
Supercomputing at the exascale and
beyond: future trends and challenges

Erik Draeger, Lawrence Livermore National Laboratory (LLNL)
Director, High Performance Computing Innovation Center (HPCIC)
Deputy Director of Application Development for the DOE Exascale Computing Project (ECP)

IPAM Workshop “New Mathematics for the Exascale: Applications to Materials Science”

UCLA, March 2023

LLNL-PRES-845582

2

• DOE has been a world leader in high performance
computing for decades.

• The fastest supercomputer in the world has been at a DOE
national lab for 14 of the past 25 years.

• Today, three of the six fastest supercomputers in the world
are at DOE labs (including the fastest!)

DOE labs host the nation’s largest supercomputers

Summit supercomputer, ORNL

Sierra supercomputer, LLNL

Position Name Country Petaflops Power (MW)

1 Frontier USA 1102.0 21.1

2 Fugaku Japan 537.2 29.9

3 LUMI Finland 309.1 6.0

4 Leonardo Italy 174.7 5.6

5 Summit USA 200.8 10.1

6 Sierra USA 125.7 7.4

3

Parallel computing enables new science

16” Macbook Pro Summit
supercomputer

87 thousand times more memory
6.5 million times more compute power

Supercomputers let us do simulations that are bigger, faster, and more accurate

4

• Memory in the context of supercomputing
primarily enables us to study systems we couldn’t
otherwise study

• One “thing” is represented by a set of numbers,
i.e. location, velocity, shape, etc.

• Total computer memory / thing size = how many
things you can simulate.

More memory = bigger simulations

position = (2.8143, 8.2214, 9.00324)

velocity = (0.07611, 0.098021, 0.03778)

atom type = carbon

24 bytes

24 bytes

4 bytes

128 GB = 2.64 billion carbon atoms
= 3,600,000 red blood cells
= 2.4 km2 seismic model

AMD MI-250
• 90.5 TFLOPs
• 128 GB memory

5

How big is big enough?

• In 2005, researchers were studying
how molten tantalum freezes under
pressure.

• For small simulations, the structures
that formed were roughly the size of
the simulation box.

• It took a supercomputer to run a
large enough simulation to properly
capture the physics of the freezing
process.

6

How big is big enough?

64,000 atoms 256,000 atoms 2,048,000 atoms 16,384,000 atoms

4x 8x 8x

Too small! Too small! Big enough? Yes, it was.

The only way to be sure a simulation is big enough is to run a bigger one.

7

• Supercomputing enables us to study systems we couldn’t otherwise study.

• Ignoring memory, the amount of math that needs to be done is proportional to the
system size (sometimes the system size to the second or third power). The time to solve a
given problem is dependent on the number of floating point operations per second
(FLOPs) a given system can perform.

More CPUs = faster simulations

One hour of work
at 200 PetaFLOPs

736 years of work
at 31 GigaFLOPs

8

• Researchers at IBM and LLNL wanted to see if
simulation could predict drug side effects in
patients, specifically increased risk of cardiac
arrhythmias.

• To accurately simulate a full human heart for even
an hour would have taken months on a typical
compute cluster.

• The Cardioid project was started to create a faster,
more accurate tool for studying arrhythmias.

How fast is fast enough?

GE Healthcare – Innovating Preclinical Development (March 2012)

Cardiotoxic
45%

Hepatoxic
37%

Other
18%

Drug recalls 1994-2006

9

• Cardioid was ultimately able
to run a full human heart
simulation in almost real time:
simulating an hour of
heartbeats on the Sequoia
supercomputer took an hour
and seven minutes.

• This opens the door to using
simulation to screen new
drugs before doing expensive
and costly patient trials.

How fast is fast enough?

10

We are at a transition point in HPC

Distributed Memory Era
GFLOP/s - TFLOP/s – PFLOP/s

Vector Era
MFLOP/s - GFLOP/s

• Parallelism through
vector processors.

• Codes often written at
very low level to make
optimal use of hardware.

• Parallelism through MPI.

• Using an optimal
parallel algorithm was
critical to avoid
duplication of work or
unnecessary
communication.

• Once distributed, code
could be treated serially.

10s to 100s of cores 1000s of cores 104 to 106 cores

• For the most part, an MPI
code ran anywhere. For best
performance, key kernels
could be tuned.

• As CPU frequencies stopped
increasing, parallelism
became more extreme and
specialized hardware more
common.

1980s 1990s 2000s 2010s

11

We are at a transition point in HPC

2010s 2020s

Heterogeneity is the new reality

• Computational horsepower has
significantly outpaced memory
capacity and speed.

