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• DOE has been a world leader in high performance 
computing for decades.

• The fastest supercomputer in the world has been at a DOE 
national lab for 14 of the past 25 years.

• Today, three of the six fastest supercomputers in the world 
are at DOE labs (including the fastest!)

DOE labs host the nation’s largest supercomputers

Summit supercomputer, ORNL

Sierra supercomputer, LLNL

Position Name Country Petaflops Power (MW)

1 Frontier USA 1102.0 21.1

2 Fugaku Japan 537.2 29.9

3 LUMI Finland 309.1 6.0

4 Leonardo Italy 174.7 5.6

5 Summit USA 200.8 10.1

6 Sierra USA 125.7 7.4
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Parallel computing enables new science

16” Macbook Pro Summit 
supercomputer

87 thousand times more memory
6.5 million times more compute power

Supercomputers let us do simulations that are bigger, faster, and more accurate
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• Memory in the context of supercomputing 
primarily enables us to study systems we couldn’t 
otherwise study

• One “thing” is represented by a set of numbers, 
i.e. location, velocity, shape, etc.

• Total computer memory / thing size = how many 
things you can simulate.

More memory = bigger simulations

position = (2.8143, 8.2214, 9.00324)

velocity = (0.07611, 0.098021, 0.03778)

atom type = carbon

24 bytes

24 bytes

4 bytes

128 GB =  2.64 billion carbon atoms
=  3,600,000 red blood cells
=  2.4 km2 seismic model

AMD MI-250
• 90.5 TFLOPs
• 128 GB memory
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How big is big enough?

• In 2005, researchers were studying 
how molten tantalum freezes under 
pressure.

• For small simulations, the structures 
that formed were roughly the size of 
the simulation box.

• It took a supercomputer to run a 
large enough simulation to properly 
capture the physics of the freezing 
process.
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How big is big enough?

64,000 atoms 256,000 atoms 2,048,000 atoms 16,384,000 atoms

4x 8x 8x

Too small! Too small! Big enough? Yes, it was.

The only way to be sure a simulation is big enough is to run a bigger one.
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• Supercomputing enables us to study systems we couldn’t otherwise study.

• Ignoring memory, the amount of math that needs to be done is proportional to the 
system size (sometimes the system size to the second or third power).  The time to solve a 
given problem is dependent on the number of floating point operations per second 
(FLOPs) a given system can perform.

More CPUs = faster simulations

One hour of work
at 200 PetaFLOPs

736 years of work
at 31 GigaFLOPs
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• Researchers at IBM and LLNL wanted to see if 
simulation could predict drug side effects in 
patients, specifically increased risk of cardiac 
arrhythmias.

• To accurately simulate a full human heart for even 
an hour would have taken months on a typical 
compute cluster.

• The Cardioid project was started to create a faster, 
more accurate tool for studying arrhythmias.

How fast is fast enough?

GE Healthcare – Innovating Preclinical Development (March 2012) 

Cardiotoxic
45%

Hepatoxic
37%

Other
18%

Drug recalls 1994-2006
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• Cardioid was ultimately able 
to run a full human heart 
simulation in almost real time:  
simulating an hour of 
heartbeats on the Sequoia 
supercomputer took an hour 
and seven minutes.

• This opens the door to using 
simulation to screen new 
drugs before doing expensive 
and costly patient trials.

How fast is fast enough?
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We are at a transition point in HPC

Distributed Memory Era
GFLOP/s - TFLOP/s – PFLOP/s

Vector Era
MFLOP/s - GFLOP/s

• Parallelism through 
vector processors.

• Codes often written at 
very low level to make 
optimal use of hardware.

• Parallelism through MPI.

• Using an optimal 
parallel algorithm was 
critical to avoid 
duplication of work or 
unnecessary 
communication.

• Once distributed, code 
could be treated serially.

10s to 100s of cores 1000s of cores 104 to 106 cores

• For the most part, an MPI 
code ran anywhere.  For best 
performance, key kernels 
could be tuned.

• As CPU frequencies stopped 
increasing, parallelism 
became more extreme and 
specialized hardware more 
common.

1980s 1990s 2000s 2010s
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We are at a transition point in HPC

2010s 2020s

Heterogeneity is the new reality

• Computational horsepower has 
significantly outpaced memory 
capacity and speed.

• Separate memory spaces add 
complexity, and can cause 
performance issues (e.g. NUMA) or 
errors if not handled correctly.

• Performance or portability?

