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The timescale problem of (parallel) MD

Parallel Trajectory Splicing (ParSplice)

Improving speculation in ParSplice

Improving resource allocation in ParSplice

A new ParSplice-inspired mathematical formalism for state-to-state dynamics



Why Molecular Dynamics?

Ubiquitous: >1M hit on Google scholar

H production in

Water/Al (Quantum MD)

K. Shimamura et al., “Hydrogen-
on-Demand Using Metallic Alloy
Nanoparticles in Water,” Nano
Letters, vol. 14, no. 7,2014, pp.
4090-4096
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Phases of granular systems
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Shock Response of coarse grained explosives

Grain Interfaces
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Mattox, Timothy I., et al. "Highly scalable discrete-particle simulations with novel coarse-graining: accessing
the microscale." Molecular Physics 116.15-16 (2018): 2061-2069.
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Parallel MD

Communication required at every step
‘ Most cycles spent here

— m

Scalable if
computation >> communication

Each processor owns its domain
.3 4/4/23 6



MD weak-scales

More compute = larger
simulations
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A brief history of MD

« 1959: 32 atqog
* 1964: 864 ¢

* 1996: 100
« 2000: 5 bill

« 2008: 1 trillion atoms (Germann et al.)

« 2013: 4 trillion atoms (Eckhardt et al.)
« 2019: 20 trillion atoms (Tchipev et al.)
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MD does not strong-scale

Number of atoms
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The prospect for MD at the exascale
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Metastability

* For materials away from melting:
— Fast vibrations/fluctuations (ps)
— Slow conformational changes (ns-s)

* Short simulations are often not
informative of long-time behavior

Theme of today’s talk:
How can we leverage this

separation of timescales to
parallelize the dynamics in
time instead of space
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Parallel Trajectory Splicing (ParSplice)

[Perez, Cubuk, Waterland, Kaxiras, Voter, JCTC 12, 18 (2016)]
[Aristoff, SIAM/ASA Journal on Uncertainty Quantification 7, no. 2 (2019): 685-719]



State-to-state dynamics

Key is to understand first-
passage properties

Goal is to generate a single sfaftistically correct state-to-state trajectory

4/4/23



QSD for Langevin dynamics

dW
In the following: 1
* Overdampg ' '
» Absorbing

 Generato

- QSD s ei See Mouad’s talk

correspo

!}/Iost of the follOW
if:

« QSD exists

« QSD is unique
« Convergence to the QSD is fast
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QSD for Langevin dynamics

ap _
at—Lpon 74

p=0ondW

With L = =VV -V + 1A
Then:

p(X,t) = z ekt cdy, (X)

k
For t > (A,—A;)”" and conditional on not having escaped,

AX,t) = u (X) + 0(e~Pamtty



Properties of the QSD

* The QSD of Wis unique
» Convergence to the QSD is exponential with rate (A,—A,)

From the QSD:
[  First escape time is random and exponentially distributed with rate A, ]

* First escape point is random and uncorrelated with escape time

. Does not depend
This is true for any state definition! ™\ ,, history before

reaching the QSD

Overdamped Langevin: [Le Bris, Lelievre, Luskin, and DP, MCMA 18, 119 (2012)]
‘@ Langevin: [Lelievre, Ramil, Reygner, arXiv:2101.11999]



After only a short time in the state,
the next escape time/location distribution
is a complex function of the entry point

After spending t. > (A,—A;)1in W,
the next escape from W becomes
Markovian*

All trajectories that spent t. > (A;—A,)?
in W are statistically equivalent with
respect to how and when they will
leave W*

() * Up to an exponentially small error in t,



Trajectory building block

A valid state-to-state trajectory can be assembled by

splicing independent segments end-to-end*

QSD sample in state 1 QSD sample in state 3

<o * Up to an exponentially small error in t, a2



Parallel Trajectory Splicing (ParSplice)

Scalable since short
trajectories can be
generated simultaneously

[Perez, Cubuk, Waterland, Kaxiras, Voter, JCTC 12, 18 (2016)]
[Aristoff, SIAM/ASA Journal on Uncertainty Quantification 7, no. 2 (2019): 685-719]
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Example of ParSplice use