• Separate memory spaces add
complexity, and can cause
performance issues (e.g. NUMA) or
errors if not handled correctly.

• Performance or portability?

• Refactoring an existing code is a lot of
work! You really don’t want to have to
do it again in ten years.

Heterogeneous Era
PFLOP/s - EFLOP/s

• CPUs + accelerators with separate
memory spaces to start, unclear what
else will join the fray.

• Massive fine-grained parallelism
required.

• Programming model has to match the
architecture.

• Architectural landscape is changing
rapidly, with an unclear future.

12

DOE HPC Roadmap to Exascale Systems

LLNL
IBM/NVIDIA

ANL
IBM BG/Q

ORNL
Cray/AMD/NVIDIA

LBNL
HPE/AMD/NVIDIA

LANL/SNL
HPE/Intel

ANL
Intel/HPE

ORNL
HPE/AMD

LLNL
HPE/AMD

LANL/SNL
Cray/Intel Xeon/KNL

FY 2012 FY 2016 FY 2018 FY 2021

ORNL
IBM/NVIDIA

LLNL
IBM BG/Q

Sequoia

Cori

Trinity

ThetaMira

Titan Summit

ANL
Cray/Intel KNL

LBNL
Cray/Intel Xeon/KNL

Sierra

FY 2023FY 2022

Exascale
Systems

Version 2.0

de
co

m
m

is
si

on
ed Aurora

ANL
HPE/AMD/NVIDIA

Polaris
To this point, only
NVIDIA GPUs

AMD, Intel and
NVIDIA GPUs!

13

Frontier is the world's fastest supercomputer and the
world’s first supercomputer to break the performance
barrier known as exascale, debuting in May 2022 at
1.1 exaflops.

Compute Node
1 AMD EPYC CPU
4 AMD MI250X GPUs

System Size
>9,000 nodes

Memory
4.6 PB DDR4
4.6 PB HBM2e
36 PB on-node storage

On-node Interconnect
AMD Infinity fabric
Node-level coherence

System Interconnect
Four-port Slingshot network
100 GB/s

Frontier

Argonne Leadership Computing Facility14

Aurora
Argonne’s upcoming exascale
supercomputer will leverage
several technological
innovations to support machine
learning and data science
workloads alongside traditional
modeling and simulation runs.

≥2 Exaflop DP
PEAK PERFORMANCE

Data Center GPU Max Series
Intel® Xe ARCHITECTURE-BASED GPU

Intel Xeon CPU Max Series
INTEL® XEON® SCALABLE PROCESSOR

HPE Cray EX
PLATFORM

Compute Node
2 Intel® Xeon® CPU Max Series processors; 6
Intel® Data Center GPU Max Series
GPUs; Unified Memory Architecture; 8
fabric endpoints; RAMBO

GPU Architecture
Intel® Data Center GPU Max Series; Tile-
based chiplets, HBM stack,
Foveros 3D integration, 7nm

CPU-GPU Interconnect
CPU-GPU: PCIe
GPU-GPU: Xe Link

System Interconnect
HPE Slingshot; Dragonfly
topology with adaptive routing

Network Switch
25.6 Tb/s per switch, from 64–200 Gbs
ports (25 GB/s per direction)

High-Performance Storage
≥230 PB, ≥25 TB/s (DAOS)

Programming Models
Intel oneAPI, MPI, OpenMP, C/C++,
Fortran, SYCL/DPC++

Node Performance
>130 TF

System Size
>10,000 nodes

15

Computing hardware trends point to even more specialization

• Still remains
integral to
computing
architectures

• Speed
improvements
are waning

1950s -

CPUs

• Initially
specialized for
graphics

• Highly parallel
and energy
efficient

• Suitable for
many (not all)
ASC workloads

2010s -

GPUs

• Specialized for
machine
learning

• Huge industry
investments

• Work with
vendors to
adapt these
technologies for
DOE
applications

2020s -

AI Accelerators

• Increased
specialization as
chip technology
advances

• System-level
heterogeneity

• New business
models for chip
design

Late 2020s? -

Specialization

• Potential for
quantum to act
as another
accelerator type

• Amenable to a
very limited
number of
applications/
algorithms

2030s? -

Quantum

The rate of change in computing architectures is increasing as more creative approaches are required to
overcome fundamental limitations in chip performance

15

16

Why heterogeneous computing is hard

• Data movement is now expensive
relative to compute. Parallel algorithms
need to be written to minimize transfers.

• Having multiple memory spaces requires
careful bookkeeping. Even hardware-
unified memory (e.g. Summit/Sierra) is
not without pitfalls.

• Multiple accelerator vendors means
compute kernels must either have
separate versions for each architecture
or an abstraction layer.