• Refactoring an existing code is a lot of 
work!  You really don’t want to have to 
do it again in ten years.

Heterogeneous Era
PFLOP/s - EFLOP/s

• CPUs + accelerators with separate 
memory spaces to start, unclear what 
else will join the fray.

• Massive fine-grained parallelism 
required.

• Programming model has to match the 
architecture.

• Architectural landscape is changing 
rapidly, with an unclear future.
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DOE HPC Roadmap to Exascale Systems

LLNL
IBM/NVIDIA

ANL
IBM BG/Q

ORNL
Cray/AMD/NVIDIA

LBNL
HPE/AMD/NVIDIA

LANL/SNL
HPE/Intel

ANL
Intel/HPE

ORNL
HPE/AMD

LLNL
HPE/AMD

LANL/SNL
Cray/Intel  Xeon/KNL

FY 2012 FY 2016 FY 2018 FY 2021

ORNL
IBM/NVIDIA

LLNL
IBM BG/Q

Sequoia

Cori

Trinity

ThetaMira

Titan Summit

ANL
Cray/Intel KNL

LBNL
Cray/Intel  Xeon/KNL

Sierra

FY 2023FY 2022

Exascale 
Systems

Version 2.0

de
co

m
m

is
si

on
ed Aurora

ANL
HPE/AMD/NVIDIA

Polaris
To this point, only 
NVIDIA GPUs

AMD, Intel and 
NVIDIA GPUs!
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Frontier is the world's fastest supercomputer and the 
world’s first supercomputer to break the performance 
barrier known as exascale, debuting in May 2022 at 
1.1 exaflops.  

Compute Node
1 AMD EPYC CPU
4 AMD MI250X GPUs

System Size
>9,000 nodes

Memory
4.6 PB DDR4
4.6 PB HBM2e
36 PB on-node storage

On-node Interconnect
AMD Infinity fabric
Node-level coherence

System Interconnect
Four-port Slingshot network 
100 GB/s

Frontier



Argonne Leadership Computing Facility14

Aurora
Argonne’s upcoming exascale 
supercomputer will leverage 
several technological 
innovations to support machine 
learning and data science 
workloads alongside traditional 
modeling and simulation runs.

≥2 Exaflop DP
PEAK PERFORMANCE

Data Center GPU Max Series
Intel® Xe ARCHITECTURE-BASED GPU

Intel Xeon CPU Max Series
INTEL® XEON® SCALABLE PROCESSOR

HPE Cray EX
PLATFORM

Compute Node
2 Intel® Xeon® CPU Max Series processors; 6 
Intel® Data Center GPU Max Series 
GPUs; Unified Memory Architecture; 8
fabric endpoints; RAMBO

GPU Architecture
Intel® Data Center GPU Max Series; Tile-
based chiplets, HBM stack,
Foveros 3D integration, 7nm

CPU-GPU Interconnect
CPU-GPU: PCIe
GPU-GPU: Xe Link

System Interconnect
HPE Slingshot; Dragonfly
topology with adaptive routing

Network Switch
25.6 Tb/s per switch, from 64–200 Gbs
ports (25 GB/s per direction)

High-Performance Storage
≥230 PB, ≥25 TB/s (DAOS)

Programming Models
Intel oneAPI, MPI, OpenMP, C/C++,
Fortran, SYCL/DPC++

Node Performance
>130 TF

System Size
>10,000 nodes
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Computing hardware trends point to even more specialization

• Still remains 
integral to 
computing 
architectures

• Speed 
improvements 
are waning

1950s -

CPUs

• Initially 
specialized for 
graphics 

• Highly parallel 
and energy 
efficient

• Suitable for 
many (not all) 
ASC workloads

2010s -

GPUs

• Specialized for 
machine 
learning

• Huge industry 
investments

• Work with 
vendors to 
adapt these 
technologies for 
DOE 
applications

2020s -

AI Accelerators

• Increased 
specialization as 
chip technology 
advances

• System-level 
heterogeneity

• New business 
models for chip 
design

Late 2020s? -

Specialization

• Potential for 
quantum to act 
as another 
accelerator type

• Amenable to a 
very limited 
number of 
applications/ 
algorithms

2030s? -

Quantum

The rate of change in computing architectures is increasing as more creative approaches are required to 
overcome fundamental limitations in chip performance

15
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Why heterogeneous computing is hard

• Data movement is now expensive 
relative to compute.  Parallel algorithms 
need to be written to minimize transfers.  

