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• A case study of MD on exascale computers with the SNAP potential
− Porting SNAP to GPUs
− Parallel MD using SNAP: weak and strong scaling

• The timescale problem of MD
− Parallelizing over time instead of space with Parallel Trajectory Splicing

• Accuracy tradeoffs
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ABSTRACT
Billion atom molecular dynamics (MD) using quantum-accurate
machine-learning Spectral Neighbor Analysis Potential (SNAP) ob-
served long-sought high pressure BC8 phase of carbon at extreme
pressure (12 Mbar) and temperature (5,000 K). 24-hour, 4650 node
production simulation on OLCF Summit demonstrated an unprece-
dented scaling and unmatched real-world performance of SNAP
MD while sampling 1 nanosecond of physical time. E�cient im-
plementation of SNAP force kernel in LAMMPS using the Kokkos
CUDA backend on NVIDIA GPUs combined with excellent strong
scaling (better than 97% parallel e�ciency) enabled a peak comput-
ing rate of 50.0 PFLOPs (24.9% of theoretical peak) for a 20 billion
atom MD simulation on the full Summit machine (27,900 GPUs).
The peak MD performance of 6.21 Matom-steps/node-s is 22.9 times
greater than a previous record for quantum-accurate MD. Near per-
fect weak scaling of SNAP MD highlights its excellent potential
to advance the frontier of quantum-accurate MD to trillion atom
simulations on upcoming exascale platforms.

KEYWORDS
molecular dynamics, machine-learning interatomic potentials, car-
bon, extreme conditions

1 JUSTIFICATION FOR ACM GORDON BELL
PRIZE

Peak 50.0 PFLOPS rate in quantum-accurate 20 billion atommolecu-
lar dynamics simulation, 6.21Matom-steps/node-sMD performance
- 22.9x improvement over previous record for quantum-accurate
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MD. Sustained real-world simulation of 1 billion carbon atoms for
1 nanosecond of physical time on 4,650 nodes of Summit during 24
hours of wall clock time.

2 PERFORMANCE ATTRIBUTES
Performance Attribute Our Submission
Category of achievement Time to solution, scalability
Type of method used SNAP/Kokkos via LAMMPS MD
Results reported on basis of Whole application including I/O
Precision reported Double precision
System scale Measured on full system
Measurement mechanism Timers, FLOP count

3 OVERVIEW OF THE PROBLEM: CLASSICAL
SIMULATIONS OF MATERIALS AT
EXTREME CONDITIONS WITH QUANTUM
ACCURACY

Recent exciting discoveries of thousands of exoplanets beyond our
solar system has advanced the research on planetary materials at
extreme pressures and temperatures to the forefront of physical
sciences [1, 2]. A fundamental requirement for understanding the
composition and the structure of exoplanetary interiors is an ac-
curate knowledge of crystal structure, high pressure-temperature
(PT) equations of state (EOS) and melting behavior of key geologi-
cal materials. The advent of powerful laser [3] and pulsed-power
[4] compressions, and in-situ X-ray free electron laser di�raction
experiments [5] have made it possible to recreate and probe the
high-PT environment of exoplanetary cores in the laboratory. How-
ever, a lack of theoretical and simulation guidance of experimental
e�orts, including comprehensive atomic-scale understanding of the
complex physics of a material’s response to extreme PT conditions,
substantially limits the science return from these sophisticated but
very expensive experiments. Such meaningful predictions require
billion-atom MD simulations at experimental nanosecond and mi-
crometer time and length scales.

Corrected Version of Record. V.1.1. Published December 14, 2021.
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The SNAP method

”Fourier” coefficients of the local atomic density.
J is the order of expansion.

Symmetrized coefficients (rotation invariant)

Energy is a sum of per-atom energies, which are 
assumed linear in B. NB~J3

Forces obtained via chain rule

the application developers to restructure their code to exploit
the massive increase in computational power via hardware
tailored to exploiting parallelism. The threads on a GPU are
organized in a hierarchical fashion. For example on NVIDIA
GPUs, O(100� 1000) threads are grouped as a thread block
and share resources among themselves. Similarly on Intel’s
Gen9 GPU architectures, the threads are divided into thread-
groups and threads. Application developers need to design a
parallel implementation that can distribute work effectively
across both levels of the hierarchy.

Additionally, GPUs have their own memory space and
memory hierarchies, increasing the complexity of the appli-
cation. On GPUs, threads performing fully coalesced memory
reads (i.e., access of consecutive memory locations) minimize
memory transactions and thus minimize latencies. Such a
memory access pattern should be avoided on CPUs since
separate threads accessing memory locations in the same cache
line results in false sharing and thrashing.

Compared to CPUs, modern GPUs have a very large ratio
of compute throughput to memory bandwidth, also referred to
as a high arithmetic intensity (AI). Optimally written kernels
on CPUs often become memory bound on GPUs. In these
scenarios new strategies which reduce reads are invaluable:
kernel fusion and even redundant computation can be net-
beneficial if such optimizations improve the AI of a kernel [4].

Spectral Neighbor Analysis Potential (SNAP) is a compu-
tationally intensive interatomic potential in the LAMMPS [5]
molecular dynamics software package. With the introduction
of new CPU and GPU architectures, SNAP’s performance
relative to the peak flop rating of the architecture showed
a downward trend on CPUs and low compute utilization
on GPUs. In this paper we describe our efforts to improve
the performance of SNAP by optimizing on all the points
mentioned above. We explain how we overcame performance
deterrents in SNAP to gain a ⇠22⇥ performance increase over
the existing GPU implementation.

II. THE SNAP FORCE KERNEL

Interatomic potentials (IAPs) are a critical part of any
classical molecular dynamics (MD) simulation. The use of a
classical IAP implies that accuracy-limiting approximations
are acceptable. The most important assumptions shared by
many IAPs are as follows. First, all-electron mediated inter-
actions of atoms can be described by the Born-Oppenheimer
potential energy surface. Second, the force on a given atom
does not depend on the positions of atoms beyond a certain
distance. This latter constraint permits the use of efficient
algorithms that are linear scaling in the number of atoms,
as well as ensuring that large problems can be efficiently
distributed over leadership computing platforms. Many IAPs
capture local interactions using approximations inspired by
known physical and chemical phenomena, such as chemical
bonding, electrostatic screening, local coordination, etc. The
development of new IAPs follows a decades long trend where
much of the effort has focused on more accurate, but also more
complex and computationally expensive IAPs [6].

A recent branch of this development combines strategies
of MD and data science, producing machine-learned (ML)
IAPs. Machine-learned IAPs translate the atomic neighbor-
hood into a set of generalized descriptors. These descriptors
are independently weighted to match a database of higher
fidelity results (e.g. ab initio quantum electronic structure
calculations). A variety of different descriptors which describe
the local environment of an atom exist in the literature [7],
such as symmetry functions [8], bispectrum components [9],
and the Coulomb matrix [10]. The Spectral Neighbor Analysis
Potential (SNAP) [11] utilizes a basis expansion of bispectrum
components as a descriptor of atomic environments. Drautz
has recently shown that many of these descriptors, including
the SNAP bispectrum, share a common mathematical founda-
tion in the atomic cluster expansion for the Born-Oppenheimer
potential energy function [12].

A. Mathematical Structure of SNAP

In the SNAP potential energy model, the total energy of
a configuration of atoms is composed as a sum of atomic
energies. For each atom i, its energy Ei is assumed to be a
function of the positions of neighbor atoms out to some finite
distance Rcut. The positions of neighbor atoms are represented
as an atomic density function defined in the 3D ball of radius
Rcut. In SNAP, this compact domain is mapped to the unit
3-sphere. Expanding the neighbor density as a Fourier series,
we obtain the following Fourier coefficients

Uj =
X

rik<Rcut

fc(rik)uj(✓0, ✓,�) (1)

where Uj are the Fourier expansion coefficients and uj are
hyperspherical harmonics on the unit 3-sphere. Both Uj and
uj are rank (2j+1) complex square matrices, where the index
j takes half-integer values {0, 1

2 , 1,
3
2 , . . .}. The 3D vector

rik = rk � ri is the position of neighbor atom k relative
to the central atom i and is mapped to a point on the 3-sphere
given by the three polar coordinates ✓0, ✓, and �. The sum
is over all neighbor atoms within the cutoff. The switching
function fc(r) ensures that contributions go smoothly to zero
as r approaches Rcut. For conciseness of presentation we omit
density weighting factors and self-contributions which require
negligible computation but are important for constructing
physically realistic potentials. Full details are given in [11].

The matrices Uj are complex-valued and are not directly
useful as descriptors because they are not invariant under
rotation of the polar coordinate frame. However, the following
scalar triple products of matrices are real-valued and invariant
under rotation [9]:

Bj1j2j = Uj1 ⌦
j
j1j2

Uj2 : U
⇤
j (2)

= Zj
j1j2

: U⇤
j (3)

The symbol ⌦
j
j1j2

indicates a Clebsch-Gordan product of
matrices of rank 2j1+1 and 2j2+1 yielding a matrix of rank
2j + 1, which we define here to be Zj

j1j2
. The computational

complexity of this product is O(j4). The : symbol indicates
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the element-wise scalar product of two matrices of equal rank,
an operation of computational complexity O(j2). The resultant
real scalar bispectrum components Bj1j2j characterize the
strength of density correlations at three points on the 3-sphere.
The lowest-order components describe the coarsest features of
the density function, while higher-order components reflect
finer detail. The bispectrum components defined here have
been shown to be closely related to the 4-body basis functions
of the Atomic Cluster Expansion introduced by Drautz [12]. In
SNAP, we assume that the local energy can be expressed as
a linear function of all the distinct bispectrum components
formed from matrices Uj up to some maximum degree
J . We enumerate the bispectrum components by restricting
0  2j2  2j1  2j  2J , so that the number of unique
bispectrum components scales as O(J3). The factor of 2 is a
convenient convention to avoid half-integers.

For a particular choice of J , we can list the NB total bis-
pectrum components in some arbitrary order as B1, . . . , BNB ,
atom index i implicit, and express the energy as a linear
function of these

Ei(B) =
NBX

l=1

�lBl (4)

where �l are the linear SNAP coefficients. These coefficients
are trained via ML methods to define the SNAP energy model
for a particular material. The force on each atom k is obtained
by summing over all neighbor atoms i and all bispectrum
components

Fk = �

NX

i=1

NBX

l=1

�l
@Bl

@rk
(5)

As described in Ref. 11, the partial derivative of Bl w.r.t.
rk is a sum of three terms, each involving a neighbor-atom
independent and thus precomputable Z and a neighbor-atom
dependent derivative of U,

@Bj1j2j

@rk
= Zj

j1j2
:
@U⇤

j

@rk
(6)

+Zj1
jj2

:
@U⇤

j1

@rk
+ Zj2

jj1
:
@U⇤

j2

@rk

This formulation prescribes the structure of an algorithm for
computing forces from the SNAP potential. We present this in
Listing 1.

B. Initial SNAP Pseudocode
Listing 1 shows the pseudocode of SNAP implementation

by correlating the routines with the equations shown above.
Initially the build neighborlist routine generates a list of
neighbor atoms within the cutoff distance Rcut. Next, in the
compute U routine, we calculate the expansion coefficients
Uj from (1) for each atom and neighbor pair and store
them in Ulist. The sum of these coefficients over neigh-
bors is stored in Ulisttot. Given Ulisttot, in the compute Z
routine we calculate the Clebsch-Gordan product based on
(2) and store the results of Zj

j1j2
in the Zlist structure,

a 5-dimensional array of complex double precision values.

The computational complexity per atom of compute U and
compute Z are O(J3Nnbor) and O(J7), respectively. We
next enter a nested loop over neighbors. In the compute dU
routine we compute dU , the derivative of U w.r.t. the position
of one neighbor atom rk, storing the results in the dUlist
data structure. Subsequently in the routine compute dB we
compute the partial derivatives of Bl shown in (6), storing the
results in dBlist. The computational complexity per neighbor
atom of compute dU and compute dB are O(J3) and O(J5),
respectively. Last, in the update forces routine, we compute
the force contribution due to the neighbor as shown in (5).
This final operation has a computational complexity per atom-
neighbor pair of O(J3). We emphasize that as formulated,
the order of the functions cannot be changed because the
outputs from one routine pipe into the following routine.

for(int natom=0; natom<num_atoms; ++natom)

{

// build neighbor-list for each atom

build_neighborlist();

// compute atom specific coefficients

compute_U(); //Ulist and Ulisttot

compute_Z(); //Zlist

// For each (atom,neighbor) pair

for(int nbor=0; nbor<num_nbors; ++nbor)

{

compute_dU(); //dUlist

compute_dB(); //dBlist

update_forces(); //force-array

}

}

Listing 1: SNAP code

C. GPU implementation of SNAP

The original GPU implementation of SNAP used the
Kokkos [2] framework to distribute the work described in
Listing 1 across the threads of a GPU. This implementation
was based on prior work by Moore and Trott [13], which
in turn was based on an earlier CUDA implementation of
SNAP [14]. The loop over atoms on line 2 of listing 1 is
mapped to a loop over Kokkos teams, which are an abstraction
of CUDA thread blocks. Further parallelism over neighbors,
line 12 of listing 1, and over bispectrum components, implicit
in compute [U,Z,dU,dB], is mapped to Kokkos’s hierarchical
parallelism. This includes the TeamThread abstraction, paral-
lelism over Kokkos “threads”, and the ThreadVector abstrac-
tion, parallelism over “vector lanes”. In the case of GPUs these
abstractions can map to warps and threads within warps (a
“vector width” of 32), respectively.

Table I lists the performance of these initial implementations
of the SNAP potential across several HPC architectures. The
problem sizes chosen for these comparisons comprised of 2000
atoms with 26 neighbors per atom and 2J = 8. The Kokkos
version of SNAP was used for the GPU benchmarks; the
original (non-threaded) SNAP version was used for all others.