Shape fluctuations in nanoparticles:
[Phys. Rev. Mat. 2, 126002 (2018)]

Helium bubble transport in W:
[ Sci. Rep. 7, 2522 (2017) ]

Vacancy-mediated dislocation climb in Ni:
[Phys. Rev. Mat. 5, 083603 (2021)]

Segregation in CuNi:

[JCTC 18, 4447 (2022)]




Shape fluctuations in nanoclusters

Properties of nanoclusters are
sensitive to shapes and sizes

Some small nanoparticles don’t
have well defined shapes;
continuously transform between
different conformations

This affects their
physical/chemical properties

Fig. 2. Changes in shape of a 3.5-nm gold crystal supported on
amorphous silicon, as shown by single-frame exposures from
videotape playback. (a) Icosahedral shape. (b) Single crystal, 1.8
seconds later. (c) Icosahedral shape; time, 4.2 seconds. (d)
Stacking fault; time, 6.0 seconds. (¢) Twin plane; time, 6.2
seconds. (f) Single crystal; time, 9.6 seconds. (g) Stacking fault
(arrowed) and twin plane, T; time, 20 seconds.

How do these shape changes
occur?

Smith et al., Science 233, 872 (1986)

4/4/23 21



Shape Fluctuations in
Nanoparticles

» Metallic nanoparticles (150-300 atoms)
 Between 3,600 and 36,000 cores

* Long simulations: up to 4 ms
* Many transitions: up to ~100M per run
 Many states: up to ~1M per run

Huang, Lo, Wen, Voter, Perez, JCP 147, 152717 (2017)
Perez, Huang, Voter, JMR 33, 813 (2018)

Huang, Wen, Voter, Perez, Phys. Rev. Mat. 2, 126002
(2018)

Rao Huang
(Xiamen U.)

Number

Trajectory

Number of

Number

Sl of Atoms | I &) Length (ps) Transitions | of States Brescrption
146 900 70,257,528 162,965 6,246 fec = deca = ico
- 800 2306434 | 19mom | wamr| I
900 20,373,095 240,306 | 117,680
- = 800 | 1350168728 | 6,630,131 | 303,572 —
900 348,662,895 688,027 93,346 fec = ico
900 | 1,986709692 | 4395285 | 252,153
231 | 1000 92,171,602 955,401 142,383 —
1100 24,608,419 914,005 | 110,290
146 550 301,832,137 | 3,942,180 | 237,293 fec = ico
500 | 4156073707 | 6,160,286 | 240,594 S—
- 550 23,712,165 656,202 241491 |  fcc <> 5-fold caps = ico
600 21,690,608 | 1,039,065 | 144,713 e
deca=> fcc = ico
Cu e 500 489,113,720 | 93,863,998 | 368,356
600 91,701,072 | 9,863,950 | 847,016
500 438,302,547 49,409 12,817
550 66578597 | 4,623,717 | 262,785 T
- 600 85,056,822 184737 | 169,217
700 832,190 237,840 89,356
146 600 237233817 | 22910983 | 119,489 fec = ico
Au 190 600 521,506,615 | 10,198,278 85,875 fcc <> 5-fold caps
231 800 774,813,889 795,678 | 159,743 | fcc = 5-fold caps =>helical
500 122,897,307 | 2,558,937 71,357 S
146 550 21613546 | 1988646 | 136207 |  fe€ e f‘(’)flfc;":)‘(‘if“’d
- 500 841,036,559 | 1529663 | 258,281
Ag 600 128,965,726 | 3,961,585 | 616,430
400 | 1,651,496973 | 2,416,400 60,802
190 500 109,165,848 | 1,414,790 | 154,083 T
600 30620753 | 1,091,307 | 147,863
231 500 20,445,451 946,623 92,818




Direct observation of Cu-170@600K

shape fluctuations « ~22 us of simulation time
« ~106 transitions

« ~10° states

HCP

FCC




Where are we, and were do we need to go

10’25_ GAP";
« Excellent performance on “expensive” 5 |
ML potentials. g .
£ ReaxFF  ©FF
é (F A;R.EBO .
- The more expensive the potential, the Rl i

EAM Tersoff

easiest for ParSplice, as each replica ; _
strong-scales more. 10° Toes  Tee0 2000 2010

Year Published

« The ultimate challenge is for “cheap”
potentials for extremely long
timescales.

