

Molecular dynamics on exascale computers: a case study

Danny Perez Theoretical Division T-1

What do we *want* out of exascale: more compute = more science

Plan

- A case study of MD on exascale computers with the SNAP potential
 - Porting SNAP to GPUs
 - Parallel MD using SNAP: weak and strong scaling
- The timescale problem of MD
 - Parallelizing over time instead of space with Parallel Trajectory Splicing
- Accuracy tradeoffs

Case study

Billion atom molecular dynamics simulations of carbon at extreme conditions and experimental time and length scales

Kien Nguyen-Cong* nguyencong@usf.edu University of South Florida Tampa, FL, USA

Anatoly B. Belonoshko anatoly@kth.se Royal Institute of Technology (KTH) Stockholm, Sweden

Mitchell A. Wood mitwood@sandia.gov Sandia National Laboratories Albuquerque, NM, USA Jonathan T. Willman* jwillma2@usf.edu University of South Florida Tampa, FL, USA

Rahulkumar Gayatri rgayatri@lbl.gov NERSC Berkeley, CA, USA

Aidan P. Thompson athomps@sandia.gov Sandia National Laboratories Albuquerque, NM, USA Stan G. Moore stamoor@sandia.gov Sandia National Laboratories Albuquerque, NM, USA

Evan Weinberg eweinberg@nvidia.com NVIDIA Corporation Santa Clara, CA, USA

Ivan I. Oleynik oleynik@usf.edu University of South Florida Tampa, FL, USA

ABSTRACT

Billion atom molecular dynamics (MD) using quantum-accurate machine-learning Spectral Neighbor Analysis Potential (SNAP) observed long-sought high pressure BC8 phase of carbon at extreme pressure (12 Mbar) and temperature (5,000 K). 24-hour, 4650 node production simulation on OLCF Summit demonstrated an unprecedented scaling and unmatched real-world performance of SNAP MD while sampling 1 nanosecond of physical time. Efficient implementation of SNAP force kernel in LAMMPS using the Kokkos CUDA backend on NVIDIA GPUs combined with excellent strong scaling (better than 97% parallel efficiency) enabled a peak computing rate of 50.0 PFLOPs (24.9% of theoretical peak) for a 20 billion atom MD simulation on the full Summit machine (27,900 GPUs). The peak MD performance of 6.21 Matom-steps/node-s is 22.9 times greater than a previous record for quantum-accurate MD. Near perfect weak scaling of SNAP MD highlights its excellent potential to advance the frontier of quantum-accurate MD to trillion atom simulations on upcoming exascale platforms.

The SNAP method

$$\mathbf{U}_j = \sum_{r_{ik} < R_{\text{cut}}} f_c(r_{ik}) \mathbf{u}_j(\theta_0, \theta, \phi)$$

$$B_{j_1j_2j} = \mathbf{U}_{j_1} \otimes_{j_1j_2}^j \mathbf{U}_{j_2} : \mathbf{U}_j^*$$
$$= \mathbf{Z}_{j_1j_2}^j : \mathbf{U}_j^*$$

$$E_i(\mathbf{B}) = \sum_{l=1}^{N_B} \beta_l B_l$$

$$\mathbf{F}_k = -\sum_{i=1}^N \sum_{l=1}^{N_B} \beta_l \frac{\partial B_l}{\partial \mathbf{r}_k}$$

$$\begin{array}{lll} \displaystyle \frac{\partial B_{j_1 j_2 j}}{\partial \mathbf{r}_k} & = & \mathbf{Z}_{j_1 j_2}^j \colon \frac{\partial \mathbf{U}_j^*}{\partial \mathbf{r}_k} \\ & + \mathbf{Z}_{j j_2}^{j_1} \colon \frac{\partial \mathbf{U}_{j_1}^*}{\partial \mathbf{r}_k} + \mathbf{Z}_{j j_1}^{j_2} \colon \frac{\partial \mathbf{U}_{j_2}^*}{\partial \mathbf{r}_k} \end{array}$$

"Fourier" coefficients of the *local* atomic density. J is the order of expansion.

Symmetrized coefficients (rotation invariant)

Energy is a sum of per-atom energies, which are assumed linear in **B**. $N_B \sim J^3$

Forces obtained via chain rule

Vanilla SNAP code

Complexity (per atom)

If you don't run efficiently on 1 node, you won't run efficiently on 10,000 nodes.