Performance speed for classical MD simulations is often
reported in units of Katom-timesteps per second. For example,
given a 2000 atom system, the speed of 29.4 Katom-steps/s
on Intel Haswell implies that the simulation rate was ⇠15 MD
timesteps per second. The peak/node column is the nominal
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data structure. Subsequently in the routine compute dB we
compute the partial derivatives of Bl shown in (6), storing the
results in dBlist. The computational complexity per neighbor
atom of compute dU and compute dB are O(J3) and O(J5),
respectively. Last, in the update forces routine, we compute
the force contribution due to the neighbor as shown in (5).
This final operation has a computational complexity per atom-
neighbor pair of O(J3). We emphasize that as formulated,
the order of the functions cannot be changed because the
outputs from one routine pipe into the following routine.

for(int natom=0; natom<num_atoms; ++natom)

{

// build neighbor-list for each atom

build_neighborlist();

// compute atom specific coefficients

compute_U(); //Ulist and Ulisttot

compute_Z(); //Zlist

// For each (atom,neighbor) pair

for(int nbor=0; nbor<num_nbors; ++nbor)

{

compute_dU(); //dUlist

compute_dB(); //dBlist

update_forces(); //force-array

}

}

Listing 1: SNAP code

C. GPU implementation of SNAP

The original GPU implementation of SNAP used the
Kokkos [2] framework to distribute the work described in
Listing 1 across the threads of a GPU. This implementation
was based on prior work by Moore and Trott [13], which
in turn was based on an earlier CUDA implementation of
SNAP [14]. The loop over atoms on line 2 of listing 1 is
mapped to a loop over Kokkos teams, which are an abstraction
of CUDA thread blocks. Further parallelism over neighbors,
line 12 of listing 1, and over bispectrum components, implicit
in compute [U,Z,dU,dB], is mapped to Kokkos’s hierarchical
parallelism. This includes the TeamThread abstraction, paral-
lelism over Kokkos “threads”, and the ThreadVector abstrac-
tion, parallelism over “vector lanes”. In the case of GPUs these
abstractions can map to warps and threads within warps (a
“vector width” of 32), respectively.

Table I lists the performance of these initial implementations
of the SNAP potential across several HPC architectures. The
problem sizes chosen for these comparisons comprised of 2000
atoms with 26 neighbors per atom and 2J = 8. The Kokkos
version of SNAP was used for the GPU benchmarks; the
original (non-threaded) SNAP version was used for all others.

Performance speed for classical MD simulations is often
reported in units of Katom-timesteps per second. For example,
given a 2000 atom system, the speed of 29.4 Katom-steps/s
on Intel Haswell implies that the simulation rate was ⇠15 MD
timesteps per second. The peak/node column is the nominal

the element-wise scalar product of two matrices of equal rank,
an operation of computational complexity O(j2). The resultant
real scalar bispectrum components Bj1j2j characterize the
strength of density correlations at three points on the 3-sphere.
The lowest-order components describe the coarsest features of
the density function, while higher-order components reflect
finer detail. The bispectrum components defined here have
been shown to be closely related to the 4-body basis functions
of the Atomic Cluster Expansion introduced by Drautz [12]. In
SNAP, we assume that the local energy can be expressed as
a linear function of all the distinct bispectrum components
formed from matrices Uj up to some maximum degree
J . We enumerate the bispectrum components by restricting
0  2j2  2j1  2j  2J , so that the number of unique
bispectrum components scales as O(J3). The factor of 2 is a
convenient convention to avoid half-integers.

For a particular choice of J , we can list the NB total bis-
pectrum components in some arbitrary order as B1, . . . , BNB ,
atom index i implicit, and express the energy as a linear
function of these

Ei(B) =
NBX

l=1

�lBl (4)

where �l are the linear SNAP coefficients. These coefficients
are trained via ML methods to define the SNAP energy model
for a particular material. The force on each atom k is obtained
by summing over all neighbor atoms i and all bispectrum
components
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As described in Ref. 11, the partial derivative of Bl w.r.t.
rk is a sum of three terms, each involving a neighbor-atom
independent and thus precomputable Z and a neighbor-atom
dependent derivative of U,
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This formulation prescribes the structure of an algorithm for
computing forces from the SNAP potential. We present this in
Listing 1.

B. Initial SNAP Pseudocode
Listing 1 shows the pseudocode of SNAP implementation

by correlating the routines with the equations shown above.
Initially the build neighborlist routine generates a list of
neighbor atoms within the cutoff distance Rcut. Next, in the
compute U routine, we calculate the expansion coefficients
Uj from (1) for each atom and neighbor pair and store
them in Ulist. The sum of these coefficients over neigh-
bors is stored in Ulisttot. Given Ulisttot, in the compute Z
routine we calculate the Clebsch-Gordan product based on
(2) and store the results of Zj

j1j2
in the Zlist structure,

a 5-dimensional array of complex double precision values.

The computational complexity per atom of compute U and
compute Z are O(J3Nnbor) and O(J7), respectively. We
next enter a nested loop over neighbors. In the compute dU
routine we compute dU , the derivative of U w.r.t. the position
of one neighbor atom rk, storing the results in the dUlist
data structure. Subsequently in the routine compute dB we
compute the partial derivatives of Bl shown in (6), storing the
results in dBlist. The computational complexity per neighbor
atom of compute dU and compute dB are O(J3) and O(J5),
respectively. Last, in the update forces routine, we compute
the force contribution due to the neighbor as shown in (5).
This final operation has a computational complexity per atom-
neighbor pair of O(J3). We emphasize that as formulated,
the order of the functions cannot be changed because the
outputs from one routine pipe into the following routine.

for(int natom=0; natom<num_atoms; ++natom)

{

// build neighbor-list for each atom

build_neighborlist();

// compute atom specific coefficients

compute_U(); //Ulist and Ulisttot

compute_Z(); //Zlist

// For each (atom,neighbor) pair

for(int nbor=0; nbor<num_nbors; ++nbor)

{

compute_dU(); //dUlist

compute_dB(); //dBlist

update_forces(); //force-array

}

}

Listing 1: SNAP code

C. GPU implementation of SNAP

The original GPU implementation of SNAP used the
Kokkos [2] framework to distribute the work described in
Listing 1 across the threads of a GPU. This implementation
was based on prior work by Moore and Trott [13], which
in turn was based on an earlier CUDA implementation of
SNAP [14]. The loop over atoms on line 2 of listing 1 is
mapped to a loop over Kokkos teams, which are an abstraction
of CUDA thread blocks. Further parallelism over neighbors,
line 12 of listing 1, and over bispectrum components, implicit
in compute [U,Z,dU,dB], is mapped to Kokkos’s hierarchical
parallelism. This includes the TeamThread abstraction, paral-
lelism over Kokkos “threads”, and the ThreadVector abstrac-
tion, parallelism over “vector lanes”. In the case of GPUs these
abstractions can map to warps and threads within warps (a
“vector width” of 32), respectively.

Table I lists the performance of these initial implementations
of the SNAP potential across several HPC architectures. The
problem sizes chosen for these comparisons comprised of 2000
atoms with 26 neighbors per atom and 2J = 8. The Kokkos
version of SNAP was used for the GPU benchmarks; the
original (non-threaded) SNAP version was used for all others.

Performance speed for classical MD simulations is often
reported in units of Katom-timesteps per second. For example,
given a 2000 atom system, the speed of 29.4 Katom-steps/s
on Intel Haswell implies that the simulation rate was ⇠15 MD
timesteps per second. The peak/node column is the nominal
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the element-wise scalar product of two matrices of equal rank,
an operation of computational complexity O(j2). The resultant
real scalar bispectrum components Bj1j2j characterize the
strength of density correlations at three points on the 3-sphere.
The lowest-order components describe the coarsest features of
the density function, while higher-order components reflect
finer detail. The bispectrum components defined here have
been shown to be closely related to the 4-body basis functions
of the Atomic Cluster Expansion introduced by Drautz [12]. In
SNAP, we assume that the local energy can be expressed as
a linear function of all the distinct bispectrum components
formed from matrices Uj up to some maximum degree
J . We enumerate the bispectrum components by restricting
0  2j2  2j1  2j  2J , so that the number of unique
bispectrum components scales as O(J3). The factor of 2 is a
convenient convention to avoid half-integers.

For a particular choice of J , we can list the NB total bis-
pectrum components in some arbitrary order as B1, . . . , BNB ,
atom index i implicit, and express the energy as a linear
function of these

Ei(B) =
NBX

l=1

�lBl (4)

where �l are the linear SNAP coefficients. These coefficients
are trained via ML methods to define the SNAP energy model
for a particular material. The force on each atom k is obtained
by summing over all neighbor atoms i and all bispectrum
components

Fk = �
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As described in Ref. 11, the partial derivative of Bl w.r.t.
rk is a sum of three terms, each involving a neighbor-atom
independent and thus precomputable Z and a neighbor-atom
dependent derivative of U,
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This formulation prescribes the structure of an algorithm for
computing forces from the SNAP potential. We present this in
Listing 1.

B. Initial SNAP Pseudocode
Listing 1 shows the pseudocode of SNAP implementation

by correlating the routines with the equations shown above.
Initially the build neighborlist routine generates a list of
neighbor atoms within the cutoff distance Rcut. Next, in the
compute U routine, we calculate the expansion coefficients
Uj from (1) for each atom and neighbor pair and store
them in Ulist. The sum of these coefficients over neigh-
bors is stored in Ulisttot. Given Ulisttot, in the compute Z
routine we calculate the Clebsch-Gordan product based on
(2) and store the results of Zj

j1j2
in the Zlist structure,

a 5-dimensional array of complex double precision values.

The computational complexity per atom of compute U and
compute Z are O(J3Nnbor) and O(J7), respectively. We
next enter a nested loop over neighbors. In the compute dU
routine we compute dU , the derivative of U w.r.t. the position
of one neighbor atom rk, storing the results in the dUlist
data structure. Subsequently in the routine compute dB we
compute the partial derivatives of Bl shown in (6), storing the
results in dBlist. The computational complexity per neighbor
atom of compute dU and compute dB are O(J3) and O(J5),
respectively. Last, in the update forces routine, we compute
the force contribution due to the neighbor as shown in (5).
This final operation has a computational complexity per atom-
neighbor pair of O(J3). We emphasize that as formulated,
the order of the functions cannot be changed because the
outputs from one routine pipe into the following routine.

for(int natom=0; natom<num_atoms; ++natom)

{

// build neighbor-list for each atom

build_neighborlist();

// compute atom specific coefficients

compute_U(); //Ulist and Ulisttot

compute_Z(); //Zlist

// For each (atom,neighbor) pair

for(int nbor=0; nbor<num_nbors; ++nbor)

{

compute_dU(); //dUlist

compute_dB(); //dBlist

update_forces(); //force-array

}

}

Listing 1: SNAP code

C. GPU implementation of SNAP

The original GPU implementation of SNAP used the
Kokkos [2] framework to distribute the work described in
Listing 1 across the threads of a GPU. This implementation
was based on prior work by Moore and Trott [13], which
in turn was based on an earlier CUDA implementation of
SNAP [14]. The loop over atoms on line 2 of listing 1 is
mapped to a loop over Kokkos teams, which are an abstraction
of CUDA thread blocks. Further parallelism over neighbors,
line 12 of listing 1, and over bispectrum components, implicit
in compute [U,Z,dU,dB], is mapped to Kokkos’s hierarchical
parallelism. This includes the TeamThread abstraction, paral-
lelism over Kokkos “threads”, and the ThreadVector abstrac-
tion, parallelism over “vector lanes”. In the case of GPUs these
abstractions can map to warps and threads within warps (a
“vector width” of 32), respectively.

Table I lists the performance of these initial implementations
of the SNAP potential across several HPC architectures. The
problem sizes chosen for these comparisons comprised of 2000
atoms with 26 neighbors per atom and 2J = 8. The Kokkos
version of SNAP was used for the GPU benchmarks; the
original (non-threaded) SNAP version was used for all others.

Performance speed for classical MD simulations is often
reported in units of Katom-timesteps per second. For example,
given a 2000 atom system, the speed of 29.4 Katom-steps/s
on Intel Haswell implies that the simulation rate was ⇠15 MD
timesteps per second. The peak/node column is the nominal
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the application developers to restructure their code to exploit
the massive increase in computational power via hardware
tailored to exploiting parallelism. The threads on a GPU are
organized in a hierarchical fashion. For example on NVIDIA
GPUs, O(100� 1000) threads are grouped as a thread block
and share resources among themselves. Similarly on Intel’s
Gen9 GPU architectures, the threads are divided into thread-
groups and threads. Application developers need to design a
parallel implementation that can distribute work effectively
across both levels of the hierarchy.

Additionally, GPUs have their own memory space and
memory hierarchies, increasing the complexity of the appli-
cation. On GPUs, threads performing fully coalesced memory
reads (i.e., access of consecutive memory locations) minimize
memory transactions and thus minimize latencies. Such a
memory access pattern should be avoided on CPUs since
separate threads accessing memory locations in the same cache
line results in false sharing and thrashing.

Compared to CPUs, modern GPUs have a very large ratio
of compute throughput to memory bandwidth, also referred to
as a high arithmetic intensity (AI). Optimally written kernels
on CPUs often become memory bound on GPUs. In these
scenarios new strategies which reduce reads are invaluable:
kernel fusion and even redundant computation can be net-
beneficial if such optimizations improve the AI of a kernel [4].

Spectral Neighbor Analysis Potential (SNAP) is a compu-
tationally intensive interatomic potential in the LAMMPS [5]
molecular dynamics software package. With the introduction
of new CPU and GPU architectures, SNAP’s performance
relative to the peak flop rating of the architecture showed
a downward trend on CPUs and low compute utilization
on GPUs. In this paper we describe our efforts to improve
the performance of SNAP by optimizing on all the points
mentioned above. We explain how we overcame performance
deterrents in SNAP to gain a ⇠22⇥ performance increase over
the existing GPU implementation.

II. THE SNAP FORCE KERNEL

Interatomic potentials (IAPs) are a critical part of any
classical molecular dynamics (MD) simulation. The use of a
classical IAP implies that accuracy-limiting approximations
are acceptable. The most important assumptions shared by
many IAPs are as follows. First, all-electron mediated inter-
actions of atoms can be described by the Born-Oppenheimer
potential energy surface. Second, the force on a given atom
does not depend on the positions of atoms beyond a certain
distance. This latter constraint permits the use of efficient
algorithms that are linear scaling in the number of atoms,
as well as ensuring that large problems can be efficiently
distributed over leadership computing platforms. Many IAPs
capture local interactions using approximations inspired by
known physical and chemical phenomena, such as chemical
bonding, electrostatic screening, local coordination, etc. The
development of new IAPs follows a decades long trend where
much of the effort has focused on more accurate, but also more
complex and computationally expensive IAPs [6].