17

Why using accelerators is hard: SIMD/SIMT

• GPUs use SIMT (Single Instruction,
Multiple Threads). GPU architecture is
designed around the assumption of
highly concurrent workloads.

• Threads that follow different code paths
are executed separately (sequentially).

• All CPUs now utilize vector instructions
(SIMD) to achieve their advertised peak
performance.

• SIMD = Single Instruction, Multiple Data.
Requires chunks of data all traversing
the same code path at the same time.

• If compiler can’t find a full SIMD
instruction, it reverts to sequential.

Fugaku machine (Riken)

A64FX CPUs: 512-bit SIMD

Without SIMD instructions,
500 PFLOPs à 8 PFLOPs
(64x slower!)

18

Who should care about this?

• People who want to write new codes
– Designing new codes requires a clear understanding of the trade-offs of decisions at all

levels (language, programming model, data structure, communication, I/O, etc.)

• People who maintain and modernize existing codes
– Adapting an existing code to new architectures is a more constrained problem. Fewer

decisions to make but greater consequence of error.

• People who run code
– You need to understand the equation you are solving, the algorithm you are using and

how it maps onto the system to use compute resources effectively.

Best practices from a decade ago no longer apply. Can we future-proof our codes
any better this time around?

19

GPUs have forced us to reevaluate everything

• The rapid change from distributed memory, CPU-only systems to
heterogeneous, CPU-GPU has shaken up computational science.

• Some algorithms are fundamentally incompatible with SIMD/SIMT
architectures. Others need to be carefully tuned for each type of
GPU.

• Long-standing codes were designed around assumptions that no
longer hold, it’s unclear how to adapt them for an uncertain future.

20

Example: Density Functional Theory

Many-body Schrödinger Equation:
• Exact

• O(N!) complexity

Kohn-Sham Equation:
• Surprisingly accurate

• O(N3) complexity

21

Example: Density Functional Theory

−Δφi +V (ρ,r)φi = εiφi i =1…Nel

V (ρ,r) =Vion (r)+
ρ(!r)
r− !r

d !r +VXC(ρ(r),∇ρ(r))∫

ρ(r) = fi φi (r)
2

i=1

Nel

∑

φ
i

∗(r)φ j (r)dr = δij∫

where

φ j (r) = ck+q, j
k+q

2
<Ecut

∑ eiq⋅r

Represent each orbital as a
Fourier series of plane waves

• Constrained nonlinear eigenvalue problem

• Plane wave basis allows for efficient evaluation of terms in reciprocal
space, but allows no opportunities to leverage sparsity / short-range
interactions.

Kohn-Sham Equation

22

Example: communication profile of Qbox DFT code

MPI process grid

compute charge density

update potentials (xc, Hartree)

φ
i

∗(r)φ j (r)dr = δij∫

ρ(r) = fi φi (r)
2

i=1

Nel

∑

ρ(!r)
r− !r

d !r +VXC(ρ)∫

compute Hϕ

precondition and update ϕ

reorthogonalize (Gram-Schmidt)

−Δφi +V (ρ,r)φi

φi →φi −αKHφi

subspace diagonalization (metals only)

FFT

FFT

FFT gemm

pgemm

row sum

pgemm

pgemm

Cholesky ptrsm

pheevd

se
lf-

co
ns

is
te

nt
 c

on
ve

rg
en

ce
 lo

op

in
ne

r l
oo

p

23

Need to redesign codes around data movement, both within a
node and between nodes

• Homogeneous architectures require a
straightforward balance of computation vs.
communication. Basically, you just strong scale
until there is too little work per task.

• Codes built on libraries that don’t map to
heterogeneous now have to be rewritten. For
example, ScaLAPACK was written for
homogeneous distributed-memory architectures, we
need a new heterogeneous parallel linear algebra
library, e.g. SLATE (https://icl.utk.edu/slate/).

• Heterogeneous architectures also have a Goldilocks
problem: local data sizes need to fill GPU memory
to maximize concurrency but not exceed it to
minimize data movement into and out of the GPU.

DFT strong scaling on CPU-only machine

number of GPUs

ru
nt

im
e GPU

memory
exceeded!