MD on GPUs

- Most large-scale machines rely on GPUs to provide the majority of their computing power.
- Good GPU performance is essential!
- Unfortunately, achieving high GPU performance is not easy, especially for SNAP:
 - Deeply nested loops
 - Loop structure not regular
 - Loops are "narrow"

NOVEMBER 2022

1	Frontier	rentiler HPE Cray EX235a, AMD Opt 3rd Gen EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-10				
2	Fugaku Fujitau A64FX (48C, 2.2GHz), Tofu Interconnect D					
3	LUMI	HPE Cray EX235a, AMD Opt 3rd Gen EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-10				
4	Leonardo	Atox Bullsequana intelXeon (32C, 2.6 GHz), NVIDIA A100 guad-rail NVIDIA HDI000 Infiniband				
5	Summit	IBM POWER9 (22C, 3.07GHz), NVIDIA Volta GV100 (80C), Dual-Rail Mellanox EDR Infiniband				

Original SNAP implementation circa 2012

- Christian Trott (SNL) ported the LAMMPS SNAP C++ code to Kokkos in ExaMiniMD (proxy app), then ported to Kokkos LAMMPS by Stan Moore (SNL)
- Used advanced Kokkos features: hierarchical parallelism and scratch memory, unsure how to get better performance at the time
- Still: depressing fraction of peak on GPU compared to CPU

Node	Machine	Year	SNAP (Katom-steps/s)	Peak/node (Tflops)	Fraction-of-Peak (normalized)
IBM PowerPC	Mira (ANL)	2012	2.52	0.205	1.0
Intel SandyBridge	Chama (SNL)	2012	17.7	0.332	4.34
AMD CPU	Titan (ORNL)	2013	5.35	0.141	3.09
NVIDIA K20X	Titan (ORNL)	2013	2.60	1.31	0.161
Intel Haswell	Cori (NERSC)	2016	29.4	1.18	2.03
Intel KNL	Cori (NERSC)	2016	11.1	2.61	0.346
NVIDIA P100	Ride (SNL)	2016	21.8	5.30	0.335
Intel Broadwell	Serrano (SNL)	2017	25.4	1.21	1.71

No silver bullet

- Adjoint refactor: algorithmic redesign that reduced the computational complexity and memory footprint by large factor
- Flattened jagged multi-dimensional arrays: reduced memory use
- Major kernel refactor: Broke one large kernel into many smaller kernels, reordered loop structure
- Changed the memory data layout of an array between kernels via transpose operations
- **Refactored loop indices and data structures** to use complex numbers and multi-dimensional arrays instead of arrays of structs
- Refactored some kernels to avoid thread atomics and use of global memory
- Judiciously used Kokkos hierarchical parallelism and GPU shared memory
- **Fused** a few selected **kernels**, which helped eliminate intermediate data structures and reduced memory use
- Added an AoSoA memory data layout which enforced perfect coalescing and load balancing in one of the kernels
- **Symmetrized data layouts** of certain matrices, which reduced memory overhead and use of thread atomics on GPUs (also improved CPU performance)
- Large refactor of Wigner matrices + derivatives to **use AoSoA data layout**

[Gayatri et al, arXiv:2011.12875v1]

Vignette 1: loop structure matters

for(int	<pre>natom=0;</pre>	natom <num_< th=""><th>_atoms;</th><th>++natom)</th><th>)</th></num_<>	_atoms;	++natom))
			/		

// build neighbor-list for all atoms
for(int natom=0; natom<num atoms; ++natom)</pre>

There is a sweet spot: breaking things down too fine can hurt

Listing 1: SNAP code

compute_dB(); //dBlist(num_atoms,...)

for(int natom=0; natom<num_atoms; ++natom)
 for(int nbor=0; nbor<num_nbors; ++nbor)
 update_forces();</pre>

