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Monge’s problem

Gaspard Monge (1746-1818)

Mémoires sur la théorie des déblais
et remblais (1781)
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Monge’s problem
Question: what is the most economical way to fill a hole with a heap of sand?

X ,Y ⊂ Rd : sand heap is located on the set X , hole located on the set Y

µ(x) ≥ 0: represents the height of the heap of sand (source measure)
ν(y) ≥ 0: represents the depth of the hole (target measure)

Assumption: the cost of transporting a unit mass of sand from a point x ∈ X
to a point y ∈ Y is equal to c(x , y) with c : X × Y → R+

Conservation of the total volume/mass of sand:∫
X
µ(x) dx =

∫
Y
ν(y) dy
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Monge’s problem
Monge’s optimal transport problem: find a map T : X → Y which
“transports µ onto ν with minimal cost”.

What does it mean?

• A map T : X → Y is said to ”transport µ onto ν“ if for all bounded
functions f : Y → R, it holds that∫

Y
f (y)ν(y) dy =

∫
X

f (T (x))µ(x) dx

ν = T #µ is the pushforward measure of µ by T , i.e.

µ(x) = ν(T (x))|det ∇T (x)|

• The cost associated to the map T is defined as∫
X

c (x ,T (x))µ(x) dx
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Monge’s problem

More generally, µ and ν can be chosen as probability measures on the sets
X and Y respectively.

Let P(X ) and P(Y ) denote the set of probability measures on X and Y
respectively.

Monge’s optimal transport problem
Given µ ∈ P(X ), ν ∈ P(Y ) and c : X × Y → R+ ∪ {+∞},

find a map T : X → Y which minimizes the cost∫
X

c (x ,T (x))µ(x) dx

under the constraint that T transports µ onto ν.

7 / 46



Introduction to optimal transport Density functional theory and optimal transport Moment constrained optimal transport problem

Monge’s optimal transport problem

Monge’s optimal transport problem
Given µ ∈ P(X ), ν ∈ P(Y ) and c : X × Y → R+ ∪ {+∞},

find a map T : X → Y which minimizes the cost∫
X

c (x ,T (x))µ(x) dx

under the constraint that T transports µ onto ν.

This is an ill-posed problem in general.
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Kantorovich problem

Leonid Kantorovich (1912-1986),
Economy Nobel prize in 1975

introduced a generalization of the
Monge’s problem with much better
mathematical properties!
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Coupling

An important aspect of this generalisation is that it is symmetric with respect
to µ and ν, and is based on the notion of coupling between µ and ν.

A probability measure γ ∈ P(X × Y ) is said to be a coupling between µ and
ν if it satisfies ∫

Y
γ(x , y) dy = µ(x),

∫
X
γ(x , y) dx = ν(y)

γ is said to be the x-marginal of γ and ν is said to be the y -marginal of γ.
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Couplings with transport maps

Example: Let T : X → Y and assume that µ is very regular.
Define γT (x , y) ∈ P(X × Y ) a probability measure on X × Y such that

γT (x , y) = µ(x)δ(x,T (x))(x , y)

Then, γT is a coupling between µ and ν if and only if T transports µ onto ν.

Besides, in this case, it holds that∫
X

c(x ,T (x))µ(x) dx =

∫
X×Y

c(x , y)γT (x , y) dx dy
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Kantorovich problem

Monge’s optimal transport problem using couplings
Given µ ∈ P(X ), ν ∈ P(Y ) and c : X × Y → R+ ∪ {+∞},

find a map T : X → Y which minimizes the cost∫
X×Y

c(x , y)γT (x , y) dx dy

under the constraint that γT is a coupling between µ and ν .

Kantorovich optimal transport problem
Given µ ∈ P(X ), ν ∈ P(Y ) and c : X × Y → R+ ∪ {+∞},

find a probability measure γ ∈ P(X × Y ) which minimizes the cost∫
X×Y

c(x , y)γ(x , y) dx dy =

∫
X×Y

cγ

under the constraint that γ is a coupling between µ and ν.
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Kantorovich optimal transport problem with two marginals

Given µ ∈ P(X ), ν ∈ P(Y ) and c : X × Y → R+ ∪ {+∞},

find a probability measure γ ∈ P(X × Y ) which minimizes the cost∫
X×Y

cγ

under the constraint that the x-marginal of γ is µ and the y -marginal of
γ is ν. ∫

Y
γ(x , y) dy = µ(x),

∫
X
γ(x , y) dx = ν(y)

Example: X = Y ⊂ Rd and c(x , y) = |x − y |2

Wasserstein distance between µ and ν:

W 2
2 (µ, ν) := inf

γ∈Π(µ,ν)

∫
X×Y

cγ
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Multi-marginal optimal transport Kantorovich problem

Let N ∈ N∗, X1, · · · ,XN ⊂ Rd .