GPU
memory
mostly
unused

Sweet
spot

https://icl.utk.edu/slate/

24

Performance on current and next-gen HPC architectures requires
effective use of accelerators

FLOPS by device

<latexit sha1_base64="4W26H14gZJGSDfIeIqIWOMNZ0W4=">AAAB7HicbVBNSwMxEJ31s9avqkcvwVLwVHZLqXqRghePFdy20C4lm2bb0CS7JFmhLP0NXjwo4tUf5M1/Y9ruQVsfDDzem2FmXphwpo3rfjsbm1vbO7uFveL+weHRcenktK3jVBHqk5jHqhtiTTmT1DfMcNpNFMUi5LQTTu7mfueJKs1i+WimCQ0EHkkWMYKNlfzbm0a/MiiV3aq7AFonXk7KkKM1KH31hzFJBZWGcKx1z3MTE2RYGUY4nRX7qaYJJhM8oj1LJRZUB9ni2BmqWGWIoljZkgYt1N8TGRZaT0VoOwU2Y73qzcX/vF5qousgYzJJDZVkuShKOTIxmn+OhkxRYvjUEkwUs7ciMsYKE2PzKdoQvNWX10m7VvUa1fpDvdys5XEU4Bwu4BI8uIIm3EMLfCDA4Ble4c2Rzovz7nwsWzecfOYM/sD5/AGOVI3T</latexit>

> 96%
<latexit sha1_base64="yzvbLCMIqF+ROsmjZKK5ZwZDL5E=">AAAB83icbVBNSwMxEJ2tX7V+VT16CZaCp7JbitZbwYvHCvYDukvJptk2NMkuSVYoS/+GFw+KePXPePPfmLZ70NYHA4/3ZpiZFyacaeO6305ha3tnd6+4Xzo4PDo+KZ+edXWcKkI7JOax6odYU84k7RhmOO0nimIRctoLp3cLv/dElWaxfDSzhAYCjyWLGMHGSr4/NtYT6LbpV4fliltzl0CbxMtJBXK0h+UvfxSTVFBpCMdaDzw3MUGGlWGE03nJTzVNMJniMR1YKrGgOsiWN89R1SojFMXKljRoqf6eyLDQeiZC2ymwmeh1byH+5w1SEzWDjMkkNVSS1aIo5cjEaBEAGjFFieEzSzBRzN6KyAQrTIyNqWRD8NZf3iTdes27rjUeGpVWPY+jCBdwCVfgwQ204B7a0AECCTzDK7w5qfPivDsfq9aCk8+cwx84nz/0e5Dv</latexit>& 98%

Getting performance on-node is the
real challenge

• We used to think of scaling as running
O(100k) – O(1M) MPI ranks

• Starting in 2016 (Summit) the FLOPS
per node has risen dramatically (48 TF)

• This focuses effort on “scaling in”
instead of “scaling out”

• Bottom line: we need to do more work
per node on fewer MPI ranks.

• Using the GPUs well is critical!

25

DOE Exascale Computing Initiative (ECI)

• DOE Office of Science
• National Nuclear Security Administration

• Deliver enduring and capable exascale computing
to DOE national labs by early to mid-2020s

• Hardware + software technology + applications

• Complete over 1000 project milestones on time
and within budget

• Achieve each of four project KPPs
• Focus on impact and legacy post ECP

Exascale Computing
Project (ECP)

ECI

ECI
sponsors

ECI
mission

ECI
focus

26

The Exascale Computing Project

• A seven-year, $1.8B R&D effort that launched in 2016

• 81 research teams, roughly 10 researchers per team

7
Years

$1.8B 6
Core DOE

Labs

6
Core DOE

Labs

3
Technical

Focus
Areas

81
R&D Teams

1000
Researchers

• Hardware and Integration
• Software Technology
• Application Development

• Argonne
• Lawrence Berkeley
• Lawrence Livermore

• Oak Ridge
• Sandia
• Los Alamos

- Staff from most of the 17 DOE national laboratories take part in the project
- 6 HPC vendors participated in Path Forward supporting R&D

27

ECP’s holistic approach uses co-design and integration to achieve
exascale computing

Application Development (AD) Software Technology (ST) Hardware and Integration (HI)

Integrated delivery of ECP products on
targeted systems at leading DOE HPC

facilities
6 US HPC vendors

focused on exascale node and system
design; application integration and software

deployment to Facilities

Deliver expanded and vertically integrated
software stack to achieve full potential of

exascale computing
70 unique software products spanning

programming models and runtimes,
math libraries, data and visualization,

development tools

Develop and enhance the predictive
capability of applications critical to DOE

24 applications
National security, energy, Earth systems,

economic security, materials, data

6 co-design centers
ML, graph analytics, mesh refinement, PDE
discretization, particles, online data analytics

Performant mission and science applications at scale
Aggressive

RD&D project
Mission apps; integrated

S/W stack
Deployment to DOE

HPC Facilities
Hardware

technology advances

Katie Antypas, HI Director
Susan Coghlan, HI Deputy Director

Mike Heroux, ST Director
Lois Curfman McInnes, ST Deputy Director

Andrew Siegel, AD Director
Erik Draeger, AD Deputy Director

28

Science and beyond: Applications and discovery in ECP

Health care

Accelerate
and translate

cancer research
(partnership with NIH)