A recent branch of this development combines strategies
of MD and data science, producing machine-learned (ML)
IAPs. Machine-learned IAPs translate the atomic neighbor-
hood into a set of generalized descriptors. These descriptors
are independently weighted to match a database of higher
fidelity results (e.g. ab initio quantum electronic structure
calculations). A variety of different descriptors which describe
the local environment of an atom exist in the literature [7],
such as symmetry functions [8], bispectrum components [9],
and the Coulomb matrix [10]. The Spectral Neighbor Analysis
Potential (SNAP) [11] utilizes a basis expansion of bispectrum
components as a descriptor of atomic environments. Drautz
has recently shown that many of these descriptors, including
the SNAP bispectrum, share a common mathematical founda-
tion in the atomic cluster expansion for the Born-Oppenheimer
potential energy function [12].

A. Mathematical Structure of SNAP

In the SNAP potential energy model, the total energy of
a configuration of atoms is composed as a sum of atomic
energies. For each atom i, its energy Ei is assumed to be a
function of the positions of neighbor atoms out to some finite
distance Rcut. The positions of neighbor atoms are represented
as an atomic density function defined in the 3D ball of radius
Rcut. In SNAP, this compact domain is mapped to the unit
3-sphere. Expanding the neighbor density as a Fourier series,
we obtain the following Fourier coefficients

Uj =
X

rik<Rcut

fc(rik)uj(✓0, ✓,�) (1)

where Uj are the Fourier expansion coefficients and uj are
hyperspherical harmonics on the unit 3-sphere. Both Uj and
uj are rank (2j+1) complex square matrices, where the index
j takes half-integer values {0, 1

2 , 1,
3
2 , . . .}. The 3D vector

rik = rk � ri is the position of neighbor atom k relative
to the central atom i and is mapped to a point on the 3-sphere
given by the three polar coordinates ✓0, ✓, and �. The sum
is over all neighbor atoms within the cutoff. The switching
function fc(r) ensures that contributions go smoothly to zero
as r approaches Rcut. For conciseness of presentation we omit
density weighting factors and self-contributions which require
negligible computation but are important for constructing
physically realistic potentials. Full details are given in [11].

The matrices Uj are complex-valued and are not directly
useful as descriptors because they are not invariant under
rotation of the polar coordinate frame. However, the following
scalar triple products of matrices are real-valued and invariant
under rotation [9]:

Bj1j2j = Uj1 ⌦
j
j1j2

Uj2 : U
⇤
j (2)

= Zj
j1j2

: U⇤
j (3)

The symbol ⌦
j
j1j2

indicates a Clebsch-Gordan product of
matrices of rank 2j1+1 and 2j2+1 yielding a matrix of rank
2j + 1, which we define here to be Zj

j1j2
. The computational

complexity of this product is O(j4). The : symbol indicates

the application developers to restructure their code to exploit
the massive increase in computational power via hardware
tailored to exploiting parallelism. The threads on a GPU are
organized in a hierarchical fashion. For example on NVIDIA
GPUs, O(100� 1000) threads are grouped as a thread block
and share resources among themselves. Similarly on Intel’s
Gen9 GPU architectures, the threads are divided into thread-
groups and threads. Application developers need to design a
parallel implementation that can distribute work effectively
across both levels of the hierarchy.

Additionally, GPUs have their own memory space and
memory hierarchies, increasing the complexity of the appli-
cation. On GPUs, threads performing fully coalesced memory
reads (i.e., access of consecutive memory locations) minimize
memory transactions and thus minimize latencies. Such a
memory access pattern should be avoided on CPUs since
separate threads accessing memory locations in the same cache
line results in false sharing and thrashing.

Compared to CPUs, modern GPUs have a very large ratio
of compute throughput to memory bandwidth, also referred to
as a high arithmetic intensity (AI). Optimally written kernels
on CPUs often become memory bound on GPUs. In these
scenarios new strategies which reduce reads are invaluable:
kernel fusion and even redundant computation can be net-
beneficial if such optimizations improve the AI of a kernel [4].

Spectral Neighbor Analysis Potential (SNAP) is a compu-
tationally intensive interatomic potential in the LAMMPS [5]
molecular dynamics software package. With the introduction
of new CPU and GPU architectures, SNAP’s performance
relative to the peak flop rating of the architecture showed
a downward trend on CPUs and low compute utilization
on GPUs. In this paper we describe our efforts to improve
the performance of SNAP by optimizing on all the points
mentioned above. We explain how we overcame performance
deterrents in SNAP to gain a ⇠22⇥ performance increase over
the existing GPU implementation.

II. THE SNAP FORCE KERNEL

Interatomic potentials (IAPs) are a critical part of any
classical molecular dynamics (MD) simulation. The use of a
classical IAP implies that accuracy-limiting approximations
are acceptable. The most important assumptions shared by
many IAPs are as follows. First, all-electron mediated inter-
actions of atoms can be described by the Born-Oppenheimer
potential energy surface. Second, the force on a given atom
does not depend on the positions of atoms beyond a certain
distance. This latter constraint permits the use of efficient
algorithms that are linear scaling in the number of atoms,
as well as ensuring that large problems can be efficiently
distributed over leadership computing platforms. Many IAPs
capture local interactions using approximations inspired by
known physical and chemical phenomena, such as chemical
bonding, electrostatic screening, local coordination, etc. The
development of new IAPs follows a decades long trend where
much of the effort has focused on more accurate, but also more
complex and computationally expensive IAPs [6].

A recent branch of this development combines strategies
of MD and data science, producing machine-learned (ML)
IAPs. Machine-learned IAPs translate the atomic neighbor-
hood into a set of generalized descriptors. These descriptors
are independently weighted to match a database of higher
fidelity results (e.g. ab initio quantum electronic structure
calculations). A variety of different descriptors which describe
the local environment of an atom exist in the literature [7],
such as symmetry functions [8], bispectrum components [9],
and the Coulomb matrix [10]. The Spectral Neighbor Analysis
Potential (SNAP) [11] utilizes a basis expansion of bispectrum
components as a descriptor of atomic environments. Drautz
has recently shown that many of these descriptors, including
the SNAP bispectrum, share a common mathematical founda-
tion in the atomic cluster expansion for the Born-Oppenheimer
potential energy function [12].

A. Mathematical Structure of SNAP

In the SNAP potential energy model, the total energy of
a configuration of atoms is composed as a sum of atomic
energies. For each atom i, its energy Ei is assumed to be a
function of the positions of neighbor atoms out to some finite
distance Rcut. The positions of neighbor atoms are represented
as an atomic density function defined in the 3D ball of radius
Rcut. In SNAP, this compact domain is mapped to the unit
3-sphere. Expanding the neighbor density as a Fourier series,
we obtain the following Fourier coefficients

Uj =
X

rik<Rcut

fc(rik)uj(✓0, ✓,�) (1)

where Uj are the Fourier expansion coefficients and uj are
hyperspherical harmonics on the unit 3-sphere. Both Uj and
uj are rank (2j+1) complex square matrices, where the index
j takes half-integer values {0, 1
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rik = rk � ri is the position of neighbor atom k relative
to the central atom i and is mapped to a point on the 3-sphere
given by the three polar coordinates ✓0, ✓, and �. The sum
is over all neighbor atoms within the cutoff. The switching
function fc(r) ensures that contributions go smoothly to zero
as r approaches Rcut. For conciseness of presentation we omit
density weighting factors and self-contributions which require
negligible computation but are important for constructing
physically realistic potentials. Full details are given in [11].

The matrices Uj are complex-valued and are not directly
useful as descriptors because they are not invariant under
rotation of the polar coordinate frame. However, the following
scalar triple products of matrices are real-valued and invariant
under rotation [9]:
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2j + 1, which we define here to be Zj
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the element-wise scalar product of two matrices of equal rank,
an operation of computational complexity O(j2). The resultant
real scalar bispectrum components Bj1j2j characterize the
strength of density correlations at three points on the 3-sphere.
The lowest-order components describe the coarsest features of
the density function, while higher-order components reflect
finer detail. The bispectrum components defined here have
been shown to be closely related to the 4-body basis functions
of the Atomic Cluster Expansion introduced by Drautz [12]. In
SNAP, we assume that the local energy can be expressed as
a linear function of all the distinct bispectrum components
formed from matrices Uj up to some maximum degree
J . We enumerate the bispectrum components by restricting
0  2j2  2j1  2j  2J , so that the number of unique
bispectrum components scales as O(J3). The factor of 2 is a
convenient convention to avoid half-integers.

For a particular choice of J , we can list the NB total bis-
pectrum components in some arbitrary order as B1, . . . , BNB ,
atom index i implicit, and express the energy as a linear
function of these

Ei(B) =
NBX

l=1

�lBl (4)

where �l are the linear SNAP coefficients. These coefficients
are trained via ML methods to define the SNAP energy model
for a particular material. The force on each atom k is obtained
by summing over all neighbor atoms i and all bispectrum
components
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As described in Ref. 11, the partial derivative of Bl w.r.t.
rk is a sum of three terms, each involving a neighbor-atom
independent and thus precomputable Z and a neighbor-atom
dependent derivative of U,
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This formulation prescribes the structure of an algorithm for
computing forces from the SNAP potential. We present this in
Listing 1.

B. Initial SNAP Pseudocode
Listing 1 shows the pseudocode of SNAP implementation

by correlating the routines with the equations shown above.
Initially the build neighborlist routine generates a list of
neighbor atoms within the cutoff distance Rcut. Next, in the
compute U routine, we calculate the expansion coefficients
Uj from (1) for each atom and neighbor pair and store
them in Ulist. The sum of these coefficients over neigh-
bors is stored in Ulisttot. Given Ulisttot, in the compute Z
routine we calculate the Clebsch-Gordan product based on
(2) and store the results of Zj

j1j2
in the Zlist structure,

a 5-dimensional array of complex double precision values.

The computational complexity per atom of compute U and
compute Z are O(J3Nnbor) and O(J7), respectively. We
next enter a nested loop over neighbors. In the compute dU
routine we compute dU , the derivative of U w.r.t. the position
of one neighbor atom rk, storing the results in the dUlist
data structure. Subsequently in the routine compute dB we
compute the partial derivatives of Bl shown in (6), storing the
results in dBlist. The computational complexity per neighbor
atom of compute dU and compute dB are O(J3) and O(J5),
respectively. Last, in the update forces routine, we compute
the force contribution due to the neighbor as shown in (5).
This final operation has a computational complexity per atom-
neighbor pair of O(J3). We emphasize that as formulated,
the order of the functions cannot be changed because the
outputs from one routine pipe into the following routine.

for(int natom=0; natom<num_atoms; ++natom)

{

// build neighbor-list for each atom

build_neighborlist();

// compute atom specific coefficients

compute_U(); //Ulist and Ulisttot

compute_Z(); //Zlist

// For each (atom,neighbor) pair

for(int nbor=0; nbor<num_nbors; ++nbor)

{

compute_dU(); //dUlist

compute_dB(); //dBlist

update_forces(); //force-array

}

}

Listing 1: SNAP code

C. GPU implementation of SNAP

The original GPU implementation of SNAP used the
Kokkos [2] framework to distribute the work described in
Listing 1 across the threads of a GPU. This implementation
was based on prior work by Moore and Trott [13], which
in turn was based on an earlier CUDA implementation of
SNAP [14]. The loop over atoms on line 2 of listing 1 is
mapped to a loop over Kokkos teams, which are an abstraction
of CUDA thread blocks. Further parallelism over neighbors,
line 12 of listing 1, and over bispectrum components, implicit
in compute [U,Z,dU,dB], is mapped to Kokkos’s hierarchical
parallelism. This includes the TeamThread abstraction, paral-
lelism over Kokkos “threads”, and the ThreadVector abstrac-
tion, parallelism over “vector lanes”. In the case of GPUs these
abstractions can map to warps and threads within warps (a
“vector width” of 32), respectively.

Table I lists the performance of these initial implementations
of the SNAP potential across several HPC architectures. The
problem sizes chosen for these comparisons comprised of 2000
atoms with 26 neighbors per atom and 2J = 8. The Kokkos
version of SNAP was used for the GPU benchmarks; the
original (non-threaded) SNAP version was used for all others.

Performance speed for classical MD simulations is often
reported in units of Katom-timesteps per second. For example,
given a 2000 atom system, the speed of 29.4 Katom-steps/s
on Intel Haswell implies that the simulation rate was ⇠15 MD
timesteps per second. The peak/node column is the nominal

the element-wise scalar product of two matrices of equal rank,
an operation of computational complexity O(j2). The resultant
real scalar bispectrum components Bj1j2j characterize the
strength of density correlations at three points on the 3-sphere.
The lowest-order components describe the coarsest features of
the density function, while higher-order components reflect
finer detail. The bispectrum components defined here have
been shown to be closely related to the 4-body basis functions
of the Atomic Cluster Expansion introduced by Drautz [12]. In
SNAP, we assume that the local energy can be expressed as
a linear function of all the distinct bispectrum components
formed from matrices Uj up to some maximum degree
J . We enumerate the bispectrum components by restricting
0  2j2  2j1  2j  2J , so that the number of unique
bispectrum components scales as O(J3). The factor of 2 is a
convenient convention to avoid half-integers.

For a particular choice of J , we can list the NB total bis-
pectrum components in some arbitrary order as B1, . . . , BNB ,
atom index i implicit, and express the energy as a linear
function of these

Ei(B) =
NBX

l=1

�lBl (4)

where �l are the linear SNAP coefficients. These coefficients
are trained via ML methods to define the SNAP energy model
for a particular material. The force on each atom k is obtained
by summing over all neighbor atoms i and all bispectrum
components

Fk = �

NX

i=1

NBX

l=1

�l
@Bl

@rk
(5)

As described in Ref. 11, the partial derivative of Bl w.r.t.
rk is a sum of three terms, each involving a neighbor-atom
independent and thus precomputable Z and a neighbor-atom
dependent derivative of U,
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This formulation prescribes the structure of an algorithm for
computing forces from the SNAP potential. We present this in
Listing 1.

B. Initial SNAP Pseudocode
Listing 1 shows the pseudocode of SNAP implementation

by correlating the routines with the equations shown above.
Initially the build neighborlist routine generates a list of
neighbor atoms within the cutoff distance Rcut. Next, in the
compute U routine, we calculate the expansion coefficients
Uj from (1) for each atom and neighbor pair and store
them in Ulist. The sum of these coefficients over neigh-
bors is stored in Ulisttot. Given Ulisttot, in the compute Z
routine we calculate the Clebsch-Gordan product based on
(2) and store the results of Zj

j1j2
in the Zlist structure,

a 5-dimensional array of complex double precision values.

