Multiscale Aspects of Materials Modelling:

A Mathematician's View

Tom Hudson, Warwick Mathematics Institute

IPAM Tutorials March 2023

A motivating multiscale system: Crystals

Body-Centred Cubic (BCC)

Face-Centred Cubic (FCC)

A motivating multiscale system: Crystals

0D: Point Defects

1D: Dislocations

2D: Grain boundaries

Modelling approaches

Modelling approaches

Modelling approaches

- ► Variables in these theories:
 - Atomic nuclei $\ell_i \in \mathbb{R}^3$
 - **Electron density** (in DFT).

- ► Variables in these theories:
 - Atomic nuclei $\ell_i \in \mathbb{R}^3$
 - **Electron density** (in DFT).

► Energy:
$$\mathcal{E}(\{\ell_i\}_i)$$
.
Forces: $f_j = -\frac{\partial \mathcal{E}}{\partial \ell_j}(\{\ell_i\}_i)$

- ► Variables in these theories:
 - Atomic nuclei $\ell_i \in \mathbb{R}^3$
 - **Electron density** (in DFT).

► Energy:
$$\mathcal{E}(\{\ell_i\}_i)$$
.
Forces: $f_j = -\frac{\partial \mathcal{E}}{\partial \ell_j}(\{\ell_i\}_i)$

 DFT energies are expensive to evaluate: nonlinear eigenvalue problems requiring iterative solves.

- ► Variables in these theories:
 - Atomic nuclei $\ell_i \in \mathbb{R}^3$
 - Electron density (in DFT).

► Energy:
$$\mathcal{E}(\{\ell_i\}_i)$$
.
Forces: $f_j = -\frac{\partial \mathcal{E}}{\partial \ell_j}(\{\ell_i\}_i)$

- DFT energies are expensive to evaluate: nonlinear eigenvalue problems requiring iterative solves.
- MD energies are empirical and fitted: cheaper, but not uniformly accurate (c.f. Tim Germann's talk).

Build-your-own MLIP:

 Compile a database of expected environments: strained crystal, stacking fault, dimer pair, ...

Build-your-own MLIP:

- Compile a database of expected environments: strained crystal, stacking fault, dimer pair, ...
- Compress information about atomic environments using descriptors.

Build-your-own MLIP:

- Compile a database of expected environments: strained crystal, stacking fault, dimer pair, ...
- Compress information about atomic environments using descriptors.
- Parametrise a class of energy functions based on these descriptors.

Build-your-own MLIP:

- Compile a database of expected environments: strained crystal, stacking fault, dimer pair, ...
- Compress information about atomic environments using descriptors.
- Parametrise a class of energy functions based on these descriptors.
- Fit parametric energy (and forces) using a regression methodology.

Key ingredient: **Descriptors** which compress structural information.

Musil et al, 2021

Key ingredient: **Descriptors** which compress structural information.

Efficient representations 'integrate out' symmetries.

Open questions:

▶ Which architectures/descriptors are 'best'? Efficiency, completeness...

Open questions:

- ▶ Which architectures/descriptors are 'best'? Efficiency, completeness...
- ▶ How do we effectively handle many different species at the same time?

Reference: Musil et al, 2021. Chemical Reviews, 121(16), 9759-9815.

• Consider a **deformation** of atoms, $\mathbf{y} : \Lambda \to \mathbb{R}^3$, so $\boldsymbol{\ell}$ moves to $\mathbf{y}(\boldsymbol{\ell})$.

- Consider a **deformation** of atoms, $\mathbf{y} : \Lambda \to \mathbb{R}^3$, so $\boldsymbol{\ell}$ moves to $\mathbf{y}(\boldsymbol{\ell})$.
- ► Assume energy can be decomposed as sum of local site energies V_ℓ.

- Consider a **deformation** of atoms, $\mathbf{y} : \Lambda \to \mathbb{R}^3$, so $\boldsymbol{\ell}$ moves to $\mathbf{y}(\boldsymbol{\ell})$.
- ► Assume energy can be decomposed as sum of local site energies V_ℓ.
- *V_ℓ* must only depend on interatomic displacements:

$$\mathsf{D} \mathsf{y}(\boldsymbol{\ell}) := \left\{ \mathsf{y}(\boldsymbol{\ell} + \boldsymbol{
ho}) - \mathsf{y}(\boldsymbol{\ell})
ight\}_{oldsymbol{
ho} \in \mathcal{R}}$$

Formally, the total **potential energy** is then the sum

$$\mathcal{E}(\mathbf{y}) := \sum_{\ell \in \Lambda} V_{\ell}(D\mathbf{y}(\ell)).$$