Energy security

Turbine wind plant
efficiency

Design and
commercialization

of SMRs

Nuclear fission
and fusion reactor
materials design

Subsurface use
for carbon capture,
petroleum extraction,

waste disposal

High-efficiency,
low-emission

combustion engine
and gas turbine

design

Scale up of clean
fossil fuel
combustion

Biofuel catalyst
design

National security

Next-generation,
stockpile

stewardship codes

Reentry-vehicle-
environment
simulation

Multi-physics science
simulations of high-

energy density
physics conditions

Economic security

Additive
manufacturing

of qualifiable
metal parts

Reliable and
efficient planning
of the power grid

Seismic hazard
risk assessment

Earth systems

Accurate regional
impact assessments

in Earth system
models

Stress-resistant crop
analysis and catalytic

conversion
of biomass-derived

alcohols

Metagenomics
for analysis of

biogeochemical
cycles, climate

change,
environmental
remediation

Scientific discovery

Cosmological probe
of the standard model

of particle physics

Validate fundamental
laws of nature

Plasma wakefield
accelerator design

Light source-enabled
analysis of protein

and molecular
structure and design

Find, predict,
and control materials

and properties

Predict and control
magnetically

confined fusion
plasmas

Demystify origin of
chemical elements

24 applications and 6 co-design projects
• Including 62 separate codes
• Representing over 10 million lines of code
• Many supporting large user communities
• Covering broad range of mission critical S&E domains
• Mostly all MPI or MPI+OpenMP on CPUs at beginning of ECP
• Each project defines a domain-specific challenge problem for final benchmark
• Applications are evaluated in one of two categories
• Performance – achieve a 50x performance increase
• Capability – utilize new architectures for expanded S&E

29

Four key ingredients of an ECP Application Development Project

Science goal Algorithmic
innovation

Porting Integration

30

Four key ingredients of an ECP Application Development Project

Science goal Algorithmic
innovation

Porting Integration

31

Algorithmic innovation goes beyond simply porting code

“The downside of ... benchmarks is that innovation is chiefly limited to the
architecture and compiler. Better data structures, algorithms, programming
languages, …cannot be used, since that would give a misleading result. The system
could win because of, say, the algorithm, and not because of the hardware or the
compiler. While these guidelines are understandable when the foundations of
computing are relatively stable, as they were in the 1990s and the first half of this
decade, they are undesirable during a programming revolution. For this revolution to
succeed, we need to encourage innovation at all levels.”

-Hennessy and Patterson, Computer Architecture, A Quantitative Approach

32

GPUs do best for codes given …

ü massive fine-grained parallelism

ü concentrated performance bottlenecks

ü weak scaling problems

ü high arithmetic intensity and/or low data
movement

ü minimal branching

ü high FLOP to byte (of storage) ratio

ü use of specialized instructions

33

Algorithmic innovation: domain-driven adaptations critical for
making efficient use of exascale systems

Ø Inherent strong scaling challenges on GPU-based systems à
Ø Ensembles vs. time averaging
Ø Fluid dynamics, seismology, molecular dynamics, time-stepping

Ø Increased dimensions of (fine-grained) parallelism to feed GPUs
Ø Ray tracing, Markov Chain Monte Carlo, fragmentation methods

Ø Localized physics models to maximize "free flops”
Ø MMF, electron subcycling, enhanced subgrid models, high-order discretizations

Ø Alternatives to sparse linear systems
Ø Higher order methods, Monte Carlo

Ø Reduced branching
Ø Event-based models

34

Example: modeling and simulation of small modular reactors

Reproduced with permission

• ExaSMR is a coupled multiphysics ECP
application to perform “virtual experiment”
simulations of small modular nuclear reactor
designs.

• Small modular nuclear reactors present
significant simulation challenges
— Small size invalidates existing low-order models
— Natural circulation flow requires high-fidelity fluid

flow simulation

• Two primary methods:
— Monte Carlo neutronics
— CFD with turbulence models

35

Monte Carlo has been used in particle simulations since the
Manhattan Project

• Markov Chain Monte Carlo used by
Stanislaw Ulam at Los Alamos for neutron
transport calculations in 1946.

• Very efficient algorithm to evolve particle
ensembles across phase space.

• Continued to be popular as we moved to
distributed memory systems. Parallelizes
well across particles, even better across
samples (“embarrassingly parallel”).

for (i=0, nLocal)
{
[stuff]
if (collisionProb > random())
{
[stuff]

else
{
[stuff]
if (absorptionProb > random())
{
[stuff]

}
else
{
[stuff]

}

…
}

}

• Unfortunately, Monte Carlo codes written for
distributed memory systems do not do well
on GPUs!

