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A motivating multiscale system: Crystals
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Modelling approaches

AN

Z107" +
—
1%}
©
<
S Crystal
i"’)/ 5 Elastoplasticity
o~ 107° 1
[0}
Q
wn
@
£
@ ~107° T
=]
©
£
S
a
<Q- ~10"12 4

Density Functional
Theory
] ] ] ] I
1 1 1 1 L4
~1071° ~107° ~107° 2107?

Approximate length-scale (metres)



Modelling approaches

Atomistic (Discrete)

-3 4
10 Theories

Approximate time-scale (seconds)

Crystal
Elastoplasticity

Continuum (PDE)

Theories
~ 10712 -4
Density Functional
Theory
: : : ; >
~ 1071 ~ 107 ~107° z107°

Approximate length-scale (metres)



Modelling approaches
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Machine-Learned Interatomic Potentials (MLIPs)
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Atomistic theories

» Variables in these theories:

» Atomic nuclei ¢; € R3
> Electron density (in DFT).
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Atomistic theories

» Variables in these theories:

» Atomic nuclei ¢; € R3
> Electron density (in DFT).

» Energy: £({£i}i).

o€
Forces: f; = —8—%({&'};)

» DFT energies are expensive to
evaluate: nonlinear eigenvalue
problems requiring iterative solves.

» MD energies are empirical and fitted:
cheaper, but not uniformly accurate
(c.f. Tim Germann's talk).
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Machine-Learned Interatomic Potentials (MLIPs)

Build-your-own MLIP:

» Compile a database of expected
environments: strained crystal,
stacking fault, dimer pair, ...

» Compress information about
atomic environments using
descriptors.

» Parametrise a class of energy
functions based on these
descriptors.

» Fit parametric energy (and
forces) using a regression
methodology.



Machine-Learned Interatomic Potentials (MLIPs)

Key ingredient: Descriptors which compress structural information.
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Machine-Learned Interatomic Potentials (MLIPs)

Key ingredient: Descriptors which compress structural information.

wcompleteness

structure space

translations f

rotations ™,

feature space \
smoothness ‘

" additivity
Musil et al, 2021

Efficient representations ‘integrate out’ symmetries.



Machine-Learned Interatomic Potentials (MLIPs)
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Machine-Learned Interatomic Potentials (MLIPs)

Behler-Parrinello (2,3) PIPs (n*)

ACE (n") projection Dg(_erp_lrl\gD( 2(23)3) permutation

MTP (n*) ; invariant 9 @)
SNAP (4) atomic polynomials X 23

- shar, symmetry
8 "m"/' P functions
/ blur

permutations
smooth density (average)
SOAP (3) correlation

FCHL (2,3,4)
Wavelets (3) features

NICE (n*) rotations
(density products‘)\ atom

histograms « Wasserstein
\ metric

sorted )y ()
~distances BgoB (2)
permutations Sorted CM (2)
(histogram)

Spectral FP (n)

centred SPertNL(n)
— distributions eSllc
Diffraction FP o mo|egu|ar/>e|genvalues
translations matrices Permutations

LODE (n) otential ) ) (sorting)
symmetrized 4/p fields m atom jntemal ~ nonlinear

local field translations transform df?gggy coordinates functions
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family of features
named features (body order)
2,3,4: radial, angular, dihedrals !
n: n-body Cartesian

n*: complete n-body linear basis coordinates

Open questions:

» Which architectures/descriptors are ‘best'? Efficiency, completeness...

» How do we effectively handle many different species at the same time?

Reference: Musil et al, 2021. Chemical Reviews, 121(16), 9759-9815.
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Atomistic energies

» Consider a deformation of atoms,
y: A — R3, so £ moves to y(£).

> Assume energy can be decomposed as
sum of local site energies V.

» V, must only depend on interatomic
displacements:

Dy(€) := {y(¢+ p) —y(0)}

peR'

» Formally, the total potential energy is then the sum

E(y) == _ Vo(Dy(#)).

LeN

» For example, when interactions are pairwise:

Vo= o(y(t+p) - y(0))
PER



Atomistic-to-Continuum Methods

» Seek local minima and saddle
points of atomistic energy &, i.e. y
such that §&(y) = 0.
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» Seek local minima and saddle
points of atomistic energy &, i.e. y
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Atomistic-to-Continuum Methods

» Seek local minima and saddle
points of atomistic energy &, i.e. y
such that §&(y) = 0.
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» An approximate solution: fix the

positions of far-field atoms and OO0 OO XXX AR KRR AR 00
allow atoms close to defect to o
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vary.