Listing 2: Refactored TestSNAP code

Ease register pressure, each kernel can be tuned separately Increased memory usage, code complexity

bu // coi

cor // for

Vignette 2: there is more than one way to write a loop

 $O(J^5 N_{nbor})$ storage for Z $O(J^3)$ force calculation O(J³) storage for Y

O(J) force calculation

Memory matters

- Adjoint refactor: algorithmic redesign that reduced the computational complexity and memory footprint by large factor
- Flattened jagged multi-dimensional arrays: reduced memory use
- Major kernel refactor: Broke one large kernel into many smaller kernels, reordered loop structure
- Changed the memory data layout of an array between kernels via transpose operations
- **Refactored loop indices and data structures** to use complex numbers and multi-dimensional arrays instead of arrays of structs
- Refactored some kernels to avoid thread atomics and use of global memory
- Judiciously used Kokkos hierarchical parallelism and GPU shared memory
- Fused a few selected kernels, which helped eliminate intermediate data structures and reduced memory use
- Added an AoSoA **memory data layout** which enforced perfect coalescing and load balancing in one of the kernels
- **Symmetrized data layouts** of certain matrices, which reduced memory overhead and use of thread atomics on GPUs (also improved CPU performance)
- Large refactor of Wigner matrices + derivatives to use AoSoA data layout

No silver bullet

Fig. 3: TestSNAP progress relative to baseline for 2J14 problem size on NVIDIA V100.

Some ideas are transferable, but...

- Optimization targeted NVIDIA/V100
- 26x performance improvement for V100
- Almost all optimization improved performance on AMD/MI250X also
- 24x for MI250X
- MI250X/V100 FLOPS = 2.4x
- MI250X/V100 SNAP = ~0.7x
- We lost over 3x performance/FLOPS, why?

The devil is in the details

Time is money

- New ML approaches for potentials are constantly being proposed
- We cannot afford to spend years optimizing each
- We either need to:
 - Become dramatically better at this
 - Down-select to a few forms that are worth investing in
 - Teach the machines to optimize themselves

Algorithmics are also important!

- Very low-level optimization are crucial
- Mathematics can certainly help here, but probably won't be the main focus on this program until new ideas are fleshed up and ready to be implemented (e.g., around the Hackathon)
- Perhaps of more immediate interest: high-level algorithmics choices also make a huge difference, especially for parallelization schemes: mathematics and domain knowledge are critical there

Communication required at every step

Each processor owns its domain

MD weak-scales

Figure 5: Weak scaling for amorphous carbon samples measured as MD performance vs node count. Sample sizes range from 373,248 atoms to 1,528,823,808 atoms and correspond to 373,248 atoms/node. Ideal scaling comparing to 1 and 64 nodes is indicated by dashed and dotted horizontal lines, respectively.

0.2

Sim

4.8

5300

0

- 5000 K

6

0 ò

Performance (Matom-steps/node-s)

For "small" systems, strongscaling breaks down.

"Max" simulation rate: ~10ns/day

as dashed lines. Perfect scaling in (b) would be a horizontal line (not shown).

Breakdown of strong-scaling

More compute ≠ longer simulations

10

0.1

0.01

10

Matom-steps/(nodes-s)

Communication becomes the bottleneck

0		

The prospect for MD at the exascale

4/5/23 25

Reaching long timescales

- How could we use exascale machines to reach long timescales?
- Parallelizing over **space** alone is not viable for small systems
- Can we parallelize over time instead?

Who needs long timescales anyway?

- For materials away from melting:
 - Fast vibrations/fluctuations (ps)
 - Slow conformational changes (ns-s)
- Short simulations are often not informative of long-time behavior
- This is bad for MD, but it is key for acceleration

Who needs long timescales anyway?

- Vibrational relaxation within state controlled by the curvature of V around the minimum
 - τ_{vib} ~ 1 ps
 - dt ~ 1 fs, r
 interesting

 $\tau_{esc} >> \tau_{vib} > dt$ whenever $\Delta E >> kT$

- Transition between states requires overcoming an energy barrier ∆E
 - $\tau_{esc} \sim \tau_{vib} \exp(\Delta E/kT)$

State-to-state dynamics

When interesting events are rare, you don't care precisely how boring the trajectory was in between

Goal is to generate a single *statistically correct* state-to-state trajectory

2

Can we parallelize over space time?