36

Neutron transport: random particle statistics poorly suited to GPUs

• Stochastic history-based algorithm follows
particles from birth to death.

• Most particles are short-lived, a few are
not.

Everyone waits
on this particle

time

37

Branching code is highly undesirable on SIMT architectures (GPUs)

Even when each particle has roughly the same amount of work, thread divergence
is a big problem when random sampling sends them down different code paths

parallel work GPU execution

Need to rethink code execution based on the target hardware. For example,
parallelizing over events (i.e. common code paths) rather than particles.

38

New event-based algorithm gave ExaSMR significant speedup

• Parallelizing over events is a much
better match for a SIMT
architecture than parallelizing over
particles.

• Further improvements gained by
identifying parts of the system that
have significantly different
behavior and separating them out.

• Smaller, focused kernels allow for
better occupancy, i.e. more
efficient use of the hardware

4-10x f
ast

er

39

Four key ingredients of an ECP Application Development Project

Science goal Algorithmic
innovation

Porting Integration

40

Porting must be done with hardware in mind

Map algorithm to GPUs

• Rewrite, profile, and optimize
– Generally preserve the exact answer

• Data Layout for memory coalescing

• Loop ordering

• Kernel flattening

• Increased locality

• Recomputing vs. storing

• Reduced branching

• Eliminating copies

Map calculation to GPUs

• Reduced communication

• Reduced synchronization

• Increased parallelism

• Reduced precision

• Optimized linear algebra

Identify opportunities for
improvement

• Mathematical representation

• “On the fly” recomputing vs.
lookup tables

• Prioritization of new physical
models

• Alternate discretizations (high AI)

• Localized subgrid models

• Sparse à dense systems

• Defining weak scaling target

• Initial condition from ROM

Hardware has significant impact on all aspects of simulation strategy

41

Choosing the right programming model is all about balancing
trade-offs

GPU-specific kernels
• Isolate the computationally-intensive parts of

the code into CUDA/HIP/SYCL kernels.
• Refactoring the code to work well with the

GPU is the majority of effort.

Loop pragma models
• Offload loops to GPU with OpenMP or

OpenACC.
• Most common portability strategy for Fortran

codes.

C++ abstractions
• Fully abstract loop execution and data

management using advanced C++ features.
• Kokkos and RAJA developed by NNSA in

response to increasing hardware diversity.

Co-design frameworks
• Design application with a specific motif to use

common software components
• Depend on co-design code (e.g. CEED,

AMReX) to implement key functions on GPU.

42

Programming models used in ECP applications

Platform portability provided by co-design
projects (CoPA, CEED, AMReX) 33%

Native (CUDA/HIP/SYCL) or custom
implementations 33%

ST programming models (Kokkos, RAJA,
Legion) 18%

Directive-based programming models:
(OpenMP, OpenACC) 16%

• Use of co-design/ST technologies provides
significant benefit. Fine-scale architectural details
provided by co-design technologies

• Large percent of custom implementations reflects
difficulty of universal platform-portable
programming models that span diverse apps

43

Example: Quantum Monte Carlo for Materials

• To predict, understand, and design next
generation materials requires reliable, non-
empirical, atomistic quantum mechanics-based
methods.

• ECP application QMCPACK implements multiple
Quantum Monte Carlo (QMC) algorithms to
achieve this. Primary focus for ECP is on the real-
space diffusion Monte Carlo (DMC) and orbital
space auxiliary field QMC (AFQMC) algorithms
to enable cross-validation.

• OpenMP was selected as the GPU programming
model to maximize future portability.

QMCPACK project, PI: Dr. Paul Kent (ORNL)

44

“I know you’ve taken it in the
teeth out there, but the first guy
through the wall — he always
gets bloody.”

—John Henry, Moneyball

45

QMCPACK was first through the wall

• QMCPACK had a working CUDA
implementation of the code that proved
invaluable in understanding where OpenMP
performance was falling short.

• OpenMP offload runtimes are not yet
consistently performant across vendors.
Initial OpenMP results were significantly
slower than CUDA.

• With careful performance analysis and by
working closely with the vendors, the
QMCPACK team was able to steadily improve
performance of their OpenMP version until it
is now on par with CUDA.