• Having multiple memory spaces requires 
careful bookkeeping.  Even hardware-
unified memory (e.g. Summit/Sierra) is 
not without pitfalls.

• Multiple accelerator vendors means 
compute kernels must either have 
separate versions for each architecture 
or an abstraction layer.
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Why using accelerators is hard:  SIMD/SIMT

• GPUs use SIMT (Single Instruction, 
Multiple Threads).  GPU architecture is 
designed around the assumption of 
highly concurrent workloads.

• Threads that follow different code paths 
are executed separately (sequentially).

• All CPUs now utilize vector instructions 
(SIMD) to achieve their advertised peak 
performance.

• SIMD = Single Instruction, Multiple Data.  
Requires chunks of data all traversing 
the same code path at the same time.

• If compiler can’t find a full SIMD 
instruction, it reverts to sequential.

Fugaku machine (Riken)

A64FX CPUs:  512-bit SIMD

Without SIMD instructions, 
500 PFLOPs à 8 PFLOPs
(64x slower!)
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Who should care about this?  

• People who want to write new codes
– Designing new codes requires a clear understanding of the trade-offs of decisions at all 

levels (language, programming model, data structure, communication, I/O, etc.)

• People who maintain and modernize existing codes
– Adapting an existing code to new architectures is a more constrained problem.  Fewer 

decisions to make but greater consequence of error.

• People who run code
– You need to understand the equation you are solving, the algorithm you are using and 

how it maps onto the system to use compute resources effectively.

Best practices from a decade ago no longer apply.  Can we future-proof our codes 
any better this time around?
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GPUs have forced us to reevaluate everything

• The rapid change from distributed memory, CPU-only systems to 
heterogeneous, CPU-GPU has shaken up computational science.

• Some algorithms are fundamentally incompatible with SIMD/SIMT 
architectures. Others need to be carefully tuned for each type of 
GPU.

• Long-standing codes were designed around assumptions that no 
longer hold, it’s unclear how to adapt them for an uncertain future.



20

Example:  Density Functional Theory

Many-body Schrödinger Equation:
• Exact

• O(N!) complexity

Kohn-Sham Equation:
• Surprisingly accurate

• O(N3) complexity
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Example:  Density Functional Theory

−Δφi +V (ρ,r)φi = εiφi i =1…Nel

V (ρ,r) =Vion (r)+
ρ( !r )
r− !r

d !r +VXC(ρ(r),∇ρ(r))∫

ρ(r) = fi φi (r)
2

i=1

Nel

∑

φ
i

∗(r)φ j (r)dr = δij∫

where

φ j (r) = ck+q, j
k+q

2
<Ecut

∑ eiq⋅r

Represent each orbital as a 
Fourier series of plane waves

• Constrained nonlinear eigenvalue problem

• Plane wave basis allows for efficient evaluation of terms in reciprocal 
space, but allows no opportunities to leverage sparsity / short-range 
interactions.

Kohn-Sham Equation
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Example:  communication profile of Qbox DFT code

MPI process grid

compute charge density

update potentials (xc, Hartree)

φ
i

∗(r)φ j (r)dr = δij∫

ρ(r) = fi φi (r)
2

i=1

Nel

∑

ρ( !r )
r− !r

d !r +VXC(ρ)∫

compute Hϕ

precondition and update ϕ

reorthogonalize (Gram-Schmidt)

−Δφi +V (ρ,r)φi

φi →φi −αKHφi

subspace diagonalization (metals only)

FFT

FFT

FFT gemm

pgemm

row sum

pgemm

pgemm

Cholesky ptrsm

pheevd

se
lf-

co
ns
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te

nt
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on
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Need to redesign codes around data movement, both within a 
node and between nodes

• Homogeneous architectures require a 
straightforward balance of computation vs. 
communication.  Basically, you just strong scale 
until there is too little work per task.

• Codes built on libraries that don’t map to 
heterogeneous now have to be rewritten.  For 
example, ScaLAPACK was written for 
homogeneous distributed-memory architectures, we 
need a new heterogeneous parallel linear algebra 
library, e.g. SLATE (https://icl.utk.edu/slate/).

• Heterogeneous architectures also have a Goldilocks 
problem:  local data sizes need to fill GPU memory 
to maximize concurrency but not exceed it to 
minimize data movement into and out of the GPU.

DFT strong scaling on CPU-only machine

number of GPUs

ru
nt

im
e GPU 

memory 
exceeded!