Parallelize over the present: try to generate the next escape event ASAP using many replicas

This can strong-scale scale if:

- Simulations are independent
- Pieces can be spliced accurately
- We can use all of the pieces we generated

Mathematicians to the rescue

- Key ideas were derived by Arthur Voter using arguments intuitive to physicists/chemists
- Turns out that "derived" has a different meaning for mathematicians...
- Working with Tony Lelièvre, Claude Le Bris, Mitch Luskin, we endeavored to clean things up. First meeting at IPAM about 13 years ago...
- Lead to a much more sophisticated understanding of the generality of the methods

State-to-state dynamics

Need to capture transition statistics:

- Distribution of first-escape times from W
- Distribution of first-escape points on dW

Key Concept: Quasi-stationary Distribution (QSD)

$$\nu(A) = \frac{\int_{W} \mathbb{P}(X_t^x \in A, t < T_W^x) \, d\nu}{\int_{W} \mathbb{P}(t < T_W^x) \, d\nu}$$

If X_0 is distributed according to QSD, then, conditionally on not having left W up to time t, X_t is still distributed according to QSD

Consider an ensemble of trajectories initialized somewhere in state W

Quasi-stationary distribution

Evolve that ensemble in time, removing any trajectory that escapes

Quasi-stationary distribution

Look at the distribution of whomever is left

Quasi-stationary distribution

That distribution eventually converges...

Quasi-stationary distribution

And no longer varies with time...

Quasi-stationary distribution

This limiting distribution is the QSD of state W

QSD for Langevin dynamics

In the following:

- Overdamped Langevin dynamics
- Absorbing boundary conditions on dW
- Generator has eigenvalues $0 > -\lambda_1 > -\lambda_2 \ge -\lambda_3 \dots$
- QSD is eigenfunction u₁(X) of generator corresponding to λ₁

Most of the following also applies to other dynamics, if:

- QSD exists
- QSD is unique
- Convergence to the QSD is fast

QSD for Langevin dynamics

$$rac{\partial
ho}{\partial t} = L
ho$$
 on W
 $ho = 0$ on ∂W

With
$$L = -\nabla V \cdot \nabla + \beta^{-1} \Delta$$

Then:

$$\rho(X,t) = \sum_{k} e^{-\lambda_{k}t} c_{k}^{0} u_{k}(X)$$

For $t > (\lambda_2 - \lambda_1)^{-1}$ and conditional on not having escaped,

$$\hat{\rho}(X,t) \cong u_1(X) + O(e^{-(\lambda_2 - \lambda_1)t})$$

4/5/23 41

Properties of the QSD

• The QSD of *W* is **unique**

From the QSD:

• Convergence to the QSD is **exponential** with rate $(\lambda_2 - \lambda_1)$

• First escape time is random and exponentially distributed with rate λ_1

• First escape point is random and uncorrelated with escape time

This is true for any state definition!

Does not depend on history before reaching the QSD

Overdamped Langevin: [Le Bris, Lelievre, Luskin, and DP, MCMA 18, 119 (2012)]

Langevin: [Lelievre, Ramil, Reygner, arXiv:2101.11999]

Rate of memory loss

After only a short time in the state, the next escape time/location distribution is a complex function of the entry point

After spending $t_c > (\lambda_2 - \lambda_1)^{-1}$ in W, the next escape from W becomes *Markovian**

All trajectories that spent $t_c > (\lambda_1 - \lambda_2)^{-1}$ in W are statistically equivalent with respect to how and when they will leave W*

* Up to an exponentially small error in t_c

A valid state-to-state trajectory can be assembled by splicing *independent* segments end-to-end*

Exactly what we need for strong-scaling!

Tra

* Up to an exponentially small error in t_c

Parallel Trajectory Splicing (ParSplice)

Parallelizing over the past with bookkeeping

Parallelize over the past: store work done but not used for (potential) future use.

Precomputation/caching is a common strategy

V

rials

Parallelize over the future with speculation

Statistical oracle

Statistical oracle

We use this model to speculate where the

Parallelize over the future: allocate work based on where you think the system will be in the future

Speculation is a common strategy at the instruction level (branch prediction), but not so much the task level More on this in WS 1

Ramaknamalan, Dr., arxiv.2010.11732, for use of moder of resource allocation

ot

Shape Fluctuations in Nanoparticles

- Metallic nanoparticles (150-300 atoms)
- Between 3,600 and 36,000 cores
- Long simulations: up to 4 ms
- Many transitions: up to ~100M per run
- Many states: up to ~1M per run