Given µ1 ∈ P(X1), · · · , µN ∈ P(XN), and C : X1 × · · · × XN → R+ ∪ {+∞},

find a probability measure γ ∈ P(X1 × · · · × XN) which minimizes the cost∫
X1×···×XN

Cγ

under the constraint that, for all 1 ≤ i ≤ N, the i th marginal of γ is µi .∫
X1×···×Xi−1×Xi+1×···×XN

γ = µi
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Symmetric multi-marginal (classical) optimal transport problem

• X1 = · · · = XN = X ⊂ Rd .
• µ1 = · · · = µN = ρ

• C : X N → R+ symmetric function

Given ρ ∈ P(X ), and C : X N → R+ ∪ {+∞} symmetric,

find a symmetric probability measure γ ∈ Psym(X N) which minimizes the cost∫
XN

Cγ

under the constraint that the marginal of γ is ρ.∫
X2×···×XN

γ = ρ
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And DFT?

Link between Density Functional Theory and (classical and quantum)
symmetric optimal transport problems
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Admissible electronic wavefunctions

For the sake of simplicity, atomic units are used and the influence of spin is
neglected.

Consider a set of N electrons.

The set of admissible wavefunctions ψ(x1, . . . , xN) (for all 1 ≤ i ≤ N, xi ∈ R3)
for a system of electrons with finite kinetic energy is the set

AN :=
{
ψ ∈ L2(R3N ;C), ∇xψ ∈ L2(R3N ;C), ψ antisymmetric, ‖ψ‖L2 = 1

}
.

Antisymmetry: For all σ ∈ SN , the set of permutations of {1, · · · ,N},

ψ(xσ(1), · · · , xσ(N)) = ε(σ)ψ(x1, · · · , xN), ∀(x1, · · · , xN) ∈ R3N ,

where ε(σ) is the signature of σ.
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Many-body Schrödinger electronic problem
The ground state energy Eg [v ] is of a system of N electrons in the presence
of an external potential v given by the many-body Schrödinger electronic
problem:

Eg [v ] = inf
ψ∈AN

〈ψ|Hv
N |ψ〉

where

Hv
N = H0

N +
N∑

i=1

v(xi )

with

H0
N = −1

2

N∑
i=1

∆xi +
∑

1≤i<j≤N

1
|xi − xj |

Example: External potential v generated by M nuclei at positions
R1, . . . ,RM ∈ R3 and charges Z1, . . . ,ZM > 0 in the Born-Oppenheimer
approximation:

v(x) := −
M∑

k=1

Zk

|Rk − x |
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Hohenberg-Kohn theorem and Density Functional Theory

For all ψ ∈ AN , the electronic density associated to ψ is defined by

ρψ(x) := N
∫
R3(N−1)

|ψ(x , x2, · · · , xN)|2 dx2 · · · dxN .

[Hohenberg,Kohn,1964], [Lévy,1979], [Lieb,1983]

It holds that

IN := {ρψ, ψ ∈ AN} =

{
ρ ≥ 0,

∫
R3
ρ = N,

∫
R3
|∇√ρ|2 < +∞

}
The Hohenberg-Kohn theorem states that

Eg [v ] = inf

{
FHK [ρ] +

∫
R3

vρ, ρ ∈ IN

}
(1)

where the Hohenberg-Kohn functional FHK (ρ) is defined by

FHK [ρ] := inf
{
〈ψ|H0

N |ψ〉, ψ ∈ AN , ρψ = ρ
}
.
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Density Functional Theory: approximations of FHK (ρ)

Unfortunately, the functional FHK (ρ) is not known explicitly.

All DFT models rely on approximations of this functional in order to obtain
computable models (Kohn-Sham LDA, GGA, hybrid functionals,
machine-learnt exchange-correlation ...)