GPU 
memory 
mostly 
unused

Sweet 
spot

https://icl.utk.edu/slate/
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Performance on current and next-gen HPC architectures requires 
effective use of accelerators

FLOPS by device

<latexit sha1_base64="4W26H14gZJGSDfIeIqIWOMNZ0W4=">AAAB7HicbVBNSwMxEJ31s9avqkcvwVLwVHZLqXqRghePFdy20C4lm2bb0CS7JFmhLP0NXjwo4tUf5M1/Y9ruQVsfDDzem2FmXphwpo3rfjsbm1vbO7uFveL+weHRcenktK3jVBHqk5jHqhtiTTmT1DfMcNpNFMUi5LQTTu7mfueJKs1i+WimCQ0EHkkWMYKNlfzbm0a/MiiV3aq7AFonXk7KkKM1KH31hzFJBZWGcKx1z3MTE2RYGUY4nRX7qaYJJhM8oj1LJRZUB9ni2BmqWGWIoljZkgYt1N8TGRZaT0VoOwU2Y73qzcX/vF5qousgYzJJDZVkuShKOTIxmn+OhkxRYvjUEkwUs7ciMsYKE2PzKdoQvNWX10m7VvUa1fpDvdys5XEU4Bwu4BI8uIIm3EMLfCDA4Ble4c2Rzovz7nwsWzecfOYM/sD5/AGOVI3T</latexit>

> 96%
<latexit sha1_base64="yzvbLCMIqF+ROsmjZKK5ZwZDL5E=">AAAB83icbVBNSwMxEJ2tX7V+VT16CZaCp7JbitZbwYvHCvYDukvJptk2NMkuSVYoS/+GFw+KePXPePPfmLZ70NYHA4/3ZpiZFyacaeO6305ha3tnd6+4Xzo4PDo+KZ+edXWcKkI7JOax6odYU84k7RhmOO0nimIRctoLp3cLv/dElWaxfDSzhAYCjyWLGMHGSr4/NtYT6LbpV4fliltzl0CbxMtJBXK0h+UvfxSTVFBpCMdaDzw3MUGGlWGE03nJTzVNMJniMR1YKrGgOsiWN89R1SojFMXKljRoqf6eyLDQeiZC2ymwmeh1byH+5w1SEzWDjMkkNVSS1aIo5cjEaBEAGjFFieEzSzBRzN6KyAQrTIyNqWRD8NZf3iTdes27rjUeGpVWPY+jCBdwCVfgwQ204B7a0AECCTzDK7w5qfPivDsfq9aCk8+cwx84nz/0e5Dv</latexit>& 98%

Getting performance on-node is the 
real challenge

• We used to think of scaling as running 
O(100k) – O(1M) MPI ranks

• Starting in 2016 (Summit) the FLOPS 
per node has risen dramatically (48 TF)

• This focuses effort on “scaling in” 
instead of “scaling out”

• Bottom line: we need to do more work 
per node on fewer MPI ranks.

• Using the GPUs well is critical!
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DOE Exascale Computing Initiative (ECI)

• DOE Office of Science
• National Nuclear Security Administration

• Deliver enduring and capable exascale computing 
to DOE national labs by early to mid-2020s

• Hardware + software technology + applications

• Complete over 1000 project milestones on time 
and within budget

• Achieve each of four project KPPs
• Focus on impact and legacy post ECP 

Exascale Computing
Project (ECP)

ECI

ECI 
sponsors

ECI 
mission

ECI
focus
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The Exascale Computing Project

• A seven-year, $1.8B R&D effort that launched in 2016

• 81 research teams, roughly 10 researchers per team

7 
Years

$1.8B 6
Core DOE

Labs

6 
Core DOE 

Labs

3
Technical 

Focus 
Areas

81 
R&D Teams 

1000 
Researchers

• Hardware and Integration
• Software Technology
• Application Development 

• Argonne
• Lawrence Berkeley
• Lawrence Livermore

• Oak Ridge
• Sandia
• Los Alamos

- Staff from most of the 17 DOE national laboratories take part in the project
- 6 HPC vendors participated in Path Forward supporting R&D
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ECP’s holistic approach uses co-design and integration to achieve 
exascale computing

Application Development (AD) Software Technology (ST) Hardware and Integration (HI)