The computational complexity per atom of compute U and
compute Z are O(J3Nnbor) and O(J7), respectively. We
next enter a nested loop over neighbors. In the compute dU
routine we compute dU , the derivative of U w.r.t. the position
of one neighbor atom rk, storing the results in the dUlist
data structure. Subsequently in the routine compute dB we
compute the partial derivatives of Bl shown in (6), storing the
results in dBlist. The computational complexity per neighbor
atom of compute dU and compute dB are O(J3) and O(J5),
respectively. Last, in the update forces routine, we compute
the force contribution due to the neighbor as shown in (5).
This final operation has a computational complexity per atom-
neighbor pair of O(J3). We emphasize that as formulated,
the order of the functions cannot be changed because the
outputs from one routine pipe into the following routine.

for(int natom=0; natom<num_atoms; ++natom)

{

// build neighbor-list for each atom

build_neighborlist();

// compute atom specific coefficients

compute_U(); //Ulist and Ulisttot

compute_Z(); //Zlist

// For each (atom,neighbor) pair

for(int nbor=0; nbor<num_nbors; ++nbor)

{

compute_dU(); //dUlist

compute_dB(); //dBlist

update_forces(); //force-array

}

}

Listing 1: SNAP code

C. GPU implementation of SNAP

The original GPU implementation of SNAP used the
Kokkos [2] framework to distribute the work described in
Listing 1 across the threads of a GPU. This implementation
was based on prior work by Moore and Trott [13], which
in turn was based on an earlier CUDA implementation of
SNAP [14]. The loop over atoms on line 2 of listing 1 is
mapped to a loop over Kokkos teams, which are an abstraction
of CUDA thread blocks. Further parallelism over neighbors,
line 12 of listing 1, and over bispectrum components, implicit
in compute [U,Z,dU,dB], is mapped to Kokkos’s hierarchical
parallelism. This includes the TeamThread abstraction, paral-
lelism over Kokkos “threads”, and the ThreadVector abstrac-
tion, parallelism over “vector lanes”. In the case of GPUs these
abstractions can map to warps and threads within warps (a
“vector width” of 32), respectively.

Table I lists the performance of these initial implementations
of the SNAP potential across several HPC architectures. The
problem sizes chosen for these comparisons comprised of 2000
atoms with 26 neighbors per atom and 2J = 8. The Kokkos
version of SNAP was used for the GPU benchmarks; the
original (non-threaded) SNAP version was used for all others.

Performance speed for classical MD simulations is often
reported in units of Katom-timesteps per second. For example,
given a 2000 atom system, the speed of 29.4 Katom-steps/s
on Intel Haswell implies that the simulation rate was ⇠15 MD
timesteps per second. The peak/node column is the nominal

Key point: modern ML potentials are 
complex
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If you don’t run efficiently on 1 node, you 
won’t run efficiently on 10,000 nodes.
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MD on GPUs

• Most large-scale machines rely on 
GPUs to provide the majority of their 
computing power. 

• Good GPU performance is essential! 

• Unfortunately, achieving high GPU 
performance is not easy, especially for 
SNAP:
• Deeply nested loops
• Loop structure not regular
• Loops are “narrow”
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Original SNAP implementation circa 2012
• Christian Trott (SNL) ported the LAMMPS SNAP C++ code to Kokkos in 

ExaMiniMD (proxy app), then ported to Kokkos LAMMPS by Stan Moore (SNL)
• Used advanced Kokkos features: hierarchical parallelism and scratch memory, 

unsure how to get better performance at the time
• Still: depressing fraction of peak on GPU compared to CPU
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No silver bullet
• Adjoint refactor: algorithmic redesign that reduced the computational complexity and memory 

footprint by large factor
• Flattened jagged multi-dimensional arrays: reduced memory use
• Major kernel refactor: Broke one large kernel into many smaller kernels, reordered loop structure
• Changed the memory data layout of an array between kernels via transpose operations
• Refactored loop indices and data structures to use complex numbers and multi-dimensional arrays 

instead of arrays of structs
• Refactored some kernels to avoid thread atomics and use of global memory
• Judiciously used Kokkos hierarchical parallelism and GPU shared memory
• Fused a few selected kernels, which helped eliminate intermediate data structures and reduced 

memory use
• Added an AoSoA memory data layout which enforced perfect coalescing and load balancing in one 

of the kernels
• Symmetrized data layouts of certain matrices, which reduced memory overhead and use of thread 

atomics on GPUs (also improved CPU performance)
• Large refactor of Wigner matrices + derivatives to use AoSoA data layout

[Gayatri et al, arXiv:2011.12875v1]
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Vignette 1: loop structure matters 

the element-wise scalar product of two matrices of equal rank,
an operation of computational complexity O(j2). The resultant
real scalar bispectrum components Bj1j2j characterize the
strength of density correlations at three points on the 3-sphere.
The lowest-order components describe the coarsest features of
the density function, while higher-order components reflect
finer detail. The bispectrum components defined here have
been shown to be closely related to the 4-body basis functions
of the Atomic Cluster Expansion introduced by Drautz [12]. In
SNAP, we assume that the local energy can be expressed as
a linear function of all the distinct bispectrum components
formed from matrices Uj up to some maximum degree
J . We enumerate the bispectrum components by restricting
0  2j2  2j1  2j  2J , so that the number of unique
bispectrum components scales as O(J3). The factor of 2 is a
convenient convention to avoid half-integers.

For a particular choice of J , we can list the NB total bis-
pectrum components in some arbitrary order as B1, . . . , BNB ,
atom index i implicit, and express the energy as a linear
function of these

Ei(B) =
NBX

l=1

�lBl (4)

where �l are the linear SNAP coefficients. These coefficients
are trained via ML methods to define the SNAP energy model
for a particular material. The force on each atom k is obtained
by summing over all neighbor atoms i and all bispectrum
components

Fk = �

NX

i=1

NBX

l=1

�l
@Bl

@rk
(5)

As described in Ref. 11, the partial derivative of Bl w.r.t.
rk is a sum of three terms, each involving a neighbor-atom
independent and thus precomputable Z and a neighbor-atom
dependent derivative of U,
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This formulation prescribes the structure of an algorithm for
computing forces from the SNAP potential. We present this in
Listing 1.

B. Initial SNAP Pseudocode
Listing 1 shows the pseudocode of SNAP implementation

by correlating the routines with the equations shown above.
Initially the build neighborlist routine generates a list of
neighbor atoms within the cutoff distance Rcut. Next, in the
compute U routine, we calculate the expansion coefficients
Uj from (1) for each atom and neighbor pair and store
them in Ulist. The sum of these coefficients over neigh-
bors is stored in Ulisttot. Given Ulisttot, in the compute Z
routine we calculate the Clebsch-Gordan product based on
(2) and store the results of Zj

j1j2
in the Zlist structure,

a 5-dimensional array of complex double precision values.

The computational complexity per atom of compute U and
compute Z are O(J3Nnbor) and O(J7), respectively. We
next enter a nested loop over neighbors. In the compute dU
routine we compute dU , the derivative of U w.r.t. the position
of one neighbor atom rk, storing the results in the dUlist
data structure. Subsequently in the routine compute dB we
compute the partial derivatives of Bl shown in (6), storing the
results in dBlist. The computational complexity per neighbor
atom of compute dU and compute dB are O(J3) and O(J5),
respectively. Last, in the update forces routine, we compute
the force contribution due to the neighbor as shown in (5).
This final operation has a computational complexity per atom-
neighbor pair of O(J3). We emphasize that as formulated,
the order of the functions cannot be changed because the
outputs from one routine pipe into the following routine.

for(int natom=0; natom<num_atoms; ++natom)

{

// build neighbor-list for each atom

build_neighborlist();

// compute atom specific coefficients

compute_U(); //Ulist and Ulisttot

compute_Z(); //Zlist

// For each (atom,neighbor) pair

for(int nbor=0; nbor<num_nbors; ++nbor)

{

compute_dU(); //dUlist

compute_dB(); //dBlist

update_forces(); //force-array

}

}

Listing 1: SNAP code

C. GPU implementation of SNAP

The original GPU implementation of SNAP used the
Kokkos [2] framework to distribute the work described in
Listing 1 across the threads of a GPU. This implementation
was based on prior work by Moore and Trott [13], which
in turn was based on an earlier CUDA implementation of
SNAP [14]. The loop over atoms on line 2 of listing 1 is
mapped to a loop over Kokkos teams, which are an abstraction
of CUDA thread blocks. Further parallelism over neighbors,
line 12 of listing 1, and over bispectrum components, implicit
in compute [U,Z,dU,dB], is mapped to Kokkos’s hierarchical
parallelism. This includes the TeamThread abstraction, paral-
lelism over Kokkos “threads”, and the ThreadVector abstrac-
tion, parallelism over “vector lanes”. In the case of GPUs these
abstractions can map to warps and threads within warps (a
“vector width” of 32), respectively.

Table I lists the performance of these initial implementations
of the SNAP potential across several HPC architectures. The
problem sizes chosen for these comparisons comprised of 2000
atoms with 26 neighbors per atom and 2J = 8. The Kokkos
version of SNAP was used for the GPU benchmarks; the
original (non-threaded) SNAP version was used for all others.

Performance speed for classical MD simulations is often
reported in units of Katom-timesteps per second. For example,
given a 2000 atom system, the speed of 29.4 Katom-steps/s
on Intel Haswell implies that the simulation rate was ⇠15 MD
timesteps per second. The peak/node column is the nominal

TABLE I: SNAP performance on different hardware.

Speed Peak/node Fraction of Peak
Hardware Year (Katom-steps/s) (Tflops) (normalized)

Intel SandyBridge 2012 17.7 0.332 1.0
IBM PowerPC 2012 2.52 0.205 0.23
AMD CPU 2013 5.35 0.141 0.71
NVIDIA K20X 2013 2.60 1.31 0.037
Intel Haswell 2016 29.4 1.18 0.47
Intel KNL 2016 11.1 2.61 0.080
NVIDIA P100 2016 21.8 5.30 0.077
Intel Broadwell 2017 25.4 1.21 0.39
NVIDIA V100 2018 32.8 7.8 0.079

maximum FLOP rate (double precision) for one CPU node
or one GPU. The fraction of peak column is ratio of speed
divided by peak/node for a particular platform relative to
the Intel SandyBridge baseline. This convention is chosen to
abstract away technical differences in FLOP counts between
architectures, for example due to recomputing values on a
GPU as opposed to loading from memory on a CPU.

The results in Table I support our assertion that relative
performance has declined with advances in CPU architectures.
Performance is low on GPUs despite the utilization of hierar-
chical parallelism and scratch memory in Kokkos. To address
these performance issues and arrive at a new parallelization
strategy we created a proxy application “TestSNAP”, a stand-
alone serial application reproducing the implementation given
in listing 1, without the additional complexities of a full molec-
ular dynamics code (https://github.com/FitSNAP/TestSNAP).

In this paper we will systematically describe our paralleliza-
tion and optimization process, benchmarking our progress in
TestSNAP and LAMMPS relative to the initial Kokkos SNAP
implementation, or “baseline” [15] in LAMMPS. The results
shown in this paper are for systems of 2000 atoms with 26
neighbors each. We consider two values of J , 8 and 14, corre-
sponding to 55 and 204 bispectrum components, respectively.
We will henceforth use 2J8 and 2J14 as shorthand for these
problem sizes. The optimizations here are targeted towards
NVIDIA’s V100 GPU, although in most cases they are generic
optimizations that are applicable to all GPUs. All performance
measurements given in this paper are from one NVIDIA V100
GPU of the Summit supercomputer at Oak Ridge National
Laboratory.

III. TESTSNAP

The intention behind TestSNAP is to provide a testbed in
which many different optimizations can be explored without
needing to build and run the full LAMMPS code, allowing de-
velopers to focus on the core components of SNAP algorithm
and their implementation. Successful optimization strategies
can then be merged back into the LAMMPS production code.
There is no fundamental reason why these performance explo-
rations could not have been performed directly in LAMMPS,
however TestSNAP allowed us to effectively collaborate be-
tween our diverse team of developers irrespective of their
familiarity to LAMMPS.

A. Refactor compute routines

One of the main disadvantages of the baseline implemen-
tation was the over-subscription of limited resources such as
registers, leading to a limit on available occupancy. This was
a side effect of the use of a single large kernel being launched.
To address this, our first step was to refactor the SNAP
algorithm into individual stages, as demonstrated in listing 2.

// build neighbor-list for all atoms

for(int natom=0; natom<num_atoms; ++natom)

build_neighborlist();

// compute matrices for all atoms

for(int natom=0; natom<num_atoms; ++natom)

compute_U(); //Ulist(num_atoms,...)

for(int natom=0; natom<num_atoms; ++natom)

compute_Z(); //Zlist(num_atoms,...)

// For each (atom,neighbor) pair

for(int natom=0; natom<num_atoms; ++natom)

for(int nbor=0; nbor<num_nbors; ++nbor)

compute_dU(); //dUlist(num_atoms,...)

for(int natom=0; natom<num_atoms; ++natom)

for(int nbor=0; nbor<num_nbors; ++nbor)

compute_dB(); //dBlist(num_atoms,...)

for(int natom=0; natom<num_atoms; ++natom)

for(int nbor=0; nbor<num_nbors; ++nbor)

update_forces();

Listing 2: Refactored TestSNAP code

In this refactoring each stage can be viewed as a single
GPU kernel which performs the necessary work for all atoms.
Launching individual kernels allows parameters such as block
size to be specifically tailored to each kernel. For some
kernels register usage will be lower, leading to increased
occupancy. The order of loops for individual kernels can also
be optimized.

This refactoring into separate kernels does have disadvan-
tages. The dominant disadvantage is that, because the state
of memory does not persist across kernel calls, we need
to manually “cache” results between kernel launches. Every
data structure now has an additional dimension to reference
individual atoms as shown in comments of listing 2. This
increases memory requirements by a factor of the number
of atoms being processed, in our case 2000. While not a
prohibitive issue, this did lead to novel challenges whose
solutions will be discussed later in the paper.

