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Machine-Learned Interatomic Potentials (MLIPs)
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Atomistic theories

I Variables in these theories:
I Atomic nuclei `i ∈ R3

I Electron density (in DFT).

I Energy: E({`i}i ).

Forces: fj = − ∂E
∂`j

({`i}i )

I DFT energies are expensive to
evaluate: nonlinear eigenvalue
problems requiring iterative solves.

I MD energies are empirical and fitted:
cheaper, but not uniformly accurate
(c.f. Tim Germann’s talk).
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Machine-Learned Interatomic Potentials (MLIPs)

Build-your-own MLIP:
I Compile a database of expected

environments: strained crystal,
stacking fault, dimer pair, ...

I Compress information about
atomic environments using
descriptors.

I Parametrise a class of energy
functions based on these
descriptors.

I Fit parametric energy (and
forces) using a regression
methodology.
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Machine-Learned Interatomic Potentials (MLIPs)
Key ingredient: Descriptors which compress structural information.

Musil et al, 2021

Efficient representations ‘integrate out’ symmetries.
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Machine-Learned Interatomic Potentials (MLIPs)

Open questions:

I Which architectures/descriptors are ‘best’? Efficiency, completeness...
I How do we effectively handle many different species at the same time?

Reference: Musil et al, 2021. Chemical Reviews, 121(16), 9759–9815.
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Atomistic energies
I Consider a deformation of atoms,

y : Λ→ R3, so ` moves to y(`).

I Assume energy can be decomposed as
sum of local site energies V`.

I V` must only depend on interatomic
displacements:

Dy(`) :=
{
y(`+ ρ)− y(`)

}
ρ∈R

.

I Formally, the total potential energy is then the sum

E(y) :=
∑
`∈Λ

V`(Dy(`)).

I For example, when interactions are pairwise:

V` =
∑
ρ∈R

ϕ
(
y(`+ ρ)− y(`)

)
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Atomistic-to-Continuum Methods

I Seek local minima and saddle
points of atomistic energy E , i.e. y
such that δE(y) = 0.

I However: E is a non-convex
function defined on an
infinite-dimensional space.

I An approximate solution: fix the
positions of far-field atoms and
allow atoms close to defect to
vary.

Question: How should the boundary conditions be set to achieve an
efficient approximation?
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An observation

Inkson, 1994

I Away from a defect core, atomic
displacements decay back to lattice
positions in a smooth way.

I Continuum Linear Elasticity (CLE)
provides singular solutions thought to
predict atomic displacements away
from defects.

I Use this insight to inform
computational and mathematical
approaches.
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Boundary conditions
In practice: Often use periodic boundary conditions.
Issue: Defect densities end up being very high.

I Coupling methods:
- QM/MM: DFT coupled to MD.
- Quasicontinuum (QC) Method:
MD coupled to FEM.

- Connections to Coarse-grained MD.
I Flexible boundary conditions:

- Lattice Green’s functions used to
approximate far-field strains.

I Challenges:
- Ghost forces in coupling methods due
to incompatibility of models.

- Dynamics: reducing degrees of freedom
means information loss.

References:
– Luskin and Ortner, 2013. Acta Numerica, 22, 397-508.
– Ehrlacher et al, 2016. Arch. Rational Mech. Anal. 222, 1217–1268.
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Coarse-graining

Region of interest

I For reduced variables, many established methods exist to find
effective potentials: ABF, Metadynamics, Parallel replica algorithms...

I But: Free energy may not tell the full story!
Fluctuations from lost DoFs may alter the timescales.

Open problem:
I Find a robust framework to fit free energy and compatible thermostat.

Reference:
– Lelièvre, Rousset and Stoltz, Free Energy Computations: A Mathematical Perspective.
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Homogenisation basics: Periodic case
Periodic layered material subject to tensile stress:

−τ τ

L δL

1D linear elasticity: dσ
dx = 0, σ = k( x

ε )du
dx

Tensile loads: −σ(0) = −τ, σ(L) = τ.

Constant stress: du
dx = τ

k( x
ε ) and δ = τ

L

∫ L

0

1
k( x

ε ) dx

Effective stress-strain: τ = K δ, K =
(1

L

∫ L

0

1
k( x

ε ) dx
)−1

≈
(
α1
k1

+ α2
k2

)−1
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Homogenisation basics: Stochastic case
Random layered material subject to tensile stress:

−τ τ

L δL

1D linear elasticity: dσ
dx = 0, σ = k( x

ε , ω)du
dx

Tensile loads: −σ(0) = −τ, σ(L) = τ.

Effective stress-strain: τ = K δ, K =
(1

L

∫ L

0

1
k( x

ε , ω) dx
)−1

.

Assuming ergodicity, spatial mean approximates the true mean:

1
K ≈ E

[1
k

]
.
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Homogenisation basics

−τ τ

I More generally, consider the problem

−∇ ·
(
C
(x

ε

)
: ∇uε

)
= f.

I Under the right assumptions: uε → u0 in L2 as ε→ 0, where u0 solves

−∇ ·
(
C : ∇u0

)
= f

The effective C may be found numerically by solving a cell problem.
I Can treat random coefficients, and nonlinear problems: sampling

and fitting then become significant challenges.
References:
– Pavliotis and Stuart, Multiscale Methods: Averaging and Homogenization.
– Braides, Gamma-convergence for Beginners
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An open problem: Predicting plasticity

Micromegas Manual
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Summary

I Multiscale methods continue to
develop in computational
Materials Science, connecting and
improving models, but mature
tools are available.

I Both theory development and
numerical implementation in
robust, scaleable code have
important roles to play for the
future of Materials modelling.

References:
– Musil et al, Chem. Rev. 2021, 121, 16, 9759–9815
– Luskin and Ortner, 2013. Acta Numerica, 22, 397-508.
– Ehrlacher et al, 2016. Arch. Rational Mech. Anal. 222, 1217–1268.
– Trinkle, 2008. Phys. Rev. B 78, 014110.
– Lelièvre, Rousset and Stoltz, Free Energy Computations, Imperial College Press, 2010.
– Pavliotis and Stuart, Multiscale Methods, Springer, 2008.
– Braides, Gamma-convergence for beginners, Oxford University Press, 2002.
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