Question: How should the boundary conditions be set to achieve an
efficient approximation?
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An observation

Inkson, 1994

Away from a defect core, atomic
displacements decay back to lattice
positions in a smooth way.

Continuum Linear Elasticity (CLE)
provides singular solutions thought to
predict atomic displacements away
from defects.

Use this insight to inform
computational and mathematical
approaches.
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Boundary conditions

In practice: Often use periodic boundary conditions.
Issue: Defect densities end up being very high.
» Coupling methods:
- QM/MM: DFT coupled to MD.
- Quasicontinuum (QC) Method:
MD coupled to FEM.
- Connections to Coarse-grained MD.
» Flexible boundary conditions:
- Lattice Green's functions used to KE0000 DN

approximate far-field strains. Wm@g

> Cha"enges (XXX

- Ghost forces in coupling methods due OO O oL Ao
to incompatibility of models. ﬁxﬁﬁw}.
- Dynamics: reducing degrees of freedom
means information loss.
References:
— Luskin and Ortner, 2013. Acta Numerica, 22, 397-508.
— Ehrlacher et al, 2016. Arch. Rational Mech. Anal. 222, 1217-1268.
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Coarse-graining

Region of interest
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» For reduced variables, many established methods exist to find
effective potentials: ABF, Metadynamics, Parallel replica algorithms...

» But: Free energy may not tell the full story!
Fluctuations from lost DoFs may alter the timescales.

Open problem:

» Find a robust framework to fit free energy and compatible thermostat.

Reference:
— Leliévre, Rousset and Stoltz, Free Energy Computations: A Mathematical Perspective.
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Homogenisation basics: Periodic case

Periodic layered material subject to tensile stress:

1D linear elasticity: — =0, o=k(*)—

Tensile loads: —o(0) = —7, o(L) =r.

du T |
Constant stress: — = and 6 = f/ ——dx
dx k(g) LJo k(g)

1 /L1 !
Effective stress-strain: 7=KJ§, K= </ de)
-1

(051} (%)
”<k1 + k2>



Homogenisation basics: Stochastic case

Random layered material subject to tensile stress:
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Homogenisation basics: Stochastic case

Random layered material subject to tensile stress:

L oL
mm (L LRINRTL T
_
: o do ~x o du
1D linear elasticity: ol 0, o= k(g,w)&

Tensile loads: —o(0) = —7, o(L)=r.
1 /b1 -
Effective stress-strain: 7= K4§, K= <—/ X—dx) .
LJo k(g7w)

Assuming ergodicity, spatial mean approximates the true mean:

1 1
—=~E|-]|.
k=2l
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Homogenisation basics

> More generally, consider the problem
~V-(C(2): V) = 1.
» Under the right assumptions: u® — u® in L? as ¢ — 0, where u® solves
~v-(C: V) =f

The effective C may be found numerically by solving a cell problem.
» Can treat random coefficients, and nonlinear problems: sampling
and fitting then become significant challenges.

References:
— Pavliotis and Stuart, Multiscale Methods: Averaging and Homogenization.
— Braides, Gamma-convergence for Beginners



An open problem: Predicting plasticity

Micromegas Manual



Job advert...

Assistant Professor in Predictive Modelling and

Not logged in.

Scientific Computing (107274-0323)

Click here to go back to search results

Vacancy Type/Job category

Academic

Department

School of Engineering

Sub Department

Mechanical, Materials and Process

Salary

£44,414 - £52,841 per annum

Location

University of Warwick, Coventry

Vacancy Overview

Full time, permanent position.

The School of Engineering is seeking to recruit a talented and enthusiastic
Assistant Professor in Predictive Modelling on the traditional research and
teaching pathway. We are looking for someone who can help us strengthen and
broaden our research activities, while also contributing to teaching of the newly
established MSc in Predictive Modelling and Scientific Computing to start in the
2023-2024 academic year.

We are open to appointments in any aspect of predictive modelling and scientific
computing research consistent with the activities of the Warwick Centre for
Predictive Modelling and the facilities available in the School and the University.
Those with backgrounds in mathematical and statistical foundations of predictive
modelling, or in in its application to physics-based uncertainty quantification (for
example aligned with existing WCPM strength areas such as continuum solid or
fluid mechanics, environmental sustainability, energy, materials science) are
particularly encouraged to apply. The appointee will complement existing activity
in the School or establish new activity, and it is expected the research will have
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