We used the Kokkos framework to port TestSNAP to GPU
in order to be consistent with the original baseline imple-
mentation. For the rest of the paper we show code snippets
from the Kokkos implementation of TestSNAP to explain our
optimization strategies. As a step towards transitioning to a
Kokkos implementation, we pushed the atom and, as appropri-
ate, neighbor loops inside the individual routines. In addition,
we converted the data structures Ulist,Zlist,dUlist,dBlist to
Kokkos views, abstractions of multi-dimensional arrays.

B. GPU implementation

In this subsection we describe the early GPU implementa-
tions of the refactored TestSNAP code.

Ease register pressure, each kernel can be tuned separately
Increased memory usage, code complexity

There is a sweet spot: breaking things 
down too fine can hurt
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Vignette 2: there is more than one way to write a loop

the application developers to restructure their code to exploit
the massive increase in computational power via hardware
tailored to exploiting parallelism. The threads on a GPU are
organized in a hierarchical fashion. For example on NVIDIA
GPUs, O(100� 1000) threads are grouped as a thread block
and share resources among themselves. Similarly on Intel’s
Gen9 GPU architectures, the threads are divided into thread-
groups and threads. Application developers need to design a
parallel implementation that can distribute work effectively
across both levels of the hierarchy.

Additionally, GPUs have their own memory space and
memory hierarchies, increasing the complexity of the appli-
cation. On GPUs, threads performing fully coalesced memory
reads (i.e., access of consecutive memory locations) minimize
memory transactions and thus minimize latencies. Such a
memory access pattern should be avoided on CPUs since
separate threads accessing memory locations in the same cache
line results in false sharing and thrashing.

Compared to CPUs, modern GPUs have a very large ratio
of compute throughput to memory bandwidth, also referred to
as a high arithmetic intensity (AI). Optimally written kernels
on CPUs often become memory bound on GPUs. In these
scenarios new strategies which reduce reads are invaluable:
kernel fusion and even redundant computation can be net-
beneficial if such optimizations improve the AI of a kernel [4].

Spectral Neighbor Analysis Potential (SNAP) is a compu-
tationally intensive interatomic potential in the LAMMPS [5]
molecular dynamics software package. With the introduction
of new CPU and GPU architectures, SNAP’s performance
relative to the peak flop rating of the architecture showed
a downward trend on CPUs and low compute utilization
on GPUs. In this paper we describe our efforts to improve
the performance of SNAP by optimizing on all the points
mentioned above. We explain how we overcame performance
deterrents in SNAP to gain a ⇠22⇥ performance increase over
the existing GPU implementation.

II. THE SNAP FORCE KERNEL

Interatomic potentials (IAPs) are a critical part of any
classical molecular dynamics (MD) simulation. The use of a
classical IAP implies that accuracy-limiting approximations
are acceptable. The most important assumptions shared by
many IAPs are as follows. First, all-electron mediated inter-
actions of atoms can be described by the Born-Oppenheimer
potential energy surface. Second, the force on a given atom
does not depend on the positions of atoms beyond a certain
distance. This latter constraint permits the use of efficient
algorithms that are linear scaling in the number of atoms,
as well as ensuring that large problems can be efficiently
distributed over leadership computing platforms. Many IAPs
capture local interactions using approximations inspired by
known physical and chemical phenomena, such as chemical
bonding, electrostatic screening, local coordination, etc. The
development of new IAPs follows a decades long trend where
much of the effort has focused on more accurate, but also more
complex and computationally expensive IAPs [6].

A recent branch of this development combines strategies
of MD and data science, producing machine-learned (ML)
IAPs. Machine-learned IAPs translate the atomic neighbor-
hood into a set of generalized descriptors. These descriptors
are independently weighted to match a database of higher
fidelity results (e.g. ab initio quantum electronic structure
calculations). A variety of different descriptors which describe
the local environment of an atom exist in the literature [7],
such as symmetry functions [8], bispectrum components [9],
and the Coulomb matrix [10]. The Spectral Neighbor Analysis
Potential (SNAP) [11] utilizes a basis expansion of bispectrum
components as a descriptor of atomic environments. Drautz
has recently shown that many of these descriptors, including
the SNAP bispectrum, share a common mathematical founda-
tion in the atomic cluster expansion for the Born-Oppenheimer
potential energy function [12].

A. Mathematical Structure of SNAP

In the SNAP potential energy model, the total energy of
a configuration of atoms is composed as a sum of atomic
energies. For each atom i, its energy Ei is assumed to be a
function of the positions of neighbor atoms out to some finite
distance Rcut. The positions of neighbor atoms are represented
as an atomic density function defined in the 3D ball of radius
Rcut. In SNAP, this compact domain is mapped to the unit
3-sphere. Expanding the neighbor density as a Fourier series,
we obtain the following Fourier coefficients

Uj =
X

rik<Rcut

fc(rik)uj(✓0, ✓,�) (1)

where Uj are the Fourier expansion coefficients and uj are
hyperspherical harmonics on the unit 3-sphere. Both Uj and
uj are rank (2j+1) complex square matrices, where the index
j takes half-integer values {0, 1

2 , 1,
3
2 , . . .}. The 3D vector

rik = rk � ri is the position of neighbor atom k relative
to the central atom i and is mapped to a point on the 3-sphere
given by the three polar coordinates ✓0, ✓, and �. The sum
is over all neighbor atoms within the cutoff. The switching
function fc(r) ensures that contributions go smoothly to zero
as r approaches Rcut. For conciseness of presentation we omit
density weighting factors and self-contributions which require
negligible computation but are important for constructing
physically realistic potentials. Full details are given in [11].

The matrices Uj are complex-valued and are not directly
useful as descriptors because they are not invariant under
rotation of the polar coordinate frame. However, the following
scalar triple products of matrices are real-valued and invariant
under rotation [9]:

Bj1j2j = Uj1 ⌦
j
j1j2

Uj2 : U
⇤
j (2)

= Zj
j1j2

: U⇤
j (3)

The symbol ⌦
j
j1j2

indicates a Clebsch-Gordan product of
matrices of rank 2j1+1 and 2j2+1 yielding a matrix of rank
2j + 1, which we define here to be Zj

j1j2
. The computational

complexity of this product is O(j4). The : symbol indicates

the element-wise scalar product of two matrices of equal rank,
an operation of computational complexity O(j2). The resultant
real scalar bispectrum components Bj1j2j characterize the
strength of density correlations at three points on the 3-sphere.
The lowest-order components describe the coarsest features of
the density function, while higher-order components reflect
finer detail. The bispectrum components defined here have
been shown to be closely related to the 4-body basis functions
of the Atomic Cluster Expansion introduced by Drautz [12]. In
SNAP, we assume that the local energy can be expressed as
a linear function of all the distinct bispectrum components
formed from matrices Uj up to some maximum degree
J . We enumerate the bispectrum components by restricting
0  2j2  2j1  2j  2J , so that the number of unique
bispectrum components scales as O(J3). The factor of 2 is a
convenient convention to avoid half-integers.

For a particular choice of J , we can list the NB total bis-
pectrum components in some arbitrary order as B1, . . . , BNB ,
atom index i implicit, and express the energy as a linear
function of these

Ei(B) =
NBX

l=1

�lBl (4)

where �l are the linear SNAP coefficients. These coefficients
are trained via ML methods to define the SNAP energy model
for a particular material. The force on each atom k is obtained
by summing over all neighbor atoms i and all bispectrum
components
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@Bl
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As described in Ref. 11, the partial derivative of Bl w.r.t.
rk is a sum of three terms, each involving a neighbor-atom
independent and thus precomputable Z and a neighbor-atom
dependent derivative of U,
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This formulation prescribes the structure of an algorithm for
computing forces from the SNAP potential. We present this in
Listing 1.

B. Initial SNAP Pseudocode
Listing 1 shows the pseudocode of SNAP implementation

by correlating the routines with the equations shown above.
Initially the build neighborlist routine generates a list of
neighbor atoms within the cutoff distance Rcut. Next, in the
compute U routine, we calculate the expansion coefficients
Uj from (1) for each atom and neighbor pair and store
them in Ulist. The sum of these coefficients over neigh-
bors is stored in Ulisttot. Given Ulisttot, in the compute Z
routine we calculate the Clebsch-Gordan product based on
(2) and store the results of Zj

j1j2
in the Zlist structure,

a 5-dimensional array of complex double precision values.

The computational complexity per atom of compute U and
compute Z are O(J3Nnbor) and O(J7), respectively. We
next enter a nested loop over neighbors. In the compute dU
routine we compute dU , the derivative of U w.r.t. the position
of one neighbor atom rk, storing the results in the dUlist
data structure. Subsequently in the routine compute dB we
compute the partial derivatives of Bl shown in (6), storing the
results in dBlist. The computational complexity per neighbor
atom of compute dU and compute dB are O(J3) and O(J5),
respectively. Last, in the update forces routine, we compute
the force contribution due to the neighbor as shown in (5).
This final operation has a computational complexity per atom-
neighbor pair of O(J3). We emphasize that as formulated,
the order of the functions cannot be changed because the
outputs from one routine pipe into the following routine.

for(int natom=0; natom<num_atoms; ++natom)

{

// build neighbor-list for each atom

build_neighborlist();

// compute atom specific coefficients

compute_U(); //Ulist and Ulisttot

compute_Z(); //Zlist

// For each (atom,neighbor) pair

for(int nbor=0; nbor<num_nbors; ++nbor)

{

compute_dU(); //dUlist

compute_dB(); //dBlist

update_forces(); //force-array

}

}

Listing 1: SNAP code

C. GPU implementation of SNAP

The original GPU implementation of SNAP used the
Kokkos [2] framework to distribute the work described in
Listing 1 across the threads of a GPU. This implementation
was based on prior work by Moore and Trott [13], which
in turn was based on an earlier CUDA implementation of
SNAP [14]. The loop over atoms on line 2 of listing 1 is
mapped to a loop over Kokkos teams, which are an abstraction
of CUDA thread blocks. Further parallelism over neighbors,
line 12 of listing 1, and over bispectrum components, implicit
in compute [U,Z,dU,dB], is mapped to Kokkos’s hierarchical
parallelism. This includes the TeamThread abstraction, paral-
lelism over Kokkos “threads”, and the ThreadVector abstrac-
tion, parallelism over “vector lanes”. In the case of GPUs these
abstractions can map to warps and threads within warps (a
“vector width” of 32), respectively.

Table I lists the performance of these initial implementations
of the SNAP potential across several HPC architectures. The
problem sizes chosen for these comparisons comprised of 2000
atoms with 26 neighbors per atom and 2J = 8. The Kokkos
version of SNAP was used for the GPU benchmarks; the
original (non-threaded) SNAP version was used for all others.

Performance speed for classical MD simulations is often
reported in units of Katom-timesteps per second. For example,
given a 2000 atom system, the speed of 29.4 Katom-steps/s
on Intel Haswell implies that the simulation rate was ⇠15 MD
timesteps per second. The peak/node column is the nominal

the element-wise scalar product of two matrices of equal rank,
an operation of computational complexity O(j2). The resultant
real scalar bispectrum components Bj1j2j characterize the
strength of density correlations at three points on the 3-sphere.
The lowest-order components describe the coarsest features of
the density function, while higher-order components reflect
finer detail. The bispectrum components defined here have
been shown to be closely related to the 4-body basis functions
of the Atomic Cluster Expansion introduced by Drautz [12]. In
SNAP, we assume that the local energy can be expressed as
a linear function of all the distinct bispectrum components
formed from matrices Uj up to some maximum degree
J . We enumerate the bispectrum components by restricting
0  2j2  2j1  2j  2J , so that the number of unique
bispectrum components scales as O(J3). The factor of 2 is a
convenient convention to avoid half-integers.

For a particular choice of J , we can list the NB total bis-
pectrum components in some arbitrary order as B1, . . . , BNB ,
atom index i implicit, and express the energy as a linear
function of these

Ei(B) =
NBX

l=1

�lBl (4)

where �l are the linear SNAP coefficients. These coefficients
are trained via ML methods to define the SNAP energy model
for a particular material. The force on each atom k is obtained
by summing over all neighbor atoms i and all bispectrum
components

Fk = �
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@Bl

@rk
(5)

As described in Ref. 11, the partial derivative of Bl w.r.t.
rk is a sum of three terms, each involving a neighbor-atom
independent and thus precomputable Z and a neighbor-atom
dependent derivative of U,
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This formulation prescribes the structure of an algorithm for
computing forces from the SNAP potential. We present this in
Listing 1.

B. Initial SNAP Pseudocode
Listing 1 shows the pseudocode of SNAP implementation

by correlating the routines with the equations shown above.
Initially the build neighborlist routine generates a list of
neighbor atoms within the cutoff distance Rcut. Next, in the
compute U routine, we calculate the expansion coefficients
Uj from (1) for each atom and neighbor pair and store
them in Ulist. The sum of these coefficients over neigh-
bors is stored in Ulisttot. Given Ulisttot, in the compute Z
routine we calculate the Clebsch-Gordan product based on
(2) and store the results of Zj

j1j2
in the Zlist structure,

a 5-dimensional array of complex double precision values.

The computational complexity per atom of compute U and
compute Z are O(J3Nnbor) and O(J7), respectively. We
next enter a nested loop over neighbors. In the compute dU
routine we compute dU , the derivative of U w.r.t. the position
of one neighbor atom rk, storing the results in the dUlist
data structure. Subsequently in the routine compute dB we
compute the partial derivatives of Bl shown in (6), storing the
results in dBlist. The computational complexity per neighbor
atom of compute dU and compute dB are O(J3) and O(J5),
respectively. Last, in the update forces routine, we compute
the force contribution due to the neighbor as shown in (5).
This final operation has a computational complexity per atom-
neighbor pair of O(J3). We emphasize that as formulated,
the order of the functions cannot be changed because the
outputs from one routine pipe into the following routine.

for(int natom=0; natom<num_atoms; ++natom)

{

// build neighbor-list for each atom

build_neighborlist();

// compute atom specific coefficients

compute_U(); //Ulist and Ulisttot

compute_Z(); //Zlist

// For each (atom,neighbor) pair

for(int nbor=0; nbor<num_nbors; ++nbor)

{

compute_dU(); //dUlist

compute_dB(); //dBlist

update_forces(); //force-array

}

}

Listing 1: SNAP code

C. GPU implementation of SNAP

The original GPU implementation of SNAP used the
Kokkos [2] framework to distribute the work described in
Listing 1 across the threads of a GPU. This implementation
was based on prior work by Moore and Trott [13], which
in turn was based on an earlier CUDA implementation of
SNAP [14]. The loop over atoms on line 2 of listing 1 is
mapped to a loop over Kokkos teams, which are an abstraction
of CUDA thread blocks. Further parallelism over neighbors,
line 12 of listing 1, and over bispectrum components, implicit
in compute [U,Z,dU,dB], is mapped to Kokkos’s hierarchical
parallelism. This includes the TeamThread abstraction, paral-
lelism over Kokkos “threads”, and the ThreadVector abstrac-
tion, parallelism over “vector lanes”. In the case of GPUs these
abstractions can map to warps and threads within warps (a
“vector width” of 32), respectively.