46

Languages

0

5

10

15

20

25

30

35

Loop pragma Kokkos / RAJA Native GPU
kernels

Co-design /
libraries

12 14

25 25

GPU Programming Models

0

10

20

30

40

50

60

70

Fortran C/C++ Python

14

64

4

Distribution of ECP programming models has changed over time

Programming language/model choices have evolved over course of ECP

47

Four key ingredients of an ECP Application Development Project

Science goal Algorithmic
innovation

Porting Integration

48

Wind Farm
(ExaWind)

Cosmology
(ExaSky)

National Security
(MAPP)

Fusion Energy
(WDMApp)ECP Applications:

Tools

Prog Models & Runtimes

Data and Viz
Ecosystems and Delivery

Math Libraries Legend

Selected ECP Software Technologies

… and moreSubsurface
Flow

Ecosystem: E4S at large

Spack

… and more

F N W

Programming Models
and Runtimes

MPI

Umpire

RAJA

CHAI

Kokkos

… and more

C F N WSC F N WS

F W

N S

N S

N S

Tools and
Technology

PAPI

Flux

Caliper

TAU

HPCToolkit

Compilers
and Support

LLVM

OpenMP

… and more

C F N WS

C F N W

C F N S

N S

C F S

F W

N

Math Libraries (xSDK)

ArborX

SUNDIALS

PETSc/TAO

SuperLU

MFEM

Trilinos

hypre

FFT

BLAS, LAPACK

STRUMPACK

… and more

N WS

F N S

F

WSF

WSF

N S

C W

C W

F W

N

zfp

ALPINE

Cinema

VTK-m

SZ

SPOT

Visualization Analysis
and Reduction

… and more

C N WS

C N

C F N WS

C

F N

N

Data Mgmt, I/O,
Checkpoint Restart

PnetCDF

ADIOS

UnifyFS

VeloC

HDF5

SCR

MPI-IO

… and more
C

N

F

C F N WS

W

F W

N

C F N S W

Integration: ECP applications rely heavily on high quality software
tools and libraries

24 apps,
6 co-design
centers

Shown are 36 ST products (used or being
considered by the 5 apps above)

ST overall has 70 unique software products
used by 24 apps and 6 co-design centers

ECP apps rely on multiple software technologies; some software products contribute to multiple distinctly developed
components of a multiphysics app (such as fusion energy modeling) that must run within a single executable.

See E4S.io
for more
ST products

AID
AML
BEE
Darshan
DTK
Dyninst
FleCSI
ForTriliinios
GASNet
Ginkgo
Kokkoskernels
Legion
libEnsemble
MarFS
NRM
OpenACC
Papyrus
PaRSEC
PDT
PowerStack
ScaLAPACK
SCR
SICM
SLATE
SWIG
Tasmanian
Umap
UPC++

49

ECP is delivering an open, hierarchical software ecosystem

E4S
Source: ECP E4S team; Non-ECP Products (all dependencies)
Delivery: spack install e4s; containers; CI Testing

SDKs
Source: SDK teams; Non-ECP teams (policy compliant, spackified)
Delivery: Apps directly; spack install sdk; future: vendor/facility

ST
Products Source: ECP L4 teams; Non-ECP Developers; Standards Groups

Delivery: Apps directly; spack; vendor stack; facility stack

Levels of Integration Product Source and Delivery

• Group similar products
• Make interoperable
• Assure policy compliant
• Include external products

• Build all SDKs
• Build complete stack
• Containerize binaries

• Standard workflow
• Existed before ECP

ECP ST Open Product Integration Architecture

ECP ST Individual Products

50

Extreme-scale Scientific Software Stack (E4S)

• E4S: HPC software ecosystem – a curated software portfolio
• A Spack-based distribution of software tested for interoperability

and portability to multiple architectures
• Available from source, containers, cloud, binary caches
• Leverages and enhances SDK interoperability thrust
• Not a commercial product – an open resource for all
• Growing functionality: Nov 2021: E4S 21.11 – 91 full release products

https://e4s.io
E4S lead: Sameer Shende (U Oregon)

Also includes other products, e.g.,
AI: PyTorch, TensorFlow, Horovod
Co-Design: AMReX, Cabana, MFEM

https://spack.io
Spack lead: Todd Gamblin (LLNL)

Community Policies
Commitment to software quality

DocPortal
Single portal to all
E4S product info

Portfolio testing
Especially leadership

platforms

Curated collection
The end of dependency hell

Quarterly releases
Release 1.2 – November

Build caches
10X build time
improvement

Turnkey stack
A new user experience https://e4s.io

E4S Strategy Group
US agencies, industry,

international

https://e4s.io/
https://spack.io/
https://e4s.io/

51

Three application examples to show the kind of progress possible
with Exascale computing resources

EQSIM – Earthquake
Hazard and Risk

ExaSMR – Small
Modular Reactors

ExaWind – Wind Turbine
Siting and Operations

52

The EQSIM project is developing a frameworks for regional scale
earthquake hazard and risk
• Objective: Create a simulation tools that answers questions such

as What is the regional distribution of ground motions and
associated infrastructure response? and How do complex (realistic)
incident seismic waves interact with infrastructure?

