
on compact subsets of Rn

• PyTorch
– Mini batch learning
– Cost function includes chemical 

potentials dF/dc1 etc.
– Initial input/output weight/bias guess

no manual normalization required
– ɡ : SoftSign, Sigmoid, tanh

• Weights & biases ⇢ Text file ⇢ MOOSE
• Derivative of NN ⇢ chemical potential

"𝑊! "𝑊" "𝑊#𝑏! 𝑏" 𝑏#

𝐹 =
𝑐!
𝑐"
𝑇

) "𝑊! + 𝑏!
$

) "𝑊" + 𝑏"

$

) "𝑊# + 𝑏#



Fitting data from a regular solution free energy
𝑓 = 𝑐 1 − 𝑐 + 10%#𝑇(𝑐 log 𝑐 + 1 − 𝑐 log 1 − 𝑐 )

Analytical Free Energy Neural Net Free Energy Difference

Loss function over training time

400,000 epochs
1,500 minibatch size
Learning rate 10-5

Trained on GPU (~1.5h)
2 hidden layers with 20 nodes each



Sublattice Kim-Kim-Suzuki Model

𝜕𝐹&
𝜕𝑐'&

=
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Equal chemical potential in phase j and j’

Physical concentration is weighted sum of phase cij

Free energy is weighted sum of phase Fj
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&
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&
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Physical concentration is weighted sum of sublattice cijk
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Free energy is weighted sum of phase Fj

1
𝑎&(
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Equal chemical potential between sublattices, derived from 
Lagrange multiplier constrained minimization of Fj

Original KKS Model New Sublattice KKS Model

𝑔 = −𝑐'& +5𝑎&(𝑐'&(

∇)"#$𝐹 = 𝜆∇)"#$𝑔

=
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= 𝜇'= 𝜇'

D. Schwen, et al., A sublattice phase-field model for direct CALPHAD database coupling, Comp. Mat. Sci., 195 (2021) 110466



Internal DOF minimization – Phase free energy

• Solving PDEs for 
constrained minimization of 
δ-UZr internal DOFs

• Obtain effective phase free 
energy for δ-UZr

• Phase chemical potential 
can be derived as a function 
of the sublattice chemical 
potential

𝜕𝐹&
𝜕𝑐'&

=
1
𝑎&(

𝜕𝐹&
𝜕𝑐'&(



UZr phase field 

• Ready to run the SLKKS  phase field 
model

• Require multi phase formulation for 
appropriate switching functions hj

• Thermodynamically consistent 
model for three phases implemented 
in MOOSE

• Formulations for n>3 phases exist
Implementation WIP

• U/Zr bilayer
• Interdiffusion and formation of δ-UZr

(Interfacial free energies 10mJ/m2 and mobilities not 
based on physical values, all phases have the same 
atomic volume)



Mo-Ni-Re phase field

• Mo-Ni-Re High temperature Ni-based superalloy
J.-C. Crivello, R.Souques, A.Breidi, N.Bourgeois, J.-M.Joubert, 
Calphad 51(2015) 233-240

• Ternary system
• Five(!) sublattices in the σ-phase

(Mo,Ni,Re)2(Mo,Ni,Re)4(Mo,Ni,Re)8(Mo,Ni,Re)8(Mo,Ni,Re)8

• Transient simulation
Not at equilibrium

• Interfacial energy impacts 
bulk concentration

(Interfacial free energies 10mJ/m2 and 
mobilities not based on physical values, 
all phases have the same atomic volume)

Phase separated microstructure evolved from a homogeneous 
initial composition of Mo3Ni10Re7, which is located in the hcp, fcc, 
and σ-phase coexistence region.



Explicit Nucleation - Modifying free energy density
• Insert nucleation sites base on 

rate density

• Modulate free energy at nucleation 
sites (additive contribution)

• Driving force !"!
!#

coerces 
precipitate to form

− Can be applied to conserved 
or non-conserved order 
parameters

FeCuNi

Notice the vanishing nucleation energy penalty Fn
as the nucleus forms. In this example cCu is 
controlled and cNi follows automatically.



Nucleation example

Preemptive mesh refinement, timestep limited by total nucleation probability,
and cut-back at each nucleation event.



How could MOOSE utilize Exascale
Computing Resources?