- Consider a **deformation** of atoms, $\mathbf{y} : \Lambda \to \mathbb{R}^3$, so $\boldsymbol{\ell}$ moves to $\mathbf{y}(\boldsymbol{\ell})$.
- ► Assume energy can be decomposed as sum of local site energies V_ℓ.
- *V_ℓ* must only depend on interatomic displacements:

$$\mathsf{D}\mathsf{y}(\boldsymbol{\ell}) := \left\{\mathsf{y}(\boldsymbol{\ell}+
ho) - \mathsf{y}(\boldsymbol{\ell})
ight\}_{
ho\in\mathcal{R}}$$

Formally, the total **potential energy** is then the sum

$$\mathcal{E}(\mathbf{y}) := \sum_{\ell \in \Lambda} V_{\ell}(D\mathbf{y}(\ell)).$$

► For example, when interactions are pairwise:

$$V_{\ell} = \sum_{oldsymbol{
ho} \in \mathcal{R}} \varphi \Big(\mathbf{y}(oldsymbol{\ell} + oldsymbol{
ho}) - \mathbf{y}(oldsymbol{\ell}) \Big)$$

 Seek local minima and saddle points of atomistic energy *ε*, i.e. y such that δ*ε*(y) = 0.

- Seek local minima and saddle points of atomistic energy *ε*, i.e. ȳ such that δ*ε*(ȳ) = 0.
- However: *E* is a non-convex function defined on an infinite-dimensional space.

- Seek local minima and saddle points of atomistic energy *ε*, i.e. y such that δ*ε*(y) = 0.
- However: *E* is a non-convex function defined on an infinite-dimensional space.
- An approximate solution: fix the positions of far-field atoms and allow atoms close to defect to vary.

- Seek local minima and saddle points of atomistic energy *E*, i.e. y such that δ*E*(y) = 0.
- However: *E* is a non-convex function defined on an infinite-dimensional space.
- An approximate solution: fix the positions of far-field atoms and allow atoms close to defect to vary.

Question: How should the **boundary conditions** be set to achieve an efficient approximation?

An observation

[121] [111]

2nm

Inkson, 1994

Away from a defect core, atomic displacements decay back to lattice positions in a smooth way.

An observation

 $[1\overline{2}1]$ [111]

- Away from a defect core, atomic displacements decay back to lattice positions in a smooth way.
- Continuum Linear Elasticity (CLE) provides singular solutions thought to predict atomic displacements away from defects.

Inkson, 1994

An observation

- Away from a defect core, atomic displacements decay back to lattice positions in a smooth way.
- Continuum Linear Elasticity (CLE) provides singular solutions thought to predict atomic displacements away from defects.
- Use this insight to inform computational and mathematical approaches.

Inkson, 1994

In practice: Often use periodic boundary conditions.

Issue: Defect densities end up being very high.

In practice: Often use periodic boundary conditions.

Issue: Defect densities end up being very high.

Coupling methods:

- QM/MM: DFT coupled to MD.
- $\label{eq:QC} \begin{array}{c} & \mbox{Quasicontinuum (QC) Method:} \\ \hline & \mbox{MD coupled to FEM.} \end{array}$
- Connections to Coarse-grained MD.

In practice: Often use periodic boundary conditions.

Issue: Defect densities end up being very high.

Coupling methods:

- QM/MM: DFT coupled to MD.
- Quasicontinuum (QC) Method: MD coupled to FEM.
- Connections to Coarse-grained MD.
- ► Flexible boundary conditions:
 - <u>Lattice Green's functions</u> used to approximate far-field strains.

Challenges:

- <u>Ghost forces</u> in coupling methods due to incompatibility of models.
- Dynamics: reducing degrees of freedom means information loss.

In practice: Often use periodic boundary conditions.

Issue: Defect densities end up being very high.

Coupling methods:

- QM/MM: DFT coupled to MD.
- Quasicontinuum (QC) Method: MD coupled to FEM.
- Connections to Coarse-grained MD.
- ► Flexible boundary conditions:
 - <u>Lattice Green's functions</u> used to approximate far-field strains.

Challenges:

- <u>Ghost forces</u> in coupling methods due to incompatibility of models.
- Dynamics: reducing degrees of freedom means information loss.

References:

- Luskin and Ortner, 2013. Acta Numerica, 22, 397-508.
- Ehrlacher et al, 2016. Arch. Rational Mech. Anal. 222, 1217-1268.

Region of interest

Region of interest

Region of interest

For reduced variables, many established methods exist to find effective potentials: ABF, Metadynamics, Parallel replica algorithms...

Region of interest

- For reduced variables, many established methods exist to find effective potentials: ABF, Metadynamics, Parallel replica algorithms...
- But: Free energy may not tell the full story!
 Fluctuations from lost DoFs may alter the timescales.

Region of interest

- For reduced variables, many established methods exist to find effective potentials: ABF, Metadynamics, Parallel replica algorithms...
- But: Free energy may not tell the full story!
 Fluctuations from lost DoFs may alter the timescales.

Open problem:

► Find a robust framework to fit free energy and compatible thermostat.