7)								
	Di	190	800	1,350,168,728	6,630,131	303,572		
	rt		900	348,662,895	688,027	93,346	$fcc \Rightarrow ico$	
		231	900	1,986,709,692	4,395,285	252,153		
			1000	92,171,602	955,401	42,383		
			1100	24,608,419	914,005	110,290		
		146	550	301,832,137	3,942,180	237,293	$fcc \Rightarrow ico$	
		170	500	4,156,073,707	6,160,286	240,594		
			550	23,712,165	656,202	241,491	fcc \Leftrightarrow 5-fold caps \Rightarrow ico	
			600	21,690,608	1,039,065	144,713	$fcc \Rightarrow deca \Rightarrow ico$ $deca \Rightarrow fcc \Rightarrow ico$	
	Cu	190	500	489,113,720	93,863,998	368,356		
			600	91,701,072	9,863,950	847,016		
		231	500	438,302,547	49,409	12,817		
			550	66,578,597	4,623,717	262,785		
			600	85,056,822	184,737	169,217		
			700	832,190	237,840	89,356		
		146	600	237,233,817	22,910,983	119,489	$fcc \Rightarrow ico$	
	Au	190	600	521,506,615	10,198,278	85,875	fcc \Leftrightarrow 5-fold caps	
		231	800	774,813,889	795,678	159,743	$fcc \Rightarrow 5$ -fold caps \Rightarrow helication	
			500	122,897,307	2,558,937	71,357		
		146	550	21,613,546	1,988,646	136,297	fcc ⇔ off-centered 5-fold axis	
		170	500	841,036,559	1,529,663	258,281		
	Ag	170	600	128,965,726	3,961,585	616,430		
		190	400	1,651,496,973	2,416,400	60,802		
			500	109,165,848	1,414,790	154,083		
			600	30,620,753	1,091,307	147,863		
		231	500	20,445,451	946,623	92,818		

Number of

Transitions

162,965

240,306

1,937,031

Number

of States

6,246

147,377

117,680

Description

 $fcc \Rightarrow deca \Rightarrow ico$

fcc \Leftrightarrow 5-fold caps \Rightarrow ico

Trajectory

Length (ps)

70,257,528

672,396,434

20,373,095

Number

of Atoms

146

170

Element

T (K)

900

800

900

Benchmark results: An Easy Case

Rare events

T-SUUR, LAINE GHZZIY, 4H TUHS								
N _{cores}	Trajectory length	Generated segment	#Transitions	#States	<t<sub>trans/N t_c></t<sub>	<r></r>	Simulation	
	(ps)	time (ps)					rate	
							(μs/hour)	
9,000	556,093,988	556,539,980	4,614	28	13.: 9	166	139	
18,000	1,315,941,923	1,346,516,503	24,610	64	2.97	384	333	
27,000	2,209,432,238	2,214,868,608	13,479	47	4. 5	294	552	
36,000	2,291,027,808	2,318,254,470	50,258	60	1.26	909	592	
			-			-		

T=300K LANI Grizzly 4h runs

99% of generated segments were spliced

Peak simulation rate: 10 μs/min, 10 ms/day

Parallelizing over space

- The efficiency of ParSplice is limited by the **global** rate at which events occur: **the rarer the better**
- This limits performance on large systems where the exit rate scales with N
- However, most transitions are spatially **localized.** Can we use this to make ParSplice sensitive only to the **local** event rate?

Spatial Parallelization Strategy

1. Divide the simulation cell into a grid of sub-domains.

2. Extract and prepare the sub-domains

5. When a transition occurs, re-synchronize

neighboring sub-domains

LOS Alamos

Domain synchronization

G

				T
	₿⊜	C		
	⊳E ⊙ [©] ⊙	F So		
G	° H ⊙ °			
	B	C		
D · · · ·	È COC	F		
G	H			
A	B 00000	°C ⊗		Δ
D	E 800	€ 000000000000000000000000000000000000	D	
G	S H SSH	g r : 358	G	H 0

This type of domain decomposition is strong-scalable because synchronization is *not* required at *every timesteps,* but only at *every (rare) event.*

