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Monge’s problem

666° MEMoIRES DE LACADEMIE ROYALE

MEMOIRE
SUR LA
THEORIE DES DEBLAIS
ET DES REMBLAIS.
T ——
Par M. MonNGE

orsQu'oN doit tranfporter des terres d'un lieu dans un
L autre, on a coutume de donner le nom de Déblai au
volume des terres que 'on doit wanfporter, & le nom de
Remblai a Tefpace quelles doivent occuper apres le 1ranl};or_r.

Mémoires sur la théorie des déblais
et remblais (1781)

Gaspard Monge (1746-1818)
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Monge’s problem
Question: what is the most economical way to fill a hole with a heap of sand?

X,Y C RY: sand heap is located on the set X, hole located on the set Y

u(x) > 0: represents the height of the heap of sand (source measure)
v(y) > 0: represents the depth of the hole (target measure)

‘ \ Y .

Assumption: the cost of transporting a unit mass of sand from a point x € X
toapointy € Yisequaltoc(x,y)withc: X x Y — R.

Conservation of the total volume/mass of sand:

[ e [ vyyay
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Monge’s problem
Monge’s optimal transport problem: findamap 7 : X — Y which
“transports 1 onto v with minimal cost”.

What does it mean?

®* Amap T : X — Y is said to "transport . onto v* if for all bounded
functions f : Y — R, it holds that

/' F(y)(y) dy = / F(T()) ) dix
JY JX

v = T+ is the pushforward measure of by T, i.e.

1(x) = v(T(x))|det VT(x)|

® The cost associated to the map T is defined as
/ c(x, T(x)) u(x) dx
X
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Monge’s problem

More generally, .« and v can be chosen as probability measures on the sets
X and Y respectively.

Let P(X) and P(Y') denote the set of probability measures on X and Y
respectively.

Monge’s optimal transport problem
Given p e P(X),v e P(Y)andc: X x Y — Ry U {+o0},

findamap T : X — Y which minimizes the cost

/x c(x, T(x)) pu(x) dx

under the constraint that T transports p onto v.
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Monge’s optimal transport problem

Monge’s optimal transport problem
Given € P(X),veP(Y)andc: X x Y — Ry U {+o0},

findamap T : X — Y which minimizes the cost
[ o tx. T60) () o
X

under the constraint that T transports p onto v.
This is an ill-posed problem in general.

8/46



Introduction to optimal transport Density functional theory and optimal transport Moment constrained optimal transport problem

[e] o [e]
0O0000e0000000 000000000000 0000000000000 000

Kantorovich problem

introduced a generalization of the
Monge’s problem with much better
mathematical properties!

Leonid Kantorovich (1912-1986),
Economy Nobel prize in 1975
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Coupling

An important aspect of this generalisation is that it is symmetric with respect
to © and v, and is based on the notion of coupling between . and v.

A probability measure v € P(X x Y) is said to be a coupling between 1 and
v if it satisfies

[Atendy=ut0. [ 2tey)ax=uiy)
Y X

~ is said to be the x-marginal of v and v is said to be the y-marginal of ~.
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Couplings with transport maps

Example: Let T : X — Y and assume that p is very regular.
Define v"(x,y) € P(X x Y) a probability measure on X x Y such that

YT (%, ¥) = 1(X)d.700) (X, ¥)
Then, 47 is a coupling between 1 and v if and only if T transports ;. onto v.

Besides, in this case, it holds that

[ el T ax= | ety (x.y) dcy
JX

JXXY
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Monge’s optimal transport problem using couplings
Given € P(X),veP(Y)andc: X x Y — R, U {+o0},

findamap T : X — Y which minimizes the cost
/ c(x,¥)7" (x,y) dx dy
XxY
under the constraint that 47 is a coupling between ;. and v .

Kantorovich optimal transport problem
Given e P(X),veP(Y)andc: X x Y — R, U{+oc},

find a probability measure v € P(X x Y) which minimizes the cost

/ cxynxy)dxdy= [ ey
XxXY XxY

under the constraint that ~ is a coupling between x and v.
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Kantorovich optimal transport problem with two marginals

Given € P(X), v € P(Y)and c: X x Y — R, U {+oo},

find a probability measure v € P(X x Y) which minimizes the cost

[
XxY

under the constraint that the x-marginal of - is ;1 and the y-marginal of
yis v.

/ (X, y) dy = u(x), / 2(x.y) dx = v(y)
Y X

Example: X = Y ¢ R% and ¢(x,y) = |x — y|?