Integrated delivery of ECP products on 
targeted systems at leading DOE HPC 

facilities
6 US HPC vendors 

focused on exascale node and system 
design; application integration and software 

deployment to Facilities

Deliver expanded and vertically integrated 
software stack to achieve full potential of 

exascale computing
70 unique software products spanning 

programming models and runtimes, 
math libraries, data and visualization, 

development tools

Develop and enhance the predictive 
capability of applications critical to DOE

24 applications 
National security, energy, Earth systems, 

economic security, materials, data

6 co-design centers
ML, graph analytics, mesh refinement, PDE 
discretization, particles, online data analytics

Performant mission and science applications at scale
Aggressive 

RD&D project
Mission apps; integrated 

S/W stack
Deployment to DOE 

HPC Facilities
Hardware 

technology advances

Katie Antypas, HI Director
Susan Coghlan, HI Deputy Director

Mike Heroux, ST Director
Lois Curfman McInnes, ST Deputy Director

Andrew Siegel, AD Director
Erik Draeger, AD Deputy Director
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Science and beyond: Applications and discovery in ECP

Health care

Accelerate 
and translate 

cancer research 
(partnership with NIH)

Energy security

Turbine wind plant 
efficiency

Design and 
commercialization 

of SMRs

Nuclear fission 
and fusion reactor 
materials design

Subsurface use 
for carbon capture, 
petroleum extraction, 

waste disposal

High-efficiency, 
low-emission 

combustion engine 
and gas turbine 

design

Scale up of clean 
fossil fuel
combustion

Biofuel catalyst 
design

National security

Next-generation, 
stockpile 

stewardship codes 

Reentry-vehicle-
environment 
simulation

Multi-physics science 
simulations of high-

energy density 
physics conditions

Economic security

Additive 
manufacturing 

of qualifiable
metal parts

Reliable and 
efficient planning 
of the power grid

Seismic hazard 
risk assessment

Earth systems

Accurate regional 
impact assessments 

in Earth system 
models

Stress-resistant crop 
analysis and catalytic 

conversion 
of biomass-derived 

alcohols

Metagenomics 
for analysis of 

biogeochemical 
cycles, climate 

change, 
environmental 
remediation

Scientific discovery

Cosmological probe 
of the standard model 

of particle physics

Validate fundamental 
laws of nature

Plasma wakefield
accelerator design

Light source-enabled 
analysis of protein 

and molecular 
structure and design

Find, predict, 
and control materials 

and properties

Predict and control 
magnetically 

confined fusion 
plasmas

Demystify origin of 
chemical elements

24 applications and 6 co-design projects
• Including 62 separate codes
• Representing over 10 million lines of code
• Many supporting large user communities
• Covering broad range of mission critical S&E domains  
• Mostly all MPI or MPI+OpenMP on CPUs at beginning of ECP
• Each project defines a domain-specific challenge problem for final benchmark
• Applications are evaluated in one of two categories
• Performance – achieve a 50x performance increase
• Capability – utilize new architectures for expanded S&E
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Four key ingredients of an ECP Application Development  Project

Science goal Algorithmic 
innovation

Porting Integration
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Four key ingredients of an ECP Application Development  Project

Science goal Algorithmic 
innovation

Porting Integration
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Algorithmic innovation goes beyond simply porting code

“The downside of ... benchmarks is that innovation is chiefly limited to the 
architecture  and compiler. Better data structures, algorithms, programming 
languages, …cannot be used, since that would give a misleading result. The system 
could win because of, say, the algorithm, and not because of the hardware or the 
compiler. While these guidelines are understandable when the foundations of 
computing are relatively stable, as they were in the 1990s and the first half of this 
decade, they are undesirable during a programming revolution. For this revolution to 
succeed, we need to encourage innovation at all levels.” 

-Hennessy and Patterson, Computer Architecture, A Quantitative Approach
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GPUs do best for codes given …

ü massive fine-grained parallelism

ü concentrated performance bottlenecks

ü weak scaling problems

ü high arithmetic intensity and/or low data 
movement

ü minimal branching

ü high FLOP to byte (of storage) ratio

ü use of specialized instructions
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Algorithmic innovation: domain-driven adaptations critical for 
making efficient use of exascale systems

Ø Inherent strong scaling challenges on GPU-based systems à
Ø Ensembles vs. time averaging
Ø Fluid dynamics, seismology, molecular dynamics, time-stepping

Ø Increased dimensions of (fine-grained) parallelism to feed GPUs
Ø Ray tracing, Markov Chain Monte Carlo, fragmentation methods

Ø Localized physics models to maximize "free flops”
Ø MMF, electron subcycling, enhanced subgrid models, high-order discretizations

Ø Alternatives to sparse linear systems
Ø Higher order methods, Monte Carlo

Ø Reduced branching
Ø Event-based models
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Example: modeling and simulation of small modular reactors

Reproduced with permission

• ExaSMR is a coupled multiphysics ECP 
application to perform “virtual experiment” 
simulations of small modular nuclear reactor 
designs.