Number of atoms

Timescale



ParSplice at the exascale

» ParSplice executed using EXAALT on 7000
Frontier nodes (75% of machine)

* SNAP Potential

* 100,000 W atoms

* ~1% of resources for management
* ~99% of resources to simulation

* Infrastructure re-assigns MD tasks to workers
every ~7 seconds

¢ 81 sub-domains

* ~170 instances of each sub-domain execute
concurrently

* 4 GPU dies for every instance

[ EXAALT task-management system I

Persistent Datab
PRl Task Management ersistent Database

Master
In-memory cache

In-
memory
cache

7OX Task
Manager

Worker Worker
MD MD MD
13856x Engine: Engine: Engine: Engine:

LAMMPS LAMMPS B LAMMPS LAMMPS

4x GPUs
per worker

72 nodes for data and task management

6928 nodes for MD simulations R 25




Benchmark results

Rare events
T=300K, LANL Grizzly, 4h runs

Trajectory length | Generated segment #Transitions Simulation

(ps) time (ps) rate

(us/hour)

556,093,988 556,539,980 4,614 28 13. 166 139
18,000 1,315,941,923 1,346,516,503 24,610 64 384 333
2,209,432,238 2,214,868,608 13,479 47 4 294 552
36,000 50,258 60 126 909 562
(o) H . . .
99% of generated segments were spliced Peak simulation rate: 10 us/min, 10 ms/day

4/4/23 26



Bookkeeping

Don’t throw away! Store for
eventual revisits

4/4/23
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Super-basins

Revisits are extremely
common!

4/4/23
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Benchmark results Revisits are
common!

T=300K, LANL Grizzly, 4h runs

Trajectory length | Generated segment #Transitions <tirans/M tc> Simulation
(ps) time (ps) rate
(us/hour)

9,000 556,093,988 556,539,980 4,614 28 13.39 166 139
1,315,941,923 1,346,516,503 24,610 64 2.97 384 333
27,000 2,209,432,238 2,214,868,608 13,479 47 4.55 294 552
36,000 2,291,027,808 2,318,254,470 50,258 60 1.26 909 592

4/4/23 29



Speculation




Statistical oracle




Statistical oracle We use this model to speculate where the

trajectory will be in the future

Model quality affects efficiency, but not
accuracy

®
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Statistical oracle

 Discrete time Markov chain: probability that a segment that
starts in state A ends in state B

* V1: MLE on generated segments (simple!) / @
p Number of segments A - B @
45 Number o f segments generated in A @
« V2: MLE with detailed balance constraint (expensive) \ P

Pyplia = Ppalip
[Noé et al., JCP 128, 244103(2008): 244103.]

« V3: MLE + DB + Warp

« Warning: The model are incomplete! Contains only
states and transitions that were observed before!

See A. Garmon, DP, MSMSE 28, 065015 (2020) for more detail on model construction



Segment scheduling

In which state should the next segment be generated?

 |n the state in which we are most likely to run out of segments!



Virtual-end scheduling

Statistical Model TR
PAA PAB
’ [PBA PBB] ®—0 | g

®o—0 0—0
oo o—o
Virtual segments B}

444444

Pending segments



Virtual-end scheduling

oooooooooooooooooooooooooooooooooooo

Virtual trajectory ‘ —>°

Pending segments
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Virtual-end scheduling

***************************************

Virtual trajectory ‘ —P‘ _>°

Pending segments
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Virtual-end scheduling

oooooooooooooooooooooooooooooooooooooooooooooooo

Virtual trajectory ‘ —P‘ —F‘ —P‘

Pending segments
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Virtual-end scheduling

Virtual trajectory ‘ —P‘ —F‘ —F‘ —V‘

Schedule here

Pending segments

®—®
o—©®
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Virtual-end scheduling

Virtual trajectory ‘ —P‘ —F‘ —F‘ —V‘

Schedule here

Pending segments

®—®
o—©®
®o—0
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A ParSplice simulator

» To explore different strategies, we use a simulator with a known state-to-state
dynamics model.