MOOSE Scalability

• MOOSE currently runs on CPUs
− Hypre non-linear solver has GPU support, but 

that comes with lots of data transfers 
CPU↔GPU – for now)

• We are currently working with the MFEM 
team to define a path forward that will 
allow MOOSE-based applications to 
more directly utilize GPUs



MultiApps: Enabling Multiscale Simulation
• MOOSE-based solves can be nested 

to achieve Multiscale-Multiphysics 
simulations

− Macroscale simulations can be 
coupled to embedded 
microstructure simulations

• Arbitrary levels of solves
• Each solve is spread out in parallel to 

make the most efficient use of 
computing resources

• Efficiently ties together multiple teams’ 
codes

• MOOSE-wrapped apps (wrap arbitrary 
third party codes, e.g. NEK5000 -> Cardinal)

Main

MultiApp 1 MultiApp 2

Sub-app 
1-1

Sub-app 
1-2

Sub-app 
2-1

Sub-app 
2-2

MultiApp 3 MultiApp 4

Sub-app 
3-1

Sub-app 
3-2

Sub-app 
4-1

Sub-app 
4-2

Sub-app 
2-3



MOOSE design goals vs. Exascale
• User (Developer, Researcher, and Analyst) time is precious

− Need versatile simulation tools
− Easy to implement new physics
− Hardware agnostic

• Virtually nobody is doing “Exascale computing” yet
− neither are we 
− but we should be forward looking

• Do we even know what Exascale computing looks like?
− Frontier ~1.1 EFLOPS 

heterogeneous: half a million CPU cores…
− Fugaku <0.5 EFLOPS 

7 million CPU cores, no accellerators
− El Capitan

AMD MI300, zero-copy
Figure: Apositakis et al., doi: 10.3389/fphy.2022.913510



Utilizing Exascale resources
• Parallelizing to extend scales

− Hard to get good strong scaling 
important for extended time scales

− Not always easy to get good weak scaling 
important for extended length scales

• How about improving accuracy and confidence?

• Improve accuracy using multiscale modeling (MultiApps)
− Expensive to run many HF/LLS models

• Improve confidence through UQ with stochastic methods (MultiApps)
− MCMC as the gold standard for UQ is expensive

• Detect rare events / failure probability 



Failure probability analysis



Molten Salt

Liquid Metal

Gas-Cooled

TRISO stands for Tri-structural ISOtropic particle fuel. Reactor vendors such as 
Kairos Power, X-energy, BWXT, USNC, Westinghouse, Radiant are planning to 
use TRISO fuel for their small 
modular and micro-reactor 
designs. 

Each pebble 
contains ~10,000 
TRISO particles.

Reactor core 
contains ~360,000 

pebbles.

TRISO particles for Advanced Nuclear Reactor



TRISO Failure Analysis using Monte Carlo Simulation

Wen Jiang, INL

Metropolis Monte Carlo Sampling



100 million 1D samples with 
7600 cores on INL HPC

TRISO Failure Analysis using Monte Carlo Simulation
Aspherical (2D) Layer cracking

Correlate 2d to 1d (stress factors)

Wen Jiang, INL

2D simulations are used to create a 1D surrogate based on stress correlation factors



Temperature

Heat source

TABLE V. Recommended analytical methods for the ETC based on our previous work in Toptan et al. (2021).
The nomenclature: ke is the ETC; k1 and �1 are the thermal conductivity and volume fraction, respectively, of the
continuous phase; k2 and �2 are the thermal conductivity and volume fraction, respectively, of the dispersed phase;
and ↵ = k2/k1 is the ratio of the thermal conductivities of the dispersed phase to those of the continuous phase.

Model Formulation Notes

↵ < 1 D-EMT
✓

ke � k2
k1 � k2

◆3 k1
ke

= (1 � �2)
3

Roots of the third-order polynomial are computed accordingly, and
the largest real root of the cubic equation is assigned to the ETC
(Toptan et al., 2019).

↵ > 1 EMT
X

i

�i

✓
ki � ke
ki + 2ke

◆
= 0

The Bruggeman (Bruggeman, 1935) obtained the following relation
for a binary system:
ke
k1

= ↵A +

r
↵2A2 +

↵

2
with A =

1

4

✓
3�2 � 1 +

1

↵
[2 � 3�2]

◆

a user-controlled parameter, here set to 10% of the sphere diameter. Adaptive meshing is utilized to
resolve the phase interface by using two levels of refinement in the periphery regions of each sphere. The
distance between the centers of two adjacent spheres, d, is required to be at least one sphere diameter,
D, in order to avoid overlap between the spheres (i.e., d � dmin = 1.05D).

(a) (b)

Fig. 47. 3-D constructed computational domain: (a) matrix with embedded spheres; (b) random distribution of
mono-sized spheres (the matrix is hidden for ease of visibility). The characteristic domain length-to-particle radius,
L/R, is 6. The volume fraction of the continuous matrix, �1, is 0.726. The minimum distance between the centers
of two adjacent spheres is set to one sphere diameter, D (i.e., dmin = D).