• ECP accomplishments
– Algorithmic improvements using curvilinear mesh refinement improved

speeds by a factor of 2.85
– Developing a GPU-enabled full waveform inversion algorithm with many

algorithmic improvements for separated phase and amplitude matching,
gradient smoothing and Hessian-based preconditioning

– Use RAJA for performance portability and ZFP data compression to
save suffcient data to maintain adequate precision in stored data

– Infrastructure simulations now include strong coupling with OpenSees
soi/building modeling and using in soil-structure interaction models; help
gain insight into areas of maximum risk

Achieved a 1000X improvement in computational performance
compared to all previous San Francisco Bay Area simulations;
Simulation of regional-scale ground motions at frequencies of
engineering interest (5-10 Hz) now within reach

PI: Dave McCallen, LBNL

Regional-scale
domain

Geophysics ground motion
simulations

(billions of zones)

Infrastructure response
simulations

(thousands of stations)

Infrastructure
demand / risk

Geophysics Engineering

20 story
steel

building
T=13.2

seconds

53

The ExaSMR project is developing first of a kind simulations of
small modular reactors (SMR)
• Objective: Help DOE meet its goal of an operational SMR by 2025

through advanced modeling and simulation; coupling Monte Carlo
neutron simulation with computational fluid dynamics

• ECP accomplishments
– Developed GPU-enabled Monte-Carlo transport codes (Shift and

OpenMC), targeting Frontier and Aurora respectively
– Refactored neutron transport algorithms from particle-based to event-

based; dramatically improving performance on GPUs
– Demonstrated first CFD simulation of a full SMR core
– Optimized CFD simulations; improving performance by a factor of 5

through improved precondtioners, use of half-precision numerical
methods, and GPU-aware gather-scatter kernels

– Working toward full core coupled physics and isotopic depletion using
domain decomposed Monte Carlo solvers

Achieved >70X overall performance improvements in the science
workrate for the simulation; will allow full coupled steady-state
simulations, modeling quasi-static full cycle depletion, and coupling
transient natural circulation reactor start-up

PI: Steve Hamilton, ORNL

55

The ExaWind project is developing wind plant simulation
capabilities for siting and operations
• Objective: Create a predictive physics-based simulation capability

that will provide a validated "ground truth" foundation for siting and
operational controls of wind plants, and the reliable integration of
wind energy into the grid

• ECP accomplishments
– New hybrid Nalu-Wind/AMR-Wind solver strategy: Leveraging the best

of structured & unstructured grids
– Uses a large number of software technologies for performance

portability, linear solvers, block structured AMR, package management
– New hybrid solver enables validation-quality blade-resolved turbine

simulations
– Optimized Nalu-Wind/hypre simulations performed on over 4000

Summit GPUs
– AMR-Wind strong/weak-scaling atmospheric-boundary- layer (ABL)

simulations on Summit reach billions of grid points

Weak Scaling

New capabilities allow detailed fluid structure interactions of the blade
with turbulence models; then scaling up to many turbines to capture
impact of terrain, atmospheric boundary layer, and inter-blade effects

PI: Mike Sprague, NREL

56

• Scientists have proposed new
approaches to building smaller, more
efficient particle accelerators using
plasmas.

• Simulations are critical to aid in the
development of accelerator designs.

• Potential applications include
improved radiation treatment for
cancer.

• WarpX was built on top of AMReX
adaptive mesh refinement library.

• 2022 ACM Gordon Bell Prize winner!

Bonus example: advanced particle accelerator design

Movie: D. Pugmire (ORNL)
From WarpX simulation on
4096 Summit nodes

WarpX project, PI: Dr. Jean-Luc Vay (LBNL)

57

Final thoughts

•This is an exciting and terrifying time to be doing computational
science.

•Those who take the time to understand the hardware they are
running on and/or coding for will have a major advantage over
those who try to use past practices blindly.

•For computational capabilities, don’t reinvent the wheel! Build on
the successes of others whenever possible.

•For applied math, re-examine and question everything! Many best
practices are based on assumptions from the past that no longer
apply. There are many opportunities for innovation.

58

LLNL Auspices and Disclaimer

Prepared by LLNL under Contract DE-AC52-07NA27344. This document was prepared as an account of work
sponsored by an agency of the United States government. Neither the United States government nor
Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC.
The views and opinions of authors expressed herein do not necessarily state or reflect those of the United
States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or
product endorsement purposes.