* In the following: 2D toy model
— 2500 states (50x50) with periodic boundary conditions
— Rare events <n_escape> =10,000 segments
— Resources: 1 million replicas

» Very hard test problem. Without any trick, you would get ~1% efficiency.

» Allows us to compare the data-driven models with truly optimal decisions taken
with full information. Scheduling still only allowed in known states.



Predicted parallel efficiency
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MLE Scheduling pattern
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Imposing reversibility

In MLE, these is no escape from
newly discovered states. All segments
scheduled in B until an escape is observed

In MSE + DB, we impose
reversibility since the reverse
pathway has to exist.

Poplig = Ppalip

DB is not exact in general
in this setting.

4/4/23
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Detailed balance

106
MLE model Detailed Balance Optimal Scheduling
0 0 0
10 4 10 A 10 4 10°
20 1 20 1 20 A
- L] " ].O4
30 30 A 30
40 40 - 40 10°
0 10 20 30 40 0 10 2'0 30 40 0 10 20 30 40

10?



Parallel Efficiency

Parellel Efficiency

1.0
— MLE
———  Optimal
—— Detailed Balance
0.8 -
0.6
0.4
0.2 1
0.0 T 1 1 L L ]
0.0 0.2 0.4 0.6 0.8 1.0

| Time




Accounting for uncertainty

« MLE+DB still produces allocations that are too
local

« Caused by incompleteness: real trajectories
would leave the known space and reenter in

some other state @ N\
* Introduced heuristic warp moves to mimic this: @

— Bayesian formulation for observing a move that @
leaves the model

— Upon leaving, random re-entry at any states
connected by at most N hops from the departure
state in the approximate model



Warping improves non-locality

MLE model Detailed Balance
0 0
10 1 10 11 106
20 A 20 4
. Lo
30 A1 30 A1
10°
40 A 40 A
0 10 20 30 40 0 10 20 30 40 L 10¢
0 0
10 A 10 4
103
20 A 204
B o
30 A 30 4
10?2
40 A 40 1
0 10 20 30 40 0 10 20 30 40

Detailed Balance + Warp Optimal Scheduling



Parallel Efficiency

Parellel Efficiency

1.0
= MLE
—— Optimal
—— Detailed Balance
081 — Detailed Balance + Warp
0.6 -
0.4 -
0.2 -
0-0 1 1 I I I 1 1

0.0 0.5 1.0 1.5 2.0 2.5

Tirhe
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Statistical oracle

» Discrete time Markov chain: probability that a segment
that starts in state A ends in state B

* V1: MLE on generated segments (simple!)

Number of segments A - B

P, =
45 Number o f segments generated in A

« V2: MLE with detailed balance constraint (expensive)
Puplia = Ppalip
« V3: MLE + DB + Warp

* V4: use ML for optimal scheduling (with the
ECP/Exa-Learn project)



Resource allocation MD benchmark (LAMMPS)

« Now we know where to run, but
how to allocate resources to

replicas?

- Many cores/replica: low MD %
efficiency, high ParSplice E
efficiency =

— 1 core/replica: high MD efficiency,
low ParSplice efficiency

 What is the optimal allocation? Tl T T N T
Cores (N)

Highest Shortest
throughput time



Speculative resource allocation

« Expected simulation throughput:

k= Z T (w;)

M: Number of tasks to be executed

«  p;: Probability that task i will be useful
« T(w): Time to complete a task provided w resources
 w;: Resources allocated to completing task i

Goal is to find the w; that maximize R

[Garmon, Andrew, Vinay Ramakrishnaiah, and DP. Parallel Computing 112 (2022): 102936.]



Knowing the odds

« The direct utility of a segment is:

- 1 if the segment is consumed before the end of the run
- 0 if the segment is not consumed consumed before the end of the run

» The expected utility of an additional segment in state j is then
vj: number of visits to state j
S;j: number of currently stored and pending segments

Over some time horizon H (e.g., the end of the simulation)

« Can be estimated directly with MC theory or with KMC



Optimal resource allocation
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Optimal resource allocation
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Optimal resource allocation
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Simulator results

Simulated optimal performance for 3 models:
— 1D chain

— 3D cubic lattice

— Fully-connected graph

* Pii = 099, Pl] = O]./]V]
5000 CPUs

— Max throughput: run as many as possible at the
highest MD efficiency. Good at high speculation
confidence.