• Small modular nuclear reactors present 
significant simulation challenges
— Small size invalidates existing low-order models
— Natural circulation flow requires high-fidelity fluid 

flow simulation

• Two primary methods:
— Monte Carlo neutronics
— CFD with turbulence models
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Monte Carlo has been used in particle simulations since the 
Manhattan Project

• Markov Chain Monte Carlo used by 
Stanislaw Ulam at Los Alamos for neutron 
transport calculations in 1946.

• Very efficient algorithm to evolve particle 
ensembles across phase space. 

• Continued to be popular as we moved to 
distributed memory systems. Parallelizes 
well across particles, even better across 
samples (“embarrassingly parallel”).

for (i=0, nLocal)
{
[stuff]
if (collisionProb > random())
{
[stuff]

else
{
[stuff]
if (absorptionProb > random())
{
[stuff]

}
else
{
[stuff]

}

…
}

}

• Unfortunately, Monte Carlo codes written for 
distributed memory systems do not do well 
on GPUs!
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Neutron transport: random particle statistics poorly suited to GPUs

• Stochastic history-based algorithm follows 
particles from birth to death.

• Most particles are short-lived, a few are 
not.

Everyone waits 
on this particle

time



37

Branching code is highly undesirable on SIMT architectures (GPUs)

Even when each particle has roughly the same amount of work, thread divergence 
is a big problem when random sampling sends them down different code paths

parallel work GPU execution

Need to rethink code execution based on the target hardware.  For example, 
parallelizing over events (i.e. common code paths) rather than particles.
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New event-based algorithm gave ExaSMR significant speedup

• Parallelizing over events is a much 
better match for a SIMT 
architecture than parallelizing over 
particles.

• Further improvements gained by 
identifying parts of the system that 
have significantly different 
behavior and separating them out.

• Smaller, focused kernels allow for 
better occupancy, i.e. more 
efficient use of the hardware

4-10x f
ast

er
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Four key ingredients of an ECP Application Development  Project

Science goal Algorithmic 
innovation

Porting Integration
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Porting must be done with hardware in mind

Map algorithm to GPUs

• Rewrite, profile, and optimize
– Generally preserve the exact answer

• Data Layout for memory coalescing

• Loop ordering

• Kernel flattening

• Increased locality

• Recomputing vs. storing

• Reduced branching

• Eliminating copies

Map calculation to GPUs

• Reduced communication

• Reduced synchronization

• Increased parallelism

• Reduced precision

• Optimized linear algebra

Identify opportunities for 
improvement

• Mathematical representation

• “On the fly” recomputing vs. 
lookup tables

• Prioritization of new physical 
models

• Alternate discretizations (high AI)

• Localized subgrid models

• Sparse à dense systems

• Defining weak scaling target

• Initial condition from ROM

Hardware has significant impact on all aspects of simulation strategy
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Choosing the right programming model is all about balancing 
trade-offs

GPU-specific kernels
• Isolate the computationally-intensive parts of 

the code into CUDA/HIP/SYCL kernels.
• Refactoring the code to work well with the 

GPU is the majority of effort.

Loop pragma models
• Offload loops to GPU with OpenMP or 

OpenACC.
• Most common portability strategy for Fortran 

codes.

C++ abstractions
• Fully abstract loop execution and data 

management using advanced C++ features. 
• Kokkos and RAJA developed by NNSA in 

response to increasing hardware diversity.

Co-design frameworks
• Design application with a specific motif to use 

common software components
• Depend on co-design code (e.g. CEED, 

AMReX) to implement key functions on GPU.
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Programming models used in ECP applications

Platform portability provided by co-design 
projects (CoPA, CEED, AMReX) 33%

Native (CUDA/HIP/SYCL) or custom 
implementations 33%

ST programming models (Kokkos, RAJA, 
Legion) 18%

Directive-based programming models: 
(OpenMP, OpenACC) 16%

• Use of co-design/ST technologies provides 
significant benefit.  Fine-scale architectural details 
provided by co-design technologies

• Large percent of custom implementations reflects 
difficulty of universal platform-portable 
programming models that span diverse apps
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Example:  Quantum Monte Carlo for Materials

• To predict, understand, and design next 
generation materials requires reliable, non-
empirical, atomistic quantum mechanics-based 
methods.