Table I lists the performance of these initial implementations
of the SNAP potential across several HPC architectures. The
problem sizes chosen for these comparisons comprised of 2000
atoms with 26 neighbors per atom and 2J = 8. The Kokkos
version of SNAP was used for the GPU benchmarks; the
original (non-threaded) SNAP version was used for all others.

Performance speed for classical MD simulations is often
reported in units of Katom-timesteps per second. For example,
given a 2000 atom system, the speed of 29.4 Katom-steps/s
on Intel Haswell implies that the simulation rate was ⇠15 MD
timesteps per second. The peak/node column is the nominal

the element-wise scalar product of two matrices of equal rank,
an operation of computational complexity O(j2). The resultant
real scalar bispectrum components Bj1j2j characterize the
strength of density correlations at three points on the 3-sphere.
The lowest-order components describe the coarsest features of
the density function, while higher-order components reflect
finer detail. The bispectrum components defined here have
been shown to be closely related to the 4-body basis functions
of the Atomic Cluster Expansion introduced by Drautz [12]. In
SNAP, we assume that the local energy can be expressed as
a linear function of all the distinct bispectrum components
formed from matrices Uj up to some maximum degree
J . We enumerate the bispectrum components by restricting
0  2j2  2j1  2j  2J , so that the number of unique
bispectrum components scales as O(J3). The factor of 2 is a
convenient convention to avoid half-integers.

For a particular choice of J , we can list the NB total bis-
pectrum components in some arbitrary order as B1, . . . , BNB ,
atom index i implicit, and express the energy as a linear
function of these

Ei(B) =
NBX

l=1
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where �l are the linear SNAP coefficients. These coefficients
are trained via ML methods to define the SNAP energy model
for a particular material. The force on each atom k is obtained
by summing over all neighbor atoms i and all bispectrum
components
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As described in Ref. 11, the partial derivative of Bl w.r.t.
rk is a sum of three terms, each involving a neighbor-atom
independent and thus precomputable Z and a neighbor-atom
dependent derivative of U,
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This formulation prescribes the structure of an algorithm for
computing forces from the SNAP potential. We present this in
Listing 1.

B. Initial SNAP Pseudocode
Listing 1 shows the pseudocode of SNAP implementation

by correlating the routines with the equations shown above.
Initially the build neighborlist routine generates a list of
neighbor atoms within the cutoff distance Rcut. Next, in the
compute U routine, we calculate the expansion coefficients
Uj from (1) for each atom and neighbor pair and store
them in Ulist. The sum of these coefficients over neigh-
bors is stored in Ulisttot. Given Ulisttot, in the compute Z
routine we calculate the Clebsch-Gordan product based on
(2) and store the results of Zj

j1j2
in the Zlist structure,

a 5-dimensional array of complex double precision values.

The computational complexity per atom of compute U and
compute Z are O(J3Nnbor) and O(J7), respectively. We
next enter a nested loop over neighbors. In the compute dU
routine we compute dU , the derivative of U w.r.t. the position
of one neighbor atom rk, storing the results in the dUlist
data structure. Subsequently in the routine compute dB we
compute the partial derivatives of Bl shown in (6), storing the
results in dBlist. The computational complexity per neighbor
atom of compute dU and compute dB are O(J3) and O(J5),
respectively. Last, in the update forces routine, we compute
the force contribution due to the neighbor as shown in (5).
This final operation has a computational complexity per atom-
neighbor pair of O(J3). We emphasize that as formulated,
the order of the functions cannot be changed because the
outputs from one routine pipe into the following routine.

for(int natom=0; natom<num_atoms; ++natom)

{

// build neighbor-list for each atom

build_neighborlist();

// compute atom specific coefficients

compute_U(); //Ulist and Ulisttot

compute_Z(); //Zlist

// For each (atom,neighbor) pair

for(int nbor=0; nbor<num_nbors; ++nbor)

{

compute_dU(); //dUlist

compute_dB(); //dBlist

update_forces(); //force-array

}

}

Listing 1: SNAP code

C. GPU implementation of SNAP

The original GPU implementation of SNAP used the
Kokkos [2] framework to distribute the work described in
Listing 1 across the threads of a GPU. This implementation
was based on prior work by Moore and Trott [13], which
in turn was based on an earlier CUDA implementation of
SNAP [14]. The loop over atoms on line 2 of listing 1 is
mapped to a loop over Kokkos teams, which are an abstraction
of CUDA thread blocks. Further parallelism over neighbors,
line 12 of listing 1, and over bispectrum components, implicit
in compute [U,Z,dU,dB], is mapped to Kokkos’s hierarchical
parallelism. This includes the TeamThread abstraction, paral-
lelism over Kokkos “threads”, and the ThreadVector abstrac-
tion, parallelism over “vector lanes”. In the case of GPUs these
abstractions can map to warps and threads within warps (a
“vector width” of 32), respectively.

Table I lists the performance of these initial implementations
of the SNAP potential across several HPC architectures. The
problem sizes chosen for these comparisons comprised of 2000
atoms with 26 neighbors per atom and 2J = 8. The Kokkos
version of SNAP was used for the GPU benchmarks; the
original (non-threaded) SNAP version was used for all others.

Performance speed for classical MD simulations is often
reported in units of Katom-timesteps per second. For example,
given a 2000 atom system, the speed of 29.4 Katom-steps/s
on Intel Haswell implies that the simulation rate was ⇠15 MD
timesteps per second. The peak/node column is the nominal

the application developers to restructure their code to exploit
the massive increase in computational power via hardware
tailored to exploiting parallelism. The threads on a GPU are
organized in a hierarchical fashion. For example on NVIDIA
GPUs, O(100� 1000) threads are grouped as a thread block
and share resources among themselves. Similarly on Intel’s
Gen9 GPU architectures, the threads are divided into thread-
groups and threads. Application developers need to design a
parallel implementation that can distribute work effectively
across both levels of the hierarchy.

Additionally, GPUs have their own memory space and
memory hierarchies, increasing the complexity of the appli-
cation. On GPUs, threads performing fully coalesced memory
reads (i.e., access of consecutive memory locations) minimize
memory transactions and thus minimize latencies. Such a
memory access pattern should be avoided on CPUs since
separate threads accessing memory locations in the same cache
line results in false sharing and thrashing.

Compared to CPUs, modern GPUs have a very large ratio
of compute throughput to memory bandwidth, also referred to
as a high arithmetic intensity (AI). Optimally written kernels
on CPUs often become memory bound on GPUs. In these
scenarios new strategies which reduce reads are invaluable:
kernel fusion and even redundant computation can be net-
beneficial if such optimizations improve the AI of a kernel [4].

Spectral Neighbor Analysis Potential (SNAP) is a compu-
tationally intensive interatomic potential in the LAMMPS [5]
molecular dynamics software package. With the introduction
of new CPU and GPU architectures, SNAP’s performance
relative to the peak flop rating of the architecture showed
a downward trend on CPUs and low compute utilization
on GPUs. In this paper we describe our efforts to improve
the performance of SNAP by optimizing on all the points
mentioned above. We explain how we overcame performance
deterrents in SNAP to gain a ⇠22⇥ performance increase over
the existing GPU implementation.

II. THE SNAP FORCE KERNEL

Interatomic potentials (IAPs) are a critical part of any
classical molecular dynamics (MD) simulation. The use of a
classical IAP implies that accuracy-limiting approximations
are acceptable. The most important assumptions shared by
many IAPs are as follows. First, all-electron mediated inter-
actions of atoms can be described by the Born-Oppenheimer
potential energy surface. Second, the force on a given atom
does not depend on the positions of atoms beyond a certain
distance. This latter constraint permits the use of efficient
algorithms that are linear scaling in the number of atoms,
as well as ensuring that large problems can be efficiently
distributed over leadership computing platforms. Many IAPs
capture local interactions using approximations inspired by
known physical and chemical phenomena, such as chemical
bonding, electrostatic screening, local coordination, etc. The
development of new IAPs follows a decades long trend where
much of the effort has focused on more accurate, but also more
complex and computationally expensive IAPs [6].

A recent branch of this development combines strategies
of MD and data science, producing machine-learned (ML)
IAPs. Machine-learned IAPs translate the atomic neighbor-
hood into a set of generalized descriptors. These descriptors
are independently weighted to match a database of higher
fidelity results (e.g. ab initio quantum electronic structure
calculations). A variety of different descriptors which describe
the local environment of an atom exist in the literature [7],
such as symmetry functions [8], bispectrum components [9],
and the Coulomb matrix [10]. The Spectral Neighbor Analysis
Potential (SNAP) [11] utilizes a basis expansion of bispectrum
components as a descriptor of atomic environments. Drautz
has recently shown that many of these descriptors, including
the SNAP bispectrum, share a common mathematical founda-
tion in the atomic cluster expansion for the Born-Oppenheimer
potential energy function [12].

A. Mathematical Structure of SNAP

In the SNAP potential energy model, the total energy of
a configuration of atoms is composed as a sum of atomic
energies. For each atom i, its energy Ei is assumed to be a
function of the positions of neighbor atoms out to some finite
distance Rcut. The positions of neighbor atoms are represented
as an atomic density function defined in the 3D ball of radius
Rcut. In SNAP, this compact domain is mapped to the unit
3-sphere. Expanding the neighbor density as a Fourier series,
we obtain the following Fourier coefficients

Uj =
X

rik<Rcut

fc(rik)uj(✓0, ✓,�) (1)

where Uj are the Fourier expansion coefficients and uj are
hyperspherical harmonics on the unit 3-sphere. Both Uj and
uj are rank (2j+1) complex square matrices, where the index
j takes half-integer values {0, 1

2 , 1,
3
2 , . . .}. The 3D vector

rik = rk � ri is the position of neighbor atom k relative
to the central atom i and is mapped to a point on the 3-sphere
given by the three polar coordinates ✓0, ✓, and �. The sum
is over all neighbor atoms within the cutoff. The switching
function fc(r) ensures that contributions go smoothly to zero
as r approaches Rcut. For conciseness of presentation we omit
density weighting factors and self-contributions which require
negligible computation but are important for constructing
physically realistic potentials. Full details are given in [11].

The matrices Uj are complex-valued and are not directly
useful as descriptors because they are not invariant under
rotation of the polar coordinate frame. However, the following
scalar triple products of matrices are real-valued and invariant
under rotation [9]:

Bj1j2j = Uj1 ⌦
j
j1j2

Uj2 : U
⇤
j (2)

= Zj
j1j2

: U⇤
j (3)

The symbol ⌦
j
j1j2

indicates a Clebsch-Gordan product of
matrices of rank 2j1+1 and 2j2+1 yielding a matrix of rank
2j + 1, which we define here to be Zj

j1j2
. The computational

complexity of this product is O(j4). The : symbol indicates

There is no trivial solution to the out-of-memory error for
the 2J14 problem size. The robust solution to this problem
is given by the so-called adjoint refactorization which we
describe in section IV.

IV. ADJOINT REFACTORIZATION

The original formulation of the SNAP force calculation
relied on pre-calculating and storing the Z matrices for each
atom. This avoided repeated calculation of the O((2j + 1)4)
Clebsch-Gordan products for each of the (2J+1) Z matrices.
With this strategy the total memory footprint per atom scales
as O(J5). To avoid this issue we combine (5) and (6) and
define a new quantity Y that is the adjoint of B with respect
to U,

Yj =
X

j1j2

�j
j1j2

Zj
j1j2

. (7)

In this formulation each Z matrix can be computed and
immediately accumulated to the corresponding Yj . This re-
duces the O(J5) storage requirement for Z, replacing it by
the O(J3) storage requirement for Yj . As noted in a recent
paper by Bachmayr et al. [16], this refactorization is equivalent
to the backward differentiation method for obtaining gradients
from neural networks. This separate computation of Yj has the
additional benefit of eliminating the sum over j1 and j2 from
compute dB. Since Yj is neighbor-independent this eliminates
an additional O(Nnbor) of storage and computation relative to
the previous implementation.

With this refactorization we can avoid calculating and
storing dB prior to the force calculation, an O(J3) reduction in
memory overheads. The optimized SNAP force calculation is
now formulated as a sum over one bispectrum index j instead
of three, giving

Fk = �

NX

i=1
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j=0

Yj :
@U⇤

j

@rk
. (8)

In practice we store the force contributions to an Natom ⇥

Nneigh structure dElist. This is because in the full LAMMPS
MD workflow individual dElist components contribute to other
quantities of interest, such as the virial tensor.

Listing 5 shows the modified TestSNAP algorithm
with the adjoint factorization implemented. In summary,
we have replaced the routines compute Z and
compute dB by compute Y and compute dE, respectively.

int natom, nbor;

build_neighborlist();

compute_U();

compute_Y();

compute_dU();

compute_dE();

update_forces();

Listing 5: TestSNAP code

V. OPTIMIZATION OF REFACTORED CODE

The adjoint refactorization reduced both memory overheads
and the computational complexity of the SNAP calculation.

Fig. 2: TestSNAP progress relative to baseline for 2J8 problem
size on NVIDIA V100.

Fig. 3: TestSNAP progress relative to baseline for 2J14 prob-
lem size on NVIDIA V100.

We additionally flattened jagged multi-dimensional arrays re-
lated to the j1, j2, j structures which further reduced memory
use. These optimizations reduced the memory requirements for
the 2J = 14 problem size to 12 GB, rendering our algorithm
tractable on a V100-16GB. The adjoint refactorization and
memory reduction improved performance on CPUs as well
giving us a 3⇥ performance boost on the Intel Broadwell CPU
for the 2J8 problem size.