Wasserstein distance between ;. and v:

Wgz(u,y) = inf / cy
XxY

v€EN(p,v)
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Multi-marginal optimal transport Kantorovich problem

Let N € N*, Xi,---, Xy C RY.

Given p1 € P(X1), - ,un € P(Xn),and C: Xy x --- x Xy — Ry U {400},

find a probability measure v € P(X; x - -+ x Xy) which minimizes the cost

Ji©
Xy XX Xy

under the constraint that, for all 1 < i < N, the i marginal of v is ;.

/ Y= Wi
XX XX X Xjp g X X Xy
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Symmetric multi-marginal (classical) optimal transport problem

e X;=...=Xy=XCR

Cm==pan=p
e C: XN — R, symmetric function

Given p € P(X),and C : X" — R, U {400} symmetric,
find a symmetric probability measure € Py (X") which minimizes the cost
Cy
XN

under the constraint that the marginal of v is p.

/ T=p
Xox - X Xy
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And DFT?

Link between Density Functional Theory and (classical and quantum)
symmetric optimal transport problems
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Admissible electronic wavefunctions

For the sake of simplicity, atomic units are used and the influence of spin is
neglected.

Consider a set of N electrons.

for a system of electrons with finite kinetic energy is the set

The set of admissible wavefunctions (xi,...,xy) (forall1 <i< N, x; € R®)

Ay = {v € L®R™,C), Vxp € (R, C), v antisymmetric, [/l =1}
Antisymmetry: For all o € Sy, the set of permutations of {1,--- , N},

1/)()(0(1)7 e 7X<7(N)) = 6(6)1/)()(17' o 7XN)7 V(X17' o 7XN) € R3N7

where (o) is the signature of o.
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Many-body Schrédinger electronic problem

The ground state energy E,[v] is of a system of N electrons in the presence
of an external potential v given by the many-body Schrédinger electronic

problem:
— bl HY 14
Eglvl = inf (VIHIY)
where
N
Hy = Hy+ > v(x)
i=1
with

= 5 :E:: Zk)q + :E::
I*X/

1<i<j<N

Example: External potential v generated by M nuclei at positions
Ri,...,Ry € R® and charges Z, ..., Zy > 0 in the Born-Oppenheimer
approximation:

Z |Rk _ X|
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Hohenberg-Kohn theorem and Density Functional Theory

For all ) € Ay, the electronic density associated to v is defined by

po(x) = N / (X, ) 2 - e,
R3(N—1)

[Hohenberg,Kohn,1964], [Lévy,1979], [Lieb,1983]
It holds that

In = A{py, v € An} = {P >0, /R3 p=N, /R3 IV/pl? < +OO}
The Hohenberg-Kohn theorem states that
Bl =int { Fuldl + [ vo. peuf (1)
where the Hohenberg-Kohn functional Fuk(p) is defined by

Filpl := inf {WIHRI), & € Aw, pu = p}.
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Density Functional Theory: approximations of Fyx(p)

Unfortunately, the functional Fux(p) is not known explicitly.

All DFT models rely on approximations of this functional in order to obtain
computable models (Kohn-Sham LDA, GGA, hybrid functionals,
machine-learnt exchange-correlation ...)

Besides, the functional Frx(p) is not convex! As a consequence, even if Fuk
was known, the computation of E4(v) out of (1) might be a complicated task.
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Lieb functional

To alleviate the second point, Lieb Lieb, 1983] introduced the so-called Lieb
functional F;[p], which is actually a convexification of the Hohenberg-Kohn
functional Frk[p].

Filp] = inf > aiFu[pi]
a; >0, p €Iy, i €N" o
ZIGN* Qipi = p

In particular, it still holds that

el =int {Fill+ [ vo. peTu) @)
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Mixed states
The Lieb functional can also be seen as a minimization problem defined over
the set of mixed states (instead of pure states like in the Hohenberg-Kohn
functional).

o Hy = {v € L3(R®V;C), v antisymmetric }

* GF(Hy): Set of non-negative trace-class operators on H{', that is the set
of operators I' of the form:

+o0
M= o) (@il
i=1

for some
+oo
® a; >0s.t Za; < +o0,
i=1

® (¢); orthonormal basis of H}

Associated electronic density:

pr(x) = Zaiﬂw;(x)

ptimal transport problem
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Lieb functional: a quantum optimal transport problem

Filp] =

inf
res; (1))
pr=p

Tr (H,(\’,F)

+oo
Tr (HRF) = 3 anlwil HRlw)

i=1
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Strictly Correlated Electrons (SCE) limit of the Hohenberg-Kohn
functiona