• ECP application QMCPACK implements multiple 
Quantum Monte Carlo (QMC) algorithms to 
achieve this. Primary focus for ECP is on the real-
space diffusion Monte Carlo (DMC) and orbital 
space auxiliary field QMC (AFQMC) algorithms 
to enable cross-validation.

• OpenMP was selected as the GPU programming 
model to maximize future portability.

QMCPACK project, PI: Dr. Paul Kent (ORNL)
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“I know you’ve taken it in the 
teeth out there, but the first guy 
through the wall — he always 
gets bloody.”

—John Henry, Moneyball
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QMCPACK was first through the wall

• QMCPACK had a working CUDA 
implementation of the code that proved 
invaluable in understanding where OpenMP 
performance was falling short.

• OpenMP offload runtimes are not yet 
consistently performant across vendors.  
Initial OpenMP results were significantly 
slower than CUDA.

• With careful performance analysis and by 
working closely with the vendors, the 
QMCPACK team was able to steadily improve 
performance of their OpenMP version until it 
is now on par with CUDA.
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Languages
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Distribution of ECP programming models has changed over time

Programming language/model choices have evolved over course of ECP
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Four key ingredients of an ECP Application Development  Project

Science goal Algorithmic 
innovation

Porting Integration
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Integration:  ECP applications rely heavily on high quality software 
tools and libraries

24 apps, 
6 co-design 
centers

Shown are 36 ST products (used or being 
considered by the 5 apps above) 

ST overall has 70 unique software products 
used by 24 apps and 6 co-design centers

ECP apps rely on multiple software technologies; some software products contribute to multiple distinctly developed
components of a multiphysics app (such as fusion energy modeling) that must run within a single executable.

See E4S.io 
for more
ST products
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GASNet
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Kokkoskernels
Legion
libEnsemble
MarFS
NRM
OpenACC
Papyrus
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SLATE
SWIG
Tasmanian
Umap
UPC++
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ECP is delivering an open, hierarchical software ecosystem

E4S
Source: ECP E4S team; Non-ECP Products (all dependencies)
Delivery: spack install e4s; containers; CI Testing

SDKs
Source: SDK teams; Non-ECP teams (policy compliant, spackified)
Delivery: Apps directly; spack install sdk; future: vendor/facility

ST 
Products Source: ECP L4 teams; Non-ECP Developers; Standards Groups

Delivery: Apps directly; spack; vendor stack; facility stack

Levels of Integration Product Source and Delivery

• Group similar products
• Make interoperable
• Assure policy compliant
• Include external products

• Build all SDKs
• Build complete stack
• Containerize binaries

• Standard workflow
• Existed before ECP

ECP ST Open Product Integration Architecture

ECP ST Individual Products
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Extreme-scale Scientific Software Stack (E4S)

• E4S: HPC software ecosystem – a curated software portfolio
• A Spack-based distribution of software tested for interoperability 

and portability to multiple architectures
• Available from source, containers, cloud, binary caches
• Leverages and enhances SDK interoperability thrust
• Not a commercial product – an open resource for all
• Growing functionality: Nov 2021: E4S 21.11 – 91 full release products

https://e4s.io
E4S lead: Sameer Shende (U Oregon)

Also includes other products, e.g.,
AI: PyTorch, TensorFlow, Horovod
Co-Design: AMReX, Cabana, MFEM

https://spack.io
Spack lead: Todd Gamblin (LLNL)

Community Policies
Commitment to software quality

DocPortal
Single portal to all                 
E4S product info

Portfolio testing
Especially leadership 

platforms

Curated collection
The end of dependency hell

Quarterly releases 
Release 1.2 – November

Build caches
10X build time 
improvement

Turnkey stack
A new user experience https://e4s.io

E4S Strategy Group
US agencies, industry, 

international

https://e4s.io/
https://spack.io/
https://e4s.io/
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Three application examples to show the kind of progress possible 
with Exascale computing resources

EQSIM – Earthquake 
Hazard and Risk

ExaSMR – Small 
Modular Reactors

ExaWind – Wind Turbine 
Siting and Operations



52

The EQSIM project is developing a frameworks for regional scale 
earthquake hazard and risk
• Objective: Create a simulation tools that answers questions such 

as What is the regional distribution of ground motions and 
associated infrastructure response? and How do complex (realistic) 
incident seismic waves interact with infrastructure?