We document next a series of optimizations we performed
on the refactored algorithm. A summary of our figure of merit,
the grind-time, relative to the baseline is given in Fig. 2
and 3 for the 2J8 and 2J14 problem sizes, respectively. The
performance numbers shown in the figures are obtained by
running TestSNAP on NVIDIA’s V100 GPU. The labels on the
x-axis correspond to subsection numbers, V1 through V7, in
which we provide detailed descriptions of our optimizations.
The height of the bar for any given subsection assumes the
optimizations from all previous subsections are in place.

A. V1 - Atom loop parallelization
Following the pattern of our initial TestSNAP Kokkos

implementation, our first step is to refactor the algorithm

the element-wise scalar product of two matrices of equal rank,
an operation of computational complexity O(j2). The resultant
real scalar bispectrum components Bj1j2j characterize the
strength of density correlations at three points on the 3-sphere.
The lowest-order components describe the coarsest features of
the density function, while higher-order components reflect
finer detail. The bispectrum components defined here have
been shown to be closely related to the 4-body basis functions
of the Atomic Cluster Expansion introduced by Drautz [12]. In
SNAP, we assume that the local energy can be expressed as
a linear function of all the distinct bispectrum components
formed from matrices Uj up to some maximum degree
J . We enumerate the bispectrum components by restricting
0  2j2  2j1  2j  2J , so that the number of unique
bispectrum components scales as O(J3). The factor of 2 is a
convenient convention to avoid half-integers.

For a particular choice of J , we can list the NB total bis-
pectrum components in some arbitrary order as B1, . . . , BNB ,
atom index i implicit, and express the energy as a linear
function of these

Ei(B) =
NBX

l=1

�lBl (4)

where �l are the linear SNAP coefficients. These coefficients
are trained via ML methods to define the SNAP energy model
for a particular material. The force on each atom k is obtained
by summing over all neighbor atoms i and all bispectrum
components
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As described in Ref. 11, the partial derivative of Bl w.r.t.
rk is a sum of three terms, each involving a neighbor-atom
independent and thus precomputable Z and a neighbor-atom
dependent derivative of U,
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This formulation prescribes the structure of an algorithm for
computing forces from the SNAP potential. We present this in
Listing 1.

B. Initial SNAP Pseudocode
Listing 1 shows the pseudocode of SNAP implementation

by correlating the routines with the equations shown above.
Initially the build neighborlist routine generates a list of
neighbor atoms within the cutoff distance Rcut. Next, in the
compute U routine, we calculate the expansion coefficients
Uj from (1) for each atom and neighbor pair and store
them in Ulist. The sum of these coefficients over neigh-
bors is stored in Ulisttot. Given Ulisttot, in the compute Z
routine we calculate the Clebsch-Gordan product based on
(2) and store the results of Zj

j1j2
in the Zlist structure,

a 5-dimensional array of complex double precision values.

The computational complexity per atom of compute U and
compute Z are O(J3Nnbor) and O(J7), respectively. We
next enter a nested loop over neighbors. In the compute dU
routine we compute dU , the derivative of U w.r.t. the position
of one neighbor atom rk, storing the results in the dUlist
data structure. Subsequently in the routine compute dB we
compute the partial derivatives of Bl shown in (6), storing the
results in dBlist. The computational complexity per neighbor
atom of compute dU and compute dB are O(J3) and O(J5),
respectively. Last, in the update forces routine, we compute
the force contribution due to the neighbor as shown in (5).
This final operation has a computational complexity per atom-
neighbor pair of O(J3). We emphasize that as formulated,
the order of the functions cannot be changed because the
outputs from one routine pipe into the following routine.

for(int natom=0; natom<num_atoms; ++natom)

{

// build neighbor-list for each atom

build_neighborlist();

// compute atom specific coefficients

compute_U(); //Ulist and Ulisttot

compute_Z(); //Zlist

// For each (atom,neighbor) pair

for(int nbor=0; nbor<num_nbors; ++nbor)

{

compute_dU(); //dUlist

compute_dB(); //dBlist

update_forces(); //force-array

}

}

Listing 1: SNAP code

C. GPU implementation of SNAP

The original GPU implementation of SNAP used the
Kokkos [2] framework to distribute the work described in
Listing 1 across the threads of a GPU. This implementation
was based on prior work by Moore and Trott [13], which
in turn was based on an earlier CUDA implementation of
SNAP [14]. The loop over atoms on line 2 of listing 1 is
mapped to a loop over Kokkos teams, which are an abstraction
of CUDA thread blocks. Further parallelism over neighbors,
line 12 of listing 1, and over bispectrum components, implicit
in compute [U,Z,dU,dB], is mapped to Kokkos’s hierarchical
parallelism. This includes the TeamThread abstraction, paral-
lelism over Kokkos “threads”, and the ThreadVector abstrac-
tion, parallelism over “vector lanes”. In the case of GPUs these
abstractions can map to warps and threads within warps (a
“vector width” of 32), respectively.

Table I lists the performance of these initial implementations
of the SNAP potential across several HPC architectures. The
problem sizes chosen for these comparisons comprised of 2000
atoms with 26 neighbors per atom and 2J = 8. The Kokkos
version of SNAP was used for the GPU benchmarks; the
original (non-threaded) SNAP version was used for all others.

Performance speed for classical MD simulations is often
reported in units of Katom-timesteps per second. For example,
given a 2000 atom system, the speed of 29.4 Katom-steps/s
on Intel Haswell implies that the simulation rate was ⇠15 MD
timesteps per second. The peak/node column is the nominal

There is no trivial solution to the out-of-memory error for
the 2J14 problem size. The robust solution to this problem
is given by the so-called adjoint refactorization which we
describe in section IV.

IV. ADJOINT REFACTORIZATION

The original formulation of the SNAP force calculation
relied on pre-calculating and storing the Z matrices for each
atom. This avoided repeated calculation of the O((2j + 1)4)
Clebsch-Gordan products for each of the (2J+1) Z matrices.
With this strategy the total memory footprint per atom scales
as O(J5). To avoid this issue we combine (5) and (6) and
define a new quantity Y that is the adjoint of B with respect
to U,

Yj =
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In this formulation each Z matrix can be computed and
immediately accumulated to the corresponding Yj . This re-
duces the O(J5) storage requirement for Z, replacing it by
the O(J3) storage requirement for Yj . As noted in a recent
paper by Bachmayr et al. [16], this refactorization is equivalent
to the backward differentiation method for obtaining gradients
from neural networks. This separate computation of Yj has the
additional benefit of eliminating the sum over j1 and j2 from
compute dB. Since Yj is neighbor-independent this eliminates
an additional O(Nnbor) of storage and computation relative to
the previous implementation.

With this refactorization we can avoid calculating and
storing dB prior to the force calculation, an O(J3) reduction in
memory overheads. The optimized SNAP force calculation is
now formulated as a sum over one bispectrum index j instead
of three, giving
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In practice we store the force contributions to an Natom ⇥

Nneigh structure dElist. This is because in the full LAMMPS
MD workflow individual dElist components contribute to other
quantities of interest, such as the virial tensor.

Listing 5 shows the modified TestSNAP algorithm
with the adjoint factorization implemented. In summary,
we have replaced the routines compute Z and
compute dB by compute Y and compute dE, respectively.

int natom, nbor;

build_neighborlist();

compute_U();

compute_Y();

compute_dU();

compute_dE();

update_forces();

Listing 5: TestSNAP code

V. OPTIMIZATION OF REFACTORED CODE

The adjoint refactorization reduced both memory overheads
and the computational complexity of the SNAP calculation.

Fig. 2: TestSNAP progress relative to baseline for 2J8 problem
size on NVIDIA V100.

Fig. 3: TestSNAP progress relative to baseline for 2J14 prob-
lem size on NVIDIA V100.

We additionally flattened jagged multi-dimensional arrays re-
lated to the j1, j2, j structures which further reduced memory
use. These optimizations reduced the memory requirements for
the 2J = 14 problem size to 12 GB, rendering our algorithm
tractable on a V100-16GB. The adjoint refactorization and
memory reduction improved performance on CPUs as well
giving us a 3⇥ performance boost on the Intel Broadwell CPU
for the 2J8 problem size.

We document next a series of optimizations we performed
on the refactored algorithm. A summary of our figure of merit,
the grind-time, relative to the baseline is given in Fig. 2
and 3 for the 2J8 and 2J14 problem sizes, respectively. The
performance numbers shown in the figures are obtained by
running TestSNAP on NVIDIA’s V100 GPU. The labels on the
x-axis correspond to subsection numbers, V1 through V7, in
which we provide detailed descriptions of our optimizations.
The height of the bar for any given subsection assumes the
optimizations from all previous subsections are in place.

A. V1 - Atom loop parallelization
Following the pattern of our initial TestSNAP Kokkos

implementation, our first step is to refactor the algorithm

O(J5 Nnbor) storage for Z
O(J3) force calculation

O(J3) storage for Y
O(J) force calculation

Looks obvious… once someone else tells 
you about it.
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Memory matters
• Adjoint refactor: algorithmic redesign that reduced the computational complexity and memory 

footprint by large factor
• Flattened jagged multi-dimensional arrays: reduced memory use
• Major kernel refactor: Broke one large kernel into many smaller kernels, reordered loop structure
• Changed the memory data layout of an array between kernels via transpose operations
• Refactored loop indices and data structures to use complex numbers and multi-dimensional arrays 

instead of arrays of structs
• Refactored some kernels to avoid thread atomics and use of global memory
• Judiciously used Kokkos hierarchical parallelism and GPU shared memory
• Fused a few selected kernels, which helped eliminate intermediate data structures and reduced 

memory use
• Added an AoSoA memory data layout which enforced perfect coalescing and load balancing in one 

of the kernels
• Symmetrized data layouts of certain matrices, which reduced memory overhead and use of thread 

atomics on GPUs (also improved CPU performance)
• Large refactor of Wigner matrices + derivatives to use AoSoA data layout

[Gayatri et al, arXiv:2011.12875v1]
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No silver bullet

There is no trivial solution to the out-of-memory error for
the 2J14 problem size. The robust solution to this problem
is given by the so-called adjoint refactorization which we
describe in section IV.

IV. ADJOINT REFACTORIZATION

The original formulation of the SNAP force calculation
relied on pre-calculating and storing the Z matrices for each
atom. This avoided repeated calculation of the O((2j + 1)4)
Clebsch-Gordan products for each of the (2J+1) Z matrices.
With this strategy the total memory footprint per atom scales
as O(J5). To avoid this issue we combine (5) and (6) and
define a new quantity Y that is the adjoint of B with respect
to U,

Yj =
X

j1j2

�j
j1j2

Zj
j1j2

. (7)

In this formulation each Z matrix can be computed and
immediately accumulated to the corresponding Yj . This re-
duces the O(J5) storage requirement for Z, replacing it by
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to the backward differentiation method for obtaining gradients
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Listing 5: TestSNAP code

V. OPTIMIZATION OF REFACTORED CODE

The adjoint refactorization reduced both memory overheads
and the computational complexity of the SNAP calculation.
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We additionally flattened jagged multi-dimensional arrays re-
lated to the j1, j2, j structures which further reduced memory
use. These optimizations reduced the memory requirements for
the 2J = 14 problem size to 12 GB, rendering our algorithm
tractable on a V100-16GB. The adjoint refactorization and
memory reduction improved performance on CPUs as well
giving us a 3⇥ performance boost on the Intel Broadwell CPU
for the 2J8 problem size.

We document next a series of optimizations we performed
on the refactored algorithm. A summary of our figure of merit,
the grind-time, relative to the baseline is given in Fig. 2
and 3 for the 2J8 and 2J14 problem sizes, respectively. The
performance numbers shown in the figures are obtained by
running TestSNAP on NVIDIA’s V100 GPU. The labels on the
x-axis correspond to subsection numbers, V1 through V7, in
which we provide detailed descriptions of our optimizations.
The height of the bar for any given subsection assumes the
optimizations from all previous subsections are in place.

A. V1 - Atom loop parallelization
Following the pattern of our initial TestSNAP Kokkos

implementation, our first step is to refactor the algorithm
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Some ideas are transferable, but…

• Optimization targeted NVIDIA/V100
• 26x performance improvement for 

V100
• Almost all optimization improved 

performance on AMD/MI250X also
• 24x for MI250X

• MI250X/V100 FLOPS = 2.4x
• MI250X/V100 SNAP = ~0.7x
• We lost over 3x 

performance/FLOPS, why?
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The devil is in the details

V100

§ Independent floating point 
and integer data paths

§ 96 KB L1 cache per SM

§ ~90% L1 cache hit rate 

MI250X

§ Vector ALU (int32) 
bound (ComputeYi)

§ 16 KB L1 cache per SM

§ ~60% L1 cache hit rate 

“Marketed” peak flop rate not always a 
predictor of real world performance
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Time is money

• New ML approaches for potentials 
are constantly being proposed

• We cannot afford to spend years 
optimizing each

• We either need to:
− Become dramatically better at this
− Down-select to a few forms that are 

worth investing in
− Teach the machines to optimize 

themselves
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Algorithmics are also important!

• Very low-level optimization are crucial

• Mathematics can certainly help here, but probably won’t be the main focus on 
this program until new ideas are fleshed up and ready to be implemented (e.g., 
around the Hackathon)

• Perhaps of more immediate interest: high-level algorithmics choices also make 
a huge difference, especially for parallelization schemes: mathematics and 
domain knowledge are critical there
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Parallel MD
Most cycles spent here

Communication required at every step

Each processor owns its domain

Scalable if 
computation >> communication
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MD weak-scales

More compute = larger 
simulations
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Weak-scaling

4% 1%

95%

20 BILLION ATOMS 
MPI Comm Other SNAP

12% 2%
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1 BILLION ATOMS 
MPI Comm Other SNAP

35%
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60%

100 MILLION ATOMS 
MPI Comm Other SNAP

Figure 4: A breakdown of the time spent for di�erent atom
counts on the full machine as measured by the timers in
LAMMPS. “SNAP” indicates time spent in the force computa-
tion, “MPI Comm” indicates time spent in communication,
and “Other” indicates time spent in I/O, the Langevin ther-
mostat, Verlet time integration, and other services.
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Figure 5: Weak scaling for amorphous carbon samples mea-
sured as MD performance vs node count. Sample sizes range
from 373,248 atoms to 1,528,823,808 atoms and correspond
to 373,248 atoms/node. Ideal scaling comparing to 1 and 64
nodes is indicated by dashed and dotted horizontal lines, re-
spectively.

nodes which is to be expected: Summit nodes are grouped in racks
of 18 and there is an associated inter-rack communications penalty
when crossing this threshold. Beyond this threshold excellent weak
scaling behavior resumes, giving 90% parallel e�ciency on 4096
nodes compared to 1 node. This experiment a�rmed that 373,248
atoms/node at full machine scale would provide a simulation rate
of 1 ns per day.