The SCE limit of the HK functional was first considered in the series of work:
[Seidl,1999], [Seidl,Gori-Giorgi,Savin,2007]

Hy=T+C
where
1

1<i<j<N Ixi = x|

N
1
T= fE;Ax, and  C(x1,...,Xn) =
Let h > 0 and consider

Frxlp] := inf {h(@ TIw) + ([Cle), & € A, py = p} -
SCE limit of the Hohenberg-Kohn functional:

Fscelp] = lim F" ik (p)
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SCE functional: a classical optimal transport problem

If ¥ € An, v = |1|? is a symmetric probability measure on R®V, and
wicls) = [, o
R3N

For all 7 € Puym(R*") symmetric probability measure on R%Y, let p., be its
marginal

py(x) =N o V(X Xes - Xn) dxe Ay (pyy, = )

[Cotar,Friesecke, Kluppelberg, 2011], [Lewin, 2017], [Cotar,Friesecke, Klippelberg, 2018]

FSCE[P] = inf / C"‘/
Y € Poym(R7) e

Py =P
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Recap’
Lieb functional SCE functional
Filp] = inf Tr (HYT Fscelp] = inf Cv
re ! (M) ( ) ¥ € Peym(RN) eV
pr=p py=p
I' mixed state (trace-class ® ~ symmetric probability measure on
non-negative s.a. operator) R3N
pr = p: partial trace constraint ® p., = p: marginal constraint
Cost functional: Tr (H;T) * Cost functional: [Lay Cv
Quantum optimal transport Classical optimal transport

Several recent efforts on the design of numerical schemes for the
computation of the SCE functional.

Much less (at least up to my knowledge) for the computation of the Lieb
functional.
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Classical discretization: discrete state space

Lety',--- ,yMecR®and Y = {y',---, yM} be a discretization grid of R>.

Classical discretization (for the SCE problem) approaches consist in
approximating the solution ~ as a discrete measure defined on Y":

AN E : ity "N(S(y’.hm,y’.N)
1<iy, o iy <M

Linear problem of size M/"'! Curse of dimensionality

Complexity is even worse for classical discretizations of the Lieb
problem
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Numerical methods for the SCE problem

® [Benamou,Carlier,Cuturi,Nenna,Peyré,2015], [Nenna,2016] : US€ of an entropic
regularization (using the Kullback-Leibler entropy), together with an
iterative algorithm called Sinkhorn algorithm.

® [MendiLin,2013] : dual formulation of the Kantorovich problem: needs
appropriate treatment of the (infinite-dimensional) inequality constraint.

® [Vagler,2019],[Friesecke, Schulz, Végler,2021] : The Genetic column generation
algorithm builds on the sparsity structure of minimizers of classical
discretizations of the SCE problem

® [Alfonsi, Coyaud, VE, Lombardi,2021], [Alfonsi, Coyaud, VE,2022]: Moment constraints
discretization also leads to sparse minimizers

[VE, Nenna,2023] Moment constraints discretization also leads to sparse
minimizers for the Lieb functional
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Outline of the talk

Moment constrained optimal transport problem
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Assumptions

® Assumption on p: there exists 0 : R, — R, continuous non-decreasing

function such that 6(r) i +o0 and such that
— o0

Co = /3 0(|x])p(x) dx < ~+oo.

° Assumption on moment functions:
(om)mens C C(R®) N (L"" (R®) + LS/Z(RS)) st
*pi(x)=1;
e forall 5 € Zy with [zs 0(|x])5(x) dx < Co,

(VmGN*, /}stmﬁ=/ﬂ§3wmp) = p=p

vme N", pm::/ Omp
R3

the moment of p associated with the moment function ¢n,

©000000000000000

Density functional theory and optimal transpo Moment constrained optimal transport problem
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Alternative discretization: moment constraints
Let M € N* be a discretization parameter.

The marginal/partial trace constraint

p~ = p (SCE case) pr = p (Lieb case) (3)
is replaced by the M moment constraints: forall 1 < m < M,
/ omp~ = p" (SCE case) / ompr = p™ (Lieb case) (4)
R3 R3
and the additional technical condition:
[, 0(x)p, < Co(sCEcase) [ e(lxr < Co (Lisb case) (5
R3 R3
Fielp] = inf Cvy FMp] = inf Tr (Hﬁr)
Y € Poym(R) Jrew re &y (M)
p~ satisfies pr satisfies
(4) and (5) (4) and (5)

Moment constrained optimal transport problem
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Convergence and existence of minimizers