Step 2. Finite-element analysis (FEA) simulations are performed for different volume fractions in each
numerical experiment. Different volume fractions are obtained by varying the number of spheres in the
computational domain. The present study includes evaluation of EDC; therefore, only Equation 6 is
solved. The diffusivity coefficients of both the host matrix and the spherical inclusions are chosen based
on the analyses of interest. The diffusivity coefficient is weighted based on the volume fraction of each
phase for a cell including both phases. The numerical simulations are performed under a packing fraction
of up to approximately 40%.

56 of 94

Material property homogenization 

Main App is 3D 
homogenized 

matrix

Each TRISO 
particle is solved 
individually as a 

sub-app

efficient two-way data transfer

Fuel elements modeling with MOOSE’s Multi-App system 

Wen Jiang, Yifeng Che, INL

114,586 particles

𝑥

𝑦

𝐿"#$%&'((

𝑅



Radius(cm) 2.000
Shell layer thickness (cm) 0.200
Fuel layer thickness (cm) 0.420
(AGR-5/6/7) TRISOs 9022
U-235 Enrichment (% wt) 19.55

Heat point source Cs point source

9012 intact particles

10 failed particles

Fission product diffusion in a pebble

Fuel region

Low density graphite

Shell (graphite)



Exascale opportunities

• Failure probability calculation
− Higher fidelity lower scale models 1D → 2D → 3D

• Capture asphericity
• Capture failure modes

− Crack formation
− More advanced sampling methods

• Parallel Subset Sampling (in MOOSE)
• Surrogate models with active learning (LDRD)

• Multiscale coupling
− Higher fidelity lower scale models 1D → 2D → 3D
− On the fly particle failure



Bayesian Inference 



State of practice of computational model validation

43 (References: Ikonen et al. 2014, Bratton et al. 2014, Tonks et al. 2021, Hales et al. 2022)

Input parameters:
Fabrication

Material
System

Experiment

Calibrated 
model

Step ①: 
model and inputs

Step ②: 
validation and calibration

Step ③: 
forward prediction

Input parameter uncertainties
(UO2 material)

Model prediction uncertainties
(TRISO fuel Ag release)

Key questions:
Limited experimental data

(Heat pipe reactor)



Bayesian calibration and UQ of computational models

44

Experiment

Calibrated 
model

Input parameters:
Fabrication

Material
System

Step ①: 
model and inputs

Parameter

Pr
ob
ab
ili
ty

Step ②: 
validation and calibration

Parameter

Pr
ob
ab
ili
ty

Prior Posterior

Step ③: 
forward prediction

(References: Wu et al. 2021, Hoff 2009, Che et al. 2021)

• Identifies and propagates parameter uncertainties

• Reflects model mismatches with experiments during forward simulations

• Permits Bayesian optimal experimental design



Bayesian inference with computational models
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𝑓 𝜽 𝒙, 𝒚 ∝ 𝐿 𝒚 𝒙, 𝜽 𝑓(𝜽)
𝑓 𝜽 : 𝑃𝑟𝑖𝑜𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑚𝑜𝑑𝑒𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

𝐿 𝒚 𝒙, 𝜽 : 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑖𝑛𝑔 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑔𝑖𝑣𝑒𝑛 𝑚𝑜𝑑𝑒𝑙 𝑖𝑛𝑝𝑢𝑡𝑠, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, 𝑎𝑛𝑑 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑓 𝜽 𝒙, 𝒚 : 𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑚𝑜𝑑𝑒𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑔𝑖𝑣𝑒𝑛 𝑚𝑜𝑑𝑒𝑙 𝑖𝑛𝑝𝑢𝑡𝑠 𝑎𝑛𝑑 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑓(𝜽): Any user-specified 
distribution (uniform, bounded 
Normal)

𝐿 𝒚 𝒙, 𝜽 ∝
1
𝜎
X
(*!

+

exp −
𝑦((𝒙) − \𝑦((𝒙, 𝜽) "

2𝜎"

IID

Model deviation + 
experimental noise

Model prediction
Experimental 

value

Inferred params include θ + 𝝈



Computational aspects: serial and parallel MCMC
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Standard Metropolis-Hastings

Calderhead (2014) Proceedings of the National Academies of Sciences.
Schwedes and Calderhead (2021) International Conference on AI and Statistics.

• Propose a new input
• Evaluate model and likelihood
• Compute the TPM, 𝐴 𝑖, 𝑗
• Draw an integer b/w [0, 1] with weights 𝐴 𝑖, 𝑗
• Assign new input

Parallel Metropolis-Hastings

• Propose N new inputs
• Evaluate models and likelihoods (parallelization)
• Compute the TPM, 𝐴 𝑖, 𝑗
• Sub-sampling (generate N new points):

• Draw an integer b/w [0, N] with weights 𝐴 𝑖, 𝑗
• Assign new input

M model evaluations in serial (impractical for us) M/N model evaluations in serial



Computational aspects: parallel MCMC

47
Calderhead (2014) Proceedings of the National Academies of Sciences.

Schwedes and Calderhead (2021) International Conference on AI and Statistics.