Besides, the functional FHK (ρ) is not convex! As a consequence, even if FHK

was known, the computation of Eg(v) out of (1) might be a complicated task.
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Lieb functional

To alleviate the second point, Lieb [Lieb, 1983] introduced the so-called Lieb
functional FL[ρ], which is actually a convexification of the Hohenberg-Kohn
functional FHK [ρ].

FL[ρ] = inf
αi ≥ 0, ρi ∈ IN , i ∈ N∗∑

i∈N∗ αiρi = ρ

∑
i∈N∗

αiFHK [ρi ]

In particular, it still holds that

Eg [v ] = inf

{
FL[ρ] +

∫
R3

vρ, ρ ∈ IN

}
(2)
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Mixed states
The Lieb functional can also be seen as a minimization problem defined over
the set of mixed states (instead of pure states like in the Hohenberg-Kohn
functional).

• HN
0 :=

{
ψ ∈ L2(R3N ;C), ψ antisymmetric

}
• S+

1 (HN
0 ): Set of non-negative trace-class operators on HN

0 , that is the set
of operators Γ of the form:

Γ =
+∞∑
i=1

αi |ψi〉〈ψi |

for some

• αi ≥ 0 s.t.
+∞∑
i=1

αi < +∞,

• (ψi )i orthonormal basis of HN
0

Associated electronic density:

ρΓ(x) =
+∞∑
i=1

αiρψi (x)
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Lieb functional: a quantum optimal transport problem

FL[ρ] = inf
Γ ∈ S+

1 (HN
0 )

ρΓ = ρ

Tr
(

H0
NΓ
)

Tr
(

H0
NΓ
)

=
+∞∑
i=1

αi〈ψi |H0
N |ψi〉

24 / 46



Introduction to optimal transport Density functional theory and optimal transport Moment constrained optimal transport problem

Strictly Correlated Electrons (SCE) limit of the Hohenberg-Kohn
functional

The SCE limit of the HK functional was first considered in the series of work:
[Seidl,1999], [Seidl,Gori-Giorgi,Savin,2007]

H0
N = T + C

where

T = −1
2

N∑
i=1

∆xi and C(x1, . . . , xN) =
∑

1≤i<j≤N

1
|xi − xj |

Let h > 0 and consider

F h
HK [ρ] := inf {h〈ψ|T |ψ〉+ 〈ψ|C|ψ〉, ψ ∈ AN , ρψ = ρ} .

SCE limit of the Hohenberg-Kohn functional:

FSCE [ρ] = lim
h→0

F h
HK (ρ)
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SCE functional: a classical optimal transport problem

If ψ ∈ AN , γψ := |ψ|2 is a symmetric probability measure on R3N , and

〈ψ|C|ψ〉 =

∫
R3N

Cγψ

For all γ ∈ Psym(R3N) symmetric probability measure on R3N , let ργ be its
marginal

ργ(x) = N
∫

(R3)N−1
γ(x , x2, . . . , xN) dx2 . . . dxN (ργψ = ρψ)

[Cotar,Friesecke, Klüppelberg, 2011], [Lewin, 2017], [Cotar,Friesecke, Klüppelberg, 2018]

FSCE [ρ] = inf
γ ∈ Psym(R3N)

ργ = ρ

∫
R3N

Cγ
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Recap’

Lieb functional

FL[ρ] = inf
Γ ∈ S+

1 (HN
0 )

ρΓ = ρ

Tr
(

H0
NΓ
)

• Γ mixed state (trace-class
non-negative s.a. operator)

• ρΓ = ρ: partial trace constraint
• Cost functional: Tr

(
H0

NΓ
)

Quantum optimal transport

SCE functional

FSCE [ρ] = inf
γ ∈ Psym(R3N)

ργ = ρ

∫
R3N

Cγ

• γ symmetric probability measure on
R3N

• ργ = ρ: marginal constraint
• Cost functional:

∫
R3N Cγ

Classical optimal transport

Several recent efforts on the design of numerical schemes for the
computation of the SCE functional.
Much less (at least up to my knowledge) for the computation of the Lieb
functional.
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Classical discretization: discrete state space

Let y1, · · · , yM ∈ R3 and Y = {y1, · · · , yM} be a discretization grid of R3.