Applicable to many different methods

[Shim and Amar, Phys. Rev. B 71, 115436 (2005)]

event

How to run this at scale? ParSplice as a workflow

- Short tasks (~sec)
- Limited scalability per task (~1 GPU - a few nodes)
- Inter-task dependencies
- *Just-in-time* task identification
- Large computing resources
- Many, short, tightly-coupled tasks

- Scheduling with queuing system
- File-based communication
- Synchronous communication

- Internal task management
- File-less API-based engines
- Asynchronous communication and I/O

High-level model

- Top-down scheduling of complex workflows on large heterogeneous hardware is hard
- EXAALT model: let hardware availability drive execution
- EXAALT is a **PULL** model: the framework **requests tasks** from the workflow to maintain high hardware usage
- The workflow should be able to identify new tasks at any time

Under the hood of EXAALT

Task management Data management Task execution

Design goals/choices

- Pull model: the hardware is telling you what it wants
- No worker should ever be idle:
 - Communication/data motion should occur in the background
- Everything is asynchronous/non-blocking:
 - Communication between WM and TM
 - Access to datastore
- Flat consumer-producer model not scalable: use TMs as middle-men
 - Maintain local task queues and fulfills data dependencies
 - TM pre-emptively requests more tasks before running out
 - Aggregates small messages into larger ones
 - TMs can be hardware-specific

Support for heterogeneous hardware

- MPI ranks assigned to each TM at launch
- Can tie specific hardware to specific TM: "GPU" TM and "CPU" TM and route tasks accordingly
- Can **dynamically** adjust granularity of workers under each TM.

EXAALT

Pros:

- Very scalable!
- Simple API
- Python bindings
- Growing engine ecosystem
 - Native python code
 - MD: LAMMPS
 - QM: NWChem, Quantum Expresso, DFT-FE, LATTE
 - KMC: SPARRKS
 - DDD: ModeLIB (DDD) [in development]
 - Support for MoISSI/MDI plugin model

Cons:

- · Not designed for all workloads
- Early stage of development

MD intake rate EAM potential Peak: 6x10¹⁰ atom-step/s

FIG 4: Scaling of ParSplice for a 147-atoms nanoparticle using an EAM potential. Note that the line is a visual guide to assess more than the second second

Mapping ParSplice unto Frontier

- Simulation executed using EXAALT on 7000 Frontier nodes (75% of machine)
- ~1% of resources for management
- ~99% of resources to simulation
- Infrastructure re-assigns MD tasks to workers every ~7 seconds
- 81 sub-domains
- ~170 instances of each sub-domain execute concurrently
- 4 GPU dies for every instance

72 nodes for data and task management 6928 nodes for MD simulations

How much is too much?

- GPUs are becoming so powerful that large numbers of atoms are needed to saturate performance
- For expensive potentials (e.g., SNAP), around ~10K atoms per GPU
- For cheap potentials (e.g., EAM), ~10M atoms per GPU

GPUs are too powerful!

- Good news for expensive potentials
 - Parallel MD: >300M atoms for SNAP
 - ParSplice: ~10K atoms per replica, 50% of peak performance if running 1K atom
- **Bad news** for cheap potentials.
 - Parallel MD: >300B atoms for EAM
 - ParSplice: ~30M atoms per replica, 1% of peak performance if running 1K atom
- It is possible to oversubscribe GPUs, but only limited performance improvement with out-the-box methods
- Bad news for anything that doesn't require expensive potentials and/or millions of atoms!
 - 90% of what people currently do with MD

GPUs are too powerful!

- Solution would be to enable MD codes to run many systems concurrently in a seamless fashion
- A single MD timestep would propagate **many systems** at once
- Proof of concept (Lubbers and Mehta):
 - Concatenate all systems into a single list of atoms
 - Create a combined neighbors list, with potentially different simulation cell for each system
 - Compute forces all at once on the GPU: atoms from different systems don't see each other
 - Integrate all systems in lockstep

One would need to expose this capability in a way that is transparent to users and allow for the reuse of existing algorithms. Interesting **software engineering** problem!

What do we want out of exascale

What do we get out of exascale with standard methods

Conclusion/Outlook

- Large computers offers unprecedented opportunities for atomistic simulations, but also challenges
- The technology is pushing simulations towards more expensive models and larger simulations
- This is now true even at the single node level!
- Significant **methodological and software evolution** will be required to avoid the simulation space **moving away from scientifically relevant regimes**