[Alfonsi, Coyaud, VE, Lombardi, 2021], [VE, Nenna, 2023]

Theorem
For all M € N*, there exists at least one minimizer to both moment constraint
optimal transport problems (SCE and Lieb case). In addition, it holds that

Fitelol ,— Fscelo] and  Fl'lp] — Filo]
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Tchakaloff’s theorem

The following theorem is the backbone of our analysis to prove the existence
of sparse minimizers.
[Bayer, Teichmann,2006]

Theorem

Let 1. be a non-negative Borel measure on a Hilbert space H concentrated
on a Borel set B, i.e. u(#\ B) = 0. Let My € N* and A : # — R be a
continuous map. Assume that the first moments of N#u exist i.e.

[ IN@du(2) < +oc.
H

Then, there exists an integer 1 < K < My, points z',...,z¥ e Band
weights wy, - - -, Wi > 0 such that

K
V1< m< M, / Anl(2) dpu(2) = 3 wiehm(25),
H k=1
where A denotes the m" component of A.
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Sparse structure of minimizers: SCE case

Using the Tchakaloff’s theorem, [Bayer, Teichmann,2006]

Theorem (jarfonsi, Coyaud, VE, Lombardi, 2021])

There exists an integer1 < K < M+ 1, and for all 1 < k < K, points
X* e (R®N and weights wi > 0 such that the symmetrized measure
associated to

K
V=) Wibxk (6)
k=1

is a minimizer to FLg[p].

Complexity of this sparse representation: O (MN)
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Sparse structure of minimizers: Lieb case

Using the Tchakaloff’s theorem, [Bayer, Teichmann,2006]

Theorem (jve, Nenna, 2023))
There exists an integer1 < K < M+ 1, and for all 1 < k < K, functions
Yk € Ay and weights wx > 0 such that

K
M= wklt) (txl )
k=1

is a minimizer to FM[p].

There exists at least a minimizer to F}[p] which has rank at most M + 1.
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Back to the SCE case: particle and weight optimization problem

Natural idea for a numerical method: Restrict the minimization set of
problem F2L.[p] to measures ~ that can be written under the form (7) for
some weights wy and points X*.

K
Fsce o) = inf > whe(X9). (8)
Y= (X)1<k<k € RN, S
W = (W")1<k<k C Ry,

25:1 wh =1,
Vi<m<M,

Sk WrOm(XK) = p"
where

UX = (1, xw) € (B, om(X) = =3 om(x).

2|

Non convex optimization problem under non convex constraints!
= Stochastic gradient algorithm with constrained overdamped
Langevin dynamics
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SCE case: particle and weight optimization problem
Minimization set:

(W,Y) e RE x (RONK, W= (W )1<kek, ¥V i= (XD 1<k,
K= 25:1 wk = 1,
VIi<m< M, Q0 whon(XF) = p"

FMKI5 = inf W, YY), 9
sce (o] (W,IYn)eij( ) 9
with
K
TW,Y):=> " whe(X").
k=1

Theorem ([artonsi, Coyaud, VE, 2022])
If K > 2M + 8, for any (Wo, o), (W4, Y1) € P¥, there exists a continuous
path ¢ : [0,1] — P¥ such that

* ¢(0) = (W, Yo);

° ¢(1) =W, Y1),

® [0,1] 2 t— J(¢(t)) is monotonous.
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1D Numerical results
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1D numerical tests presented with N = 5.

X = [—1,1] and Legendre polynomial test functions.
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1D Numerical results

2.2x10

2x10!

1.8x 10

cost
cost

16x10

1.4x10

10° 10t 102 10° 10*
number of iterations

® blue curve: M =10
® green curve: M =20
® red curve: M = 40
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3D numerical results

N =100, M = 52 (polynomial test functions), p (normalized) sum of six
gaussian functions defined on R®
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Conclusion and perspectives

Conclusions:

* Alternative way of discretizing optimal transport problems from DFT with
moment constraints: sparse minimizers

* Numerical particle scheme for the approximation of the SCE functional:
encouraging numerical results

Perspectives:

* Numerical scheme for the approximation of the Lieb functional (work in
progress with Luca Nenna)

® Numerical scheme which allows for more moment functions

¢ Choice of the moment functions and rates of convergence (preliminary
results for the SCE functional, might be difficult to extend such results for
the Lieb functional...)

® Proof of convergence of the numerical scheme (perhaps combining
ideas with the GenCol algorithm of Friesecke and collaborators...): Very
recent work with promising results in this direction [Friesecke, Penka, 2023]

® |earning the Lieb functional?
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