Reference:

- Lelièvre, Rousset and Stoltz, Free Energy Computations: A Mathematical Perspective.

Homogenisation

Homogenisation basics: Stochastic case

Random layered material subject to tensile stress:

Homogenisation basics: Stochastic case

Random layered material subject to tensile stress:

Homogenisation basics: Stochastic case

Random layered material subject to tensile stress:

Assuming ergodicity, spatial mean approximates the true mean:

$$\frac{1}{K} \approx \mathbb{E}\left[\frac{1}{k}\right].$$

Homogenisation basics

► More generally, consider the problem

$$-\nabla \cdot \left(\mathbf{C}\left(\frac{\mathbf{x}}{\varepsilon}\right) : \nabla \mathbf{u}^{\varepsilon} \right) = \mathbf{f}.$$

Homogenisation basics

More generally, consider the problem

$$-\nabla\cdot\left(\mathbf{C}\left(\frac{\mathbf{x}}{\varepsilon}\right):\nabla\mathbf{u}^{\varepsilon}\right)=\mathbf{f}.$$

• Under the right assumptions: $\mathbf{u}^{\varepsilon} \rightarrow \mathbf{u}^{0}$ in L^{2} as $\varepsilon \rightarrow 0$, where \mathbf{u}^{0} solves

$$-\nabla\cdot\left(\overline{\mathbf{C}}:\nabla\mathbf{u}^{0}
ight)=\mathbf{f}$$

The effective $\overline{\mathbf{C}}$ may be found numerically by solving a **cell problem**.

Homogenisation basics

More generally, consider the problem

$$-\nabla\cdot\left(\mathbf{C}\left(\frac{\mathbf{x}}{\varepsilon}\right):\nabla\mathbf{u}^{\varepsilon}\right)=\mathbf{f}.$$

• Under the right assumptions: $\mathbf{u}^{\varepsilon} \rightarrow \mathbf{u}^{0}$ in L^{2} as $\varepsilon \rightarrow 0$, where \mathbf{u}^{0} solves

$$-\nabla\cdot\left(\overline{\mathbf{C}}:\nabla\mathbf{u}^{0}\right)=\mathbf{f}$$

The effective \overline{C} may be found numerically by solving a **cell problem**.

Can treat random coefficients, and nonlinear problems: sampling and fitting then become significant challenges.

References:

- Pavliotis and Stuart, Multiscale Methods: Averaging and Homogenization.
- Braides, Gamma-convergence for Beginners

An open problem: Predicting plasticity

Micromegas Manual

Job advert...

Not logged in.

Assistant Professor in Predictive Modelling and Scientific Computing (107274-0323)

Vacancy Type/Job category	Academic
Department	School of Engineering
Sub Department	Mechanical, Materials and Process
Salary	£44,414 - £52,841 per annum
Location	University of Warwick, Coventry
Vacancy Overview	Full time, permanent position.
	The School of Engineering is seeking to recruit a talented and enthusiastic Assistant Professor in Predictive Modelling on the traditional research and teaching pathway. We are looking for someone who can help us strengthen and broaden our research activities, while also contributing to teaching of the newly established MSc in Predictive Modelling and Scientific Computing to start in the 2023-2024 academic year.
	We are open to appointments in any aspect of predictive modelling and scientific computing research consistent with the activities of the Warwick Centre for Predictive Modelling and the facilities available in the School and the University. Those with backgrounds in mathematical and statistical foundations of predictive modelling, or in in its application to physics-based uncertainty quantification (for example aligned with existing WCPM strength areas such as continuum solid or fluid mechanics, environmental sustainability, energy, materials science) are particularly encouraged to apply. The appointee will complement existing activity in the School or establish new activity, and it is expected the research will have

Click here to go back to search results

Summary

Multiscale methods continue to develop in computational Materials Science, connecting and improving models, but mature tools are available.

Summary

- Multiscale methods continue to develop in computational Materials Science, connecting and improving models, but mature tools are available.
- Both theory development and numerical implementation in robust, scaleable code have important roles to play for the future of Materials modelling.

Summary

- Multiscale methods continue to develop in computational Materials Science, connecting and improving models, but mature tools are available.
- Both theory development and numerical implementation in robust, scaleable code have important roles to play for the future of Materials modelling.

References:

- Musil et al, Chem. Rev. 2021, 121, 16, 9759-9815
- Luskin and Ortner, 2013. Acta Numerica, 22, 397-508.
- Ehrlacher et al, 2016. Arch. Rational Mech. Anal. 222, 1217-1268.
- Trinkle, 2008. Phys. Rev. B 78, 014110.
- Lelièvre, Rousset and Stoltz, Free Energy Computations, Imperial College Press, 2010.
- Pavliotis and Stuart, Multiscale Methods, Springer, 2008.
- Braides, Gamma-convergence for beginners, Oxford University Press, 2002.