— Min time: run as many as possible at the highest MD
speed. Good at low speculation confidence.

Compared performance with two other strategies:




Simulator results
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Practical implications

« Scheduling heterogeneous tasks is very complex

 Practical solution is to periodically stop all tasks and restart them with
optimal resources. Easy to do with MD.

« We also observe that close-to-optimal uniform allocation almost always
exists (>90% of peak). Much easier to deal with in practice!

« However, optimal uniform resource allocation can also change dramatically in
time. Require constant adaptation during the run.



Mathematical Description of Rare Event Dynamics



Discretization of continuous dynamics

» The ParSplice formalism maps complex
continuous dynamics into a simple,
arbitrarily accurate, discrete framework

» Can it inform the development of accurate
discrete state models?

» Usual mapping is based on domains in
configurations space

» Discrete model becomes a CTMC in the limit
(A,—A;)— oo for all states. This limit is often
approached but never exactly reached.

* No clear picture away from this limit

% [T. Leliévre, Handbook of Materials Modeling: Methods: Theory and Modeling, 773]



Markov Renewal Process representation

» ParSplice inspired mapping:
— The “color” of a trajectory is the
color of the last state it spent t.in

* The color encodes the last domain the trajectory
reached the QSD in.

« What is the appropriate representation of the
color-to-color dynamics?

(<



Markov Renewal Process representation

» Color changes when trajectory reaches QSD in a new state

* From the properties of the QSD:
— Probability of next color can only depend on current color
— Distribution of time to next color change cannot depend on previous colors
— Distribution of time to next color change cannot depend on previous change times
— Distribution of time to next color change can depend on next color

‘ﬁ Agarwal, Gnanakaran, Hengartner, Voter, Perez, arXiv:2008.11623



"‘

Time to settle in new state and change color
can depend on new color

Time to leave the state
independent of past
and future color



Markov Renewal Process

Color-to-color dynamics is described by a
Markov Renewal Process*

P(cn+1, ther <T| history) = Pcpy1.cn Fcn+1,cn(T' tn)

for any state definition

) * Up to an exponentially small errorin t,

4/4/23
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Continuous

Trajectory

Fokker-Planck
equation

QSD-to-QSD
factorization

QSD-to-QSD
factorization

QSD-to-QSD
factorization

Markov renewal
process

Renewal
equations

4/4/23
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Y (degrees)

Alanine dipeptide

-120 —60

¢ (degrees)

% Carefully defined domains using PCCA



Alanine d

ipeptide

Direct MD
Renewal equations

N 0-0 10 0-1 10 0-2 10 0-3 N 0-0 N 0-1 10 0-2 10 0-3 N 0-0 N 0-1 10 0-2 10 0-3

08 081 08 08 08 08 08 08 08 08 08 08

06 061 06 06 506 06 06 06 506 0.6 06 06

04 041 04 04 o4 04 04 04 o4 04 04 04

02 02 02 02 02 02 02 /-_. 02 / 02 02 02 /”“ 02 /
0055 05 1o *°0o 05 7o *%0%0 05 7o %005 05 10 005 05 1o *°00 05 To *%00 05 7o °°0% 05 10 2005 05 1o *°00 05 To *%00 05 7o °°0% 05 10
10 1-0 10 1-1 10 1-2 10 1-3 10 1-0 10 1-1 10 1-2 10 1-3 10 1-0 10 1-1 10 1-2 10 1-3

— Renewal Equations — Renewal Equations — Renewal Equations

081 i QSD-MD 081 08 08 08{ i QSD-MD 08 08 08 08{ i QSD-MD 08 08 08

06 061 06 06 506 06 06 06 506 06 06 06

04 041 04 04 Toa 04 04 04 Toa 04 04 04

%60 05 10 %0 05 10 %%k 05 70 %60 05 10 060 05 10 %% 05 10 %% 05 70 %03 05 10 0067 05 10 *%d0 05 10 %00 05 70 %0 05 10
1 220 1 2-1 10 222 10 223 1 220 1 221 10 222 10 223 1 220 1 2-1 10 222 10 223