Classical discretization (for the SCE problem) approaches consist in
approximating the solution γ as a discrete measure defined on Y N :

γ ≈
∑

1≤i1,...,iN≤M

γi1,...,iN δ(y i1 ,...,y iN )

Linear problem of size MN ! Curse of dimensionality

Complexity is even worse for classical discretizations of the Lieb
problem
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Numerical methods for the SCE problem

• [Benamou,Carlier,Cuturi,Nenna,Peyré,2015], [Nenna,2016] : use of an entropic
regularization (using the Kullback-Leibler entropy), together with an
iterative algorithm called Sinkhorn algorithm.
• [Mendl,Lin,2013] : dual formulation of the Kantorovich problem: needs

appropriate treatment of the (infinite-dimensional) inequality constraint.
• [Vögler,2019],[Friesecke, Schulz, Vögler,2021] : The Genetic column generation

algorithm builds on the sparsity structure of minimizers of classical
discretizations of the SCE problem
• [Alfonsi, Coyaud, VE, Lombardi,2021], [Alfonsi, Coyaud, VE,2022]: Moment constraints

discretization also leads to sparse minimizers

[VE, Nenna,2023] Moment constraints discretization also leads to sparse
minimizers for the Lieb functional
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Assumptions

• Assumption on ρ: there exists θ : R+ → R+ continuous non-decreasing
function such that θ(r) −→

r→+∞
+∞ and such that

C0 :=

∫
R3
θ(|x |)ρ(x) dx < +∞.

• Assumption on moment functions:
(ϕm)m∈N∗ ⊂ C(R3) ∩

(
L∞(R3) + L3/2(R3)

)
s.t.

• ϕ1(x) = 1;

• for all ρ̃ ∈ IN with
∫
R3 θ(|x |)ρ̃(x) dx ≤ C0,(

∀m ∈ N∗,
∫
R3
ϕmρ̃ =

∫
R3
ϕmρ

)
⇒ ρ̃ = ρ.

∀m ∈ N∗, ρm :=

∫
R3
ϕmρ

the moment of ρ associated with the moment function ϕm
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Alternative discretization: moment constraints
Let M ∈ N∗ be a discretization parameter.

The marginal/partial trace constraint

ργ = ρ (SCE case) ρΓ = ρ (Lieb case) (3)

is replaced by the M moment constraints: for all 1 ≤ m ≤ M,∫
R3
ϕmργ = ρm (SCE case)

∫
R3
ϕmρΓ = ρm (Lieb case) (4)

and the additional technical condition:∫
R3
θ(|x |)ργ ≤ C0 (SCE case)

∫
R3
θ(|x |)ρΓ ≤ C0 (Lieb case) (5)

F M
SCE [ρ] = inf

γ ∈ Psym(R3N)
ργ satisfies
(4) and (5)

∫
R3N

Cγ F M
L [ρ] = inf

Γ ∈ S+
1 (HN

0 )
ρΓ satisfies
(4) and (5)

Tr
(

H0
NΓ
)
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Convergence and existence of minimizers

[Alfonsi, Coyaud, VE, Lombardi, 2021], [VE, Nenna, 2023]

Theorem
For all M ∈ N∗, there exists at least one minimizer to both moment constraint
optimal transport problems (SCE and Lieb case). In addition, it holds that

F M
SCE [ρ] −→

M→+∞
FSCE [ρ] and F M

L [ρ] −→
M→+∞

FL[ρ]
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Tchakaloff’s theorem

The following theorem is the backbone of our analysis to prove the existence
of sparse minimizers.
[Bayer,Teichmann,2006]

Theorem
Let µ be a non-negative Borel measure on a Hilbert space H concentrated
on a Borel set B, i.e. µ(H \ B) = 0. Let M0 ∈ N∗ and Λ : H → RM0 be a
continuous map. Assume that the first moments of Λ#µ exist i.e.∫

H
‖Λ(z)‖ dµ(z) < +∞.