• N can be between 1 and 1000 (massive parallelization)
• N=1, standard serial MCMC
• Proposal kernel is flexible: random-walk (adaptive, 

delayed rejection), Langevin, Hamiltonian
• Improved performance compared to serial M-H
• Limitations??

Algorithm by Calderhead 2014



MOOSE implementation

48

SpecificMCMCDecision

SpecificMCMC
Executed in 

parallelMultiApp

SubApp 1

SubApp 2

SubApp N

.

.

.

(batch of input samples)

(outputs)

MCMCBase

(influence next 
generated 
samples)

MCMCDiagnostics Effective sample 
size (FFT), R-hat

MCMCDecisionBase

Som Dhulipala, INL



Case Study: TRISO AGR-2 experiments
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• Advanced Gas Reactor
Bison model prediction:  Ag release

• 36 Post Irradiation Examination (PIE) 
data for UCO fuel kernel

• Considerable uncertainties in model 
predictions compared to experiments

• Model params: Pre-factor A and 
activation energy Ea for SiC, PyC, and 
fuel kernel (6 params)

• Experimental configurations: 
T, fluence, heat rate (time varying)



Case Study : TRISO AGR-2 experiments
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• 50 parallel proposals

• Each proposal requires 36 model evals: 36 
experimental configurations

• Analyzed using 1800 procs on Sawtooth

• Lower bounds: 5e-10; 165e2

• Upper bounds: 5e-8; 165e4

• Proposal stds: 3e-9; 5e3

𝑓 𝜽 𝒙, 𝒚 ∝ 𝐿 𝒚 𝒙, 𝜽 𝑓(𝜽)

Inverse analysis

Infer 6 params (pre-factor/activation E)

Sigma fixed to 0.1



Case Study : TRISO AGR-2 experiments
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Inverse analysis

Deterministic 
(Bison report FY 22)



Case Study : TRISO AGR-2 experiments
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Forward analysis

Sigma fixed to 0.1

Som Dhulipala, INL



Uncertainty in the uncertainty estimation

53

Sampling quality

Total samples: 65,000

Acceptance rate: 12%

Effective sample size (ESS):
6.99857546, 11.38694062,  

4.91145346,  9.7290921 ,  2.95958647,
3.36655714

Parallelization of MCMC is still better than serial MCMC

Ideal sampler



Affine Invariant Differential Evolution Sampler (AIDES)

54 (Cajo and Braak 2006; Vrugt 2016)

• Uses two states other than the current state 
from the ensemble of walkers to propose a 
differential step

• This differential step is added to the current 
state to become the new proposal for the 
walker

• Procedure repeated across all ensemble of 
walkers

• Mathematically, the differential component of 
the proposal is (𝛾, 𝜉 are the internal params)

𝜹𝑿 = 𝛾 𝑿, − 𝑿- +𝑵(0, 𝜉)



AIDES applied to 
TRISO FGR AGR-2

55

Independent Metropolis-Hasting

Effective sample sizes:
3.89,  4.44, 
24.41, 4.97, 
3.79, 4.40

Differential Evolution

Effective sample sizes:
54668.42, 49552.78, 
53355.39, 46674.88,
54900., 49619.29

• 55,000 total samples with 50 parallel proposals
Effective parallelization

• 1D Ag diffusion through the particles 
• Better exploration of parameter space with 

Affine Invariant Differential Evolution Sampler
Som Dhulipala, INL



Exascale opportunities

• Parallel sampling
− Parallelize over experimental data points
− Parallelize individual model evaluations
− Parallel Markov Chains

• Infer model parameters with uncertainties from complex 
experiments (e.g. Taylor impact test)

• ToDo: Gradient based methods
− Gradient computation requires software retooling and 

comes with a substantial cost
− No established benchmarks for parallel gradient based 

MCMC



Summary

Materials Modeling Parallel multiscale architecture Stochastic Tools

• Rapid model development

• Multiphysics coupling
• Effortless parallelism

• Sub-application system
• All data in memory
• Wrap external codes

• Parallel MCMC
• Inverse and forward 

Bayesian inference
Main

MultiApp 1 MultiApp 2

Sub-app 
1-1

Sub-app 
1-2

Sub-app 
2-1

Sub-app 
2-2

MultiApp 3 MultiApp 4

Sub-app 
3-1

Sub-app 
3-2

Sub-app 
4-1

Sub-app 
4-2

Sub-app 
2-3

• Failure 
probability / 
rare events 
sampling



Thank you! Questions?