08 081 08 08 08 08 08 08 08 08 08 08

06 061 06 06 506 06 06 06 506 06 06 06

04 041 04 04 Toq 04 04 04 Toq 04 04 04

02 021 02 02 02 02 02 02 02 02 02 02

000 0.5 To °°0% 0.5 10 *%00 05 7o *00 0.5 10 00035 0.5 To °°03 0.5 10 *%0% 05 10 %00 05 10 00T 0.5 To °°03T 0.5 10 *%0% 05 10 *°0 05 10
10 320 10 321 10 322 10 323 1 320 10 321 10 322 10 323 10 320 10 321 10 322 10 323

08 081 08 08 08 08 08 08 08 08 08 08

06 061 06 06 506 06 06 06 506 06 06 06

04 041 04 04 Toa 04 04 04 Toa 04 04 04

02 02 02 /——— 02 02 02 02 /’— 02 02 02 02 /’-—— 02

005 0.5 To © 05 To *%00 05 o °° 05 10 000% 0.5 To © 05 To *%00 05 7o *°0o 05 10 0 0.5 To © 05 To *%00 05 7o %% 05 10

Time [ns] Time [ns] Time [ns] Time [ns] Time [ns] Time [ns] Time [ns] Time [ns] Time [ns] Time [ns] Time [ns] Time [ns]

t.=2ps

t. =20 ps

t. =40 ps



Alanine dipeptide

y (degrees)

¢ (degrees)

Intentionally poorly defined states



Alanine dipeptide

0-0 o 0-1 L 0-2 . 0-3
08 0.8 0.8
06 0.6 0.6
04 04 04
02 02 02
00 05 10 %63 05 10 %075 05 To *%00 05 10
120 10 1-1 10 1-2 10 1-3
—— Renewal Equations
+ QsD-MD 08 08 08
0.6 0.6 0.6
0.4 0.4 04
02 0.2 0.2
0.0 0.5 7o *%00 0.5 7o “%00 05 10 *%ds 0.5 10
2-0 0 2-1 N 2-2 N 2-3
08 0.8 0.8
06 06 06
04 04 04
02 02 02
00 05 10 %00 05 0 %%0 o5 10 *%d0 05 10
3-0 L0 3-1 . 32 Lo 3-3
08 0.8 0.8
06 0.6 0.6
04 0.4 0.4
02 0.2 0.2
00 X 10 %63 0’5 10 %05 05 To "0 05 10
Time [ns] Time [ns] Time [ns] Time [ns]

t.=2ps

Direct MD
Renewal equations

1.0 0-0 1.0 0-1 1.0 0-2 1 0-3 L * L 0-1 10 0-2 10 0-3
08 08 0.8 0.8 0.8 0.8 08 08
& 06 06 06 506 06 06 06
0.4 0.4 0.4 E:OA 0.4 04 04
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Markov Renewal Process

* Not the only discretization scheme (CTMC, Hidden Markov Model, ...)

« To our knowledge, simplest scheme that provides arbitrary accuracy for any
state definition

« Easy to sample new trajectories from a MRP (modified BKL)

« Caveat:
— not very informative if dynamics are not metastable and/or states are very badly
defined. Leads to very long jumps.

* Next step: provide efficient numerical schemes to parameterize the MRP
(ongoing work with D. Aristoff)

t@ Agarwal, Gnanakaran, Hengartner, Voter, DP, arXiv:2008.11623



Conclusion

« MD is extremely powerful, but has a severe timescale limitations that cannot
be cured by brute-force alone, even with exascale computing

» By leveraging insights from the theory of QSD, one can design rigorous
parallel-in-time techniques that dramatically extend simulation times

* Progress in applied math, computer science, and domain science, was
essential to address this problem.

» Careful resource allocation is especially important in “difficult” cases, and will
be essential for challenging high efficiency simulations
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