Then, there exists an integer 1 ≤ K ≤ M0, points z1, · · · , zK ∈ B and
weights w1, · · · ,wK > 0 such that

∀1 ≤ m ≤ M0,

∫
H

Λm(z) dµ(z) =
K∑

k=1

wk Λm(zk ),

where Λm denotes the mth component of Λ.
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Sparse structure of minimizers: SCE case

Using the Tchakaloff’s theorem, [Bayer,Teichmann,2006]

Theorem ([Alfonsi, Coyaud, VE, Lombardi, 2021])
There exists an integer 1 ≤ K ≤ M + 1, and for all 1 ≤ k ≤ K , points
X k ∈ (R3)N and weights wk > 0 such that the symmetrized measure
associated to

γ =
K∑

k=1

wkδXk (6)

is a minimizer to F M
SCE [ρ].

Complexity of this sparse representation: O (MN)
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Sparse structure of minimizers: Lieb case

Using the Tchakaloff’s theorem, [Bayer,Teichmann,2006]

Theorem ([VE, Nenna, 2023])
There exists an integer 1 ≤ K ≤ M + 1, and for all 1 ≤ k ≤ K , functions
ψk ∈ AN and weights ωk > 0 such that

Γ =
K∑

k=1

ωk |ψk 〉〈ψk | (7)

is a minimizer to F M
L [ρ].

There exists at least a minimizer to F M
L [ρ] which has rank at most M + 1.
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Back to the SCE case: particle and weight optimization problem

Natural idea for a numerical method: Restrict the minimization set of
problem F M

SCE [ρ] to measures γ that can be written under the form (7) for
some weights wk and points X k .

F M,K
SCE [ρ] = inf

Y := (X k )1≤k≤K ⊂ (R3)N ,

W := (wk )1≤k≤K ⊂ R+,∑K
k=1 wk = 1,
∀1 ≤ m ≤ M,∑K

k=1 wk Φm(X k ) = ρm

K∑
k=1

wk c(X k ). (8)

where

∀X = (x1, · · · , xN) ∈ (R3)N , Φm(X ) :=
1
N

N∑
i=1

ϕm(xi ).

Non convex optimization problem under non convex constraints!
⇒ Stochastic gradient algorithm with constrained overdamped
Langevin dynamics
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SCE case: particle and weight optimization problem
Minimization set:

PK :=


(W ,Y ) ∈ RK

+ × ((R3)N)K , W := (wk )1≤k≤K , Y := (X k )1≤k≤K ,∑K
k=1 wk = 1,

∀1 ≤ m ≤ M,
∑K

k=1 wk Φm(X k ) = ρm


F M,K

SCE [ρ] = inf
(W ,Y )∈PK

J (W ,Y ), (9)

with

J (W ,Y ) :=
K∑

k=1

wk c(X k ).

Theorem ([Alfonsi, Coyaud, VE, 2022])
If K ≥ 2M + 6, for any (W0,Y0), (W1,Y1) ∈ PK , there exists a continuous
path ζ : [0, 1]→ PK such that
• ζ(0) = (W0,Y0);
• ζ(1) = (W1,Y1);
• [0, 1] 3 t 7→ J (ζ(t)) is monotonous.
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1D Numerical results

ρ1 ρ2 ρ3

1D numerical tests presented with N = 5.

X = [−1, 1] and Legendre polynomial test functions.
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1D Numerical results

• blue curve: M = 10
• green curve: M = 20
• red curve: M = 40

40 / 46



Introduction to optimal transport Density functional theory and optimal transport Moment constrained optimal transport problem

1D Numerical results

ρ1

M = 10 M = 20 M = 40
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1D Numerical results

ρ2

M = 20 M = 40
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1D Numerical results

ρ3

M = 20 M = 40
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3D numerical results
N = 100, M = 52 (polynomial test functions), ρ (normalized) sum of six
gaussian functions defined on R3
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Conclusion and perspectives

Conclusions:
• Alternative way of discretizing optimal transport problems from DFT with

moment constraints: sparse minimizers
• Numerical particle scheme for the approximation of the SCE functional:

encouraging numerical results

Perspectives:
• Numerical scheme for the approximation of the Lieb functional (work in

progress with Luca Nenna)
• Numerical scheme which allows for more moment functions
• Choice of the moment functions and rates of convergence (preliminary

results for the SCE functional, might be difficult to extend such results for
the Lieb functional...)
• Proof of convergence of the numerical scheme (perhaps combining

ideas with the GenCol algorithm of Friesecke and collaborators...): Very
recent work with promising results in this direction [Friesecke, Penka, 2023]

• Learning the Lieb functional?
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