• ECP accomplishments
– Algorithmic improvements using curvilinear mesh refinement improved 

speeds by a factor of 2.85
– Developing a GPU-enabled full waveform inversion algorithm with many 

algorithmic improvements for separated phase and amplitude matching, 
gradient smoothing and Hessian-based preconditioning

– Use RAJA for performance portability and ZFP data compression to 
save suffcient data to maintain adequate precision in stored data

– Infrastructure simulations now include strong coupling with OpenSees
soi/building modeling and using in soil-structure interaction models; help 
gain insight into areas of maximum risk

Achieved a 1000X improvement in computational performance 
compared to all previous San Francisco Bay Area simulations; 
Simulation of regional-scale ground motions at frequencies of 
engineering interest (5-10 Hz) now within reach

PI: Dave McCallen, LBNL

Regional-scale
domain

Geophysics ground motion
simulations

(billions of zones)

Infrastructure response 
simulations

(thousands of stations)

Infrastructure
demand / risk

Geophysics Engineering

20 story
steel 

building
T=13.2 

seconds 
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The ExaSMR project is developing first of a kind simulations of 
small modular reactors (SMR)
• Objective: Help DOE meet its goal of an operational SMR by 2025 

through advanced modeling and simulation; coupling Monte Carlo 
neutron simulation with computational fluid dynamics

• ECP accomplishments
– Developed GPU-enabled Monte-Carlo transport codes (Shift and 

OpenMC), targeting Frontier and Aurora respectively
– Refactored neutron transport algorithms from particle-based to event-

based; dramatically improving performance on GPUs
– Demonstrated first CFD simulation of a full SMR core
– Optimized CFD simulations; improving performance by a factor of 5 

through improved precondtioners, use of half-precision numerical 
methods, and GPU-aware gather-scatter kernels

– Working toward full core coupled physics and isotopic depletion using 
domain decomposed Monte Carlo solvers

Achieved >70X overall performance improvements in the science 
workrate for the simulation; will allow full coupled steady-state 
simulations, modeling quasi-static full cycle depletion, and coupling 
transient natural circulation reactor start-up

PI: Steve Hamilton, ORNL
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The ExaWind project is developing wind plant simulation 
capabilities for siting and operations
• Objective: Create a predictive physics-based simulation capability 

that will provide a validated "ground truth" foundation for siting and 
operational controls of wind plants, and the reliable integration of 
wind energy into the grid

• ECP accomplishments
– New hybrid Nalu-Wind/AMR-Wind solver strategy: Leveraging the best 

of structured & unstructured grids
– Uses a large number of software technologies for performance 

portability, linear solvers, block structured AMR, package management
– New hybrid solver enables validation-quality blade-resolved turbine 

simulations
– Optimized Nalu-Wind/hypre simulations performed on over 4000 

Summit GPUs 
– AMR-Wind strong/weak-scaling atmospheric-boundary- layer (ABL) 

simulations on Summit reach billions of grid points 

Weak Scaling

New capabilities allow detailed fluid structure interactions of the blade 
with turbulence models; then scaling up to many turbines to capture 
impact of terrain, atmospheric boundary layer, and inter-blade effects

PI: Mike Sprague, NREL
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• Scientists have proposed new 
approaches to building smaller, more 
efficient particle accelerators using 
plasmas.

• Simulations are critical to aid in the 
development of accelerator designs.

• Potential applications include 
improved radiation treatment for 
cancer.

• WarpX was built on top of AMReX
adaptive mesh refinement library.

• 2022 ACM Gordon Bell Prize winner!

Bonus example:  advanced particle accelerator design

Movie: D. Pugmire (ORNL)
From WarpX simulation on 
4096 Summit nodes

WarpX project, PI: Dr. Jean-Luc Vay (LBNL)
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Final thoughts

•This is an exciting and terrifying time to be doing computational 
science.

•Those who take the time to understand the hardware they are 
running on and/or coding for will have a major advantage over 
those who try to use past practices blindly.

•For computational capabilities, don’t reinvent the wheel!  Build on 
the successes of others whenever possible.

•For applied math, re-examine and question everything!  Many best 
practices are based on assumptions from the past that no longer 
apply.  There are many opportunities for innovation.
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