Fig. 6 compares the performance of the amorphous carbon bench-
mark on 4 out of the top 10 fastest HPC machines (as of June 2021),
strong scaling the 1 billion atom amorphous benchmark. Perfor-
mance on Summit is approximately 52 times faster per node than on
Frontera. Performance on Selene is about 1.9x faster than Summit
per node. For example, with a 20 billion atom run on 512 nodes of
Selene, we achieved 12.72 Matom-steps/node-s, which corresponds
to 11.14 PFLOPS or 14% of peak for the full machine. A similar
20 billion atom run on 1024 nodes of Perlmutter achieved
a 6.42 Matom-steps/node-s, corresponding to 11.24 PFLOPS
on just two-thirds of the machine.
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Figure 6: Comparison of performance between TACC Fron-
tera, OLCF’s Summit, NERSC’s Perlmutter, and NVIDIA’s
Selene supercomputers for an a-C sample containing
1,024,192,512 atoms.
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Figure 7: Sustained performance for realistic production
science runs of a-C!BC8 transformation. Simulation con-
sisted of 1,024,192,512 atoms on 4650 nodes. Loop time was
measured every 1000 MD steps. Large dips in performance
show�le I/O (e.g. writing binary checkpoint�les). The small
rise in average performance in each simulation is associated
with the emergence of the ordered BC8 phase.

We note that the FP64 peak FLOPS on Selene and Perlmutter
includes the usage of FP64 tensor cores on the NVIDIA A100, which
cannot be utilized with SNAP because the evaluation does not map
onto matrix multiplication. It is not surprising that Selene has twice
the Matom-steps/node-s of Perlmutter because it has two times the
number of NVIDIA A100 GPUs. We also see a rough performance
parity between one Summit node and one Perlmutter node despite
Perlmutter having two fewer GPUs, owing to the generational
improvements between the two machines.

Fig. 7 shows the performance of our science production run,
investigating the a-C!BC8 phase transition at di�erent tempera-
tures. Color represents restarts at di�erent temperatures. Signi�cant

9
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Strong-scaling
7 PERFORMANCE RESULTS
The small amorphous sample pro�led previously was replicated
in three dimensions to give ⇠20 billion (19,683M) atoms. Due to
this periodic repetition we expect the number of �oating point
operations measured previously to scale with the number of atoms
for this larger benchmark. We then ran the 20 billion atom sim-
ulation on 27,900 GPUs for 100 timesteps, and the timers in the
LAMMPS log �le reported an average performance of 6.21 Matom-
steps/node-s, or equivalently 1.47 timesteps per second. We note
that the LAMMPS timers only measure the MD timestep loop, so
time setting up the run and MPI initialization/�nalization are not
included. Combining this performance with the previously
measured FLOP count gives 50.0 PFLOPS (double precision)
on the full Summitmachine, or 24.9% of the theoretical peak
computing rate. Our SNAP implementation has no regular linear
algebra kernels yet achieves one-third of the measured LINPACK
performance on Summit, highlighting the extent of our optimiza-
tions for GPUs.

The DeepMD NN-based ML-IAP [30] recently reported a double
precision time-to-solution of 8.1 ⇥ 10�10 s/step/atom for ⇠127 mil-
lion copper atoms on 4560 Summit nodes [39], which is equivalently
an MD performance of 0.271 Matom-steps/node-s. For 20 billion
carbon atoms on 4650 Summit nodes, our MD performance of
6.21Matom-steps/node-s is 22.9x higher than what DeepMD
reported, meaning our SNAP ML-IAP is signi�cantly more
e�cient than DeepMD while still achieving ab initio accu-
racy.

Amaximum of 4,662 nodes can be requested per job in the “batch”
queue on Summit. We chose to run on 4,650 nodes (27,900 GPUs)
for two reasons. The �rst is that 27,900 MPI ranks factor into a 3D
grid of nearly equal values: 30⇥30⇥31, minimizing the surface-to-
volume ratio of the communication halo exchange regions for our
cubic simulation box. The second is that this provides a small bu�er
of extra nodes in case one or more nodes go down or are running
at sub-optimal performance.

Tominimize variation andmaximize performance in both scaling
and production runs, we ran a small LAMMPS test job on every
GPU independently. The average runtime was calculated, and any
GPUs that were signi�cantly slower than the average were recorded.
While running our scaling and production runs, several (⇠15) GPUs
outside this criterion were detected and the corresponding nodes
were reported to the system administrators. To mitigate the e�ect of
these unhealthy nodes on the performance of our full system runs,
we reserved 4,660 nodes (10 nodes more than we use in production
4,650 node runs) and used the LAMMPS test job to generate a list
of slow nodes on-the-�y. These nodes were then automatically
excluded at runtime when the MPI driver “jsrun” was executed in
the submission script.

A strong scaling study was performed on the amorphous carbon
sample running for 100 MD timesteps, as shown in Fig. 3. We
used several sample sizes: 1, 10, and 100 million, and 1, 4 and 20
billion atom a-C samples while varying number of nodes from the
minimum possible to all 4,650 nodes, the former being the minimum
number of nodes a particular sample size can �t into, e.g. 64 nodes
for 1 billion atom a-C sample and 972 nodes for 20 billion atom a-C
sample.
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Figure 3: Strong scaling: (a) time to solution in seconds per
step and (b) MD performance for amorphous carbon sam-
ples with 1,259,712; 10,077,696; 102,503,232; 1,024,192,512;
4,251,528,000 and 19,683,000,000 atoms. Total loop time was
measured for 100 MD steps. Perfect scaling is shown in (a)
as dashed lines. Perfect scaling in (b) would be a horizontal
line (not shown).

Fig. 3 shows excellent strong scaling behavior up to the full ma-
chine for samples with billions of atoms. For example, the 20 billion
atom simulation has 97% parallel e�ciency when comparing the
performance of 4,650 nodes to 972 nodes. The 1 billion atom simula-
tion has 82% parallel e�ciency when comparing 4,650 nodes to 64
nodes. The 10 million atom simulation has 41% parallel e�ciency
when comparing 512 nodes to 1 node.

Fig. 4 shows a breakdown of the timings as reported by the
LAMMPS log �le for di�erent sample sizes on the full machine. The
relative percentage of communication grows as the computational
load decreases, hence increasing the atom count per GPU increases
the e�ciency at full scale.

Fig. 5 shows weak scaling behavior using 373,248 atoms/node
(62k atoms/GPU), scaling from 1 to 4096 nodes and run for 100 MD
timesteps. There is a small drop in performance going from 8 to 64
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reported, meaning our SNAP ML-IAP is signi�cantly more
e�cient than DeepMD while still achieving ab initio accu-
racy.
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for two reasons. The �rst is that 27,900 MPI ranks factor into a 3D
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cubic simulation box. The second is that this provides a small bu�er
of extra nodes in case one or more nodes go down or are running
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and production runs, we ran a small LAMMPS test job on every
GPU independently. The average runtime was calculated, and any
GPUs that were signi�cantly slower than the average were recorded.
While running our scaling and production runs, several (⇠15) GPUs
outside this criterion were detected and the corresponding nodes
were reported to the system administrators. To mitigate the e�ect of
these unhealthy nodes on the performance of our full system runs,
we reserved 4,660 nodes (10 nodes more than we use in production
4,650 node runs) and used the LAMMPS test job to generate a list
of slow nodes on-the-�y. These nodes were then automatically
excluded at runtime when the MPI driver “jsrun” was executed in
the submission script.

A strong scaling study was performed on the amorphous carbon
sample running for 100 MD timesteps, as shown in Fig. 3. We
used several sample sizes: 1, 10, and 100 million, and 1, 4 and 20
billion atom a-C samples while varying number of nodes from the
minimum possible to all 4,650 nodes, the former being the minimum
number of nodes a particular sample size can �t into, e.g. 64 nodes
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Figure 3: Strong scaling: (a) time to solution in seconds per
step and (b) MD performance for amorphous carbon sam-
ples with 1,259,712; 10,077,696; 102,503,232; 1,024,192,512;
4,251,528,000 and 19,683,000,000 atoms. Total loop time was
measured for 100 MD steps. Perfect scaling is shown in (a)
as dashed lines. Perfect scaling in (b) would be a horizontal
line (not shown).

Fig. 3 shows excellent strong scaling behavior up to the full ma-
chine for samples with billions of atoms. For example, the 20 billion
atom simulation has 97% parallel e�ciency when comparing the
performance of 4,650 nodes to 972 nodes. The 1 billion atom simula-
tion has 82% parallel e�ciency when comparing 4,650 nodes to 64
nodes. The 10 million atom simulation has 41% parallel e�ciency
when comparing 512 nodes to 1 node.

Fig. 4 shows a breakdown of the timings as reported by the
LAMMPS log �le for di�erent sample sizes on the full machine. The
relative percentage of communication grows as the computational
load decreases, hence increasing the atom count per GPU increases
the e�ciency at full scale.

Fig. 5 shows weak scaling behavior using 373,248 atoms/node
(62k atoms/GPU), scaling from 1 to 4096 nodes and run for 100 MD
timesteps. There is a small drop in performance going from 8 to 64
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ulation on 27,900 GPUs for 100 timesteps, and the timers in the
LAMMPS log �le reported an average performance of 6.21 Matom-
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time setting up the run and MPI initialization/�nalization are not
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on the full Summitmachine, or 24.9% of the theoretical peak
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The DeepMD NN-based ML-IAP [30] recently reported a double
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lion copper atoms on 4560 Summit nodes [39], which is equivalently
an MD performance of 0.271 Matom-steps/node-s. For 20 billion
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6.21Matom-steps/node-s is 22.9x higher than what DeepMD
reported, meaning our SNAP ML-IAP is signi�cantly more
e�cient than DeepMD while still achieving ab initio accu-
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Amaximum of 4,662 nodes can be requested per job in the “batch”
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for two reasons. The �rst is that 27,900 MPI ranks factor into a 3D
grid of nearly equal values: 30⇥30⇥31, minimizing the surface-to-
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cubic simulation box. The second is that this provides a small bu�er
of extra nodes in case one or more nodes go down or are running
at sub-optimal performance.

Tominimize variation andmaximize performance in both scaling
and production runs, we ran a small LAMMPS test job on every
GPU independently. The average runtime was calculated, and any
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of slow nodes on-the-�y. These nodes were then automatically
excluded at runtime when the MPI driver “jsrun” was executed in
the submission script.
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used several sample sizes: 1, 10, and 100 million, and 1, 4 and 20
billion atom a-C samples while varying number of nodes from the
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Figure 3: Strong scaling: (a) time to solution in seconds per
step and (b) MD performance for amorphous carbon sam-
ples with 1,259,712; 10,077,696; 102,503,232; 1,024,192,512;
4,251,528,000 and 19,683,000,000 atoms. Total loop time was
measured for 100 MD steps. Perfect scaling is shown in (a)
as dashed lines. Perfect scaling in (b) would be a horizontal
line (not shown).

Fig. 3 shows excellent strong scaling behavior up to the full ma-
chine for samples with billions of atoms. For example, the 20 billion
atom simulation has 97% parallel e�ciency when comparing the
performance of 4,650 nodes to 972 nodes. The 1 billion atom simula-
tion has 82% parallel e�ciency when comparing 4,650 nodes to 64
nodes. The 10 million atom simulation has 41% parallel e�ciency
when comparing 512 nodes to 1 node.

Fig. 4 shows a breakdown of the timings as reported by the
LAMMPS log �le for di�erent sample sizes on the full machine. The
relative percentage of communication grows as the computational
load decreases, hence increasing the atom count per GPU increases
the e�ciency at full scale.

Fig. 5 shows weak scaling behavior using 373,248 atoms/node
(62k atoms/GPU), scaling from 1 to 4096 nodes and run for 100 MD
timesteps. There is a small drop in performance going from 8 to 64
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For “small” systems, strong-
scaling breaks down. 

“Max” simulation rate: 
~10ns/day
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Breakdown of strong-scaling
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35%

5%

60%

100 MILLION ATOMS 
MPI Comm Other SNAP

Figure 4: A breakdown of the time spent for di�erent atom
counts on the full machine as measured by the timers in
LAMMPS. “SNAP” indicates time spent in the force computa-
tion, “MPI Comm” indicates time spent in communication,
and “Other” indicates time spent in I/O, the Langevin ther-
mostat, Verlet time integration, and other services.
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Figure 5: Weak scaling for amorphous carbon samples mea-
sured as MD performance vs node count. Sample sizes range
from 373,248 atoms to 1,528,823,808 atoms and correspond
to 373,248 atoms/node. Ideal scaling comparing to 1 and 64
nodes is indicated by dashed and dotted horizontal lines, re-
spectively.

nodes which is to be expected: Summit nodes are grouped in racks
of 18 and there is an associated inter-rack communications penalty
when crossing this threshold. Beyond this threshold excellent weak
scaling behavior resumes, giving 90% parallel e�ciency on 4096
nodes compared to 1 node. This experiment a�rmed that 373,248
atoms/node at full machine scale would provide a simulation rate
of 1 ns per day.

Fig. 6 compares the performance of the amorphous carbon bench-
mark on 4 out of the top 10 fastest HPC machines (as of June 2021),
strong scaling the 1 billion atom amorphous benchmark. Perfor-
mance on Summit is approximately 52 times faster per node than on
Frontera. Performance on Selene is about 1.9x faster than Summit
per node. For example, with a 20 billion atom run on 512 nodes of
Selene, we achieved 12.72 Matom-steps/node-s, which corresponds
to 11.14 PFLOPS or 14% of peak for the full machine. A similar
20 billion atom run on 1024 nodes of Perlmutter achieved
a 6.42 Matom-steps/node-s, corresponding to 11.24 PFLOPS
on just two-thirds of the machine.
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Figure 6: Comparison of performance between TACC Fron-
tera, OLCF’s Summit, NERSC’s Perlmutter, and NVIDIA’s
Selene supercomputers for an a-C sample containing
1,024,192,512 atoms.
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Figure 7: Sustained performance for realistic production
science runs of a-C!BC8 transformation. Simulation con-
sisted of 1,024,192,512 atoms on 4650 nodes. Loop time was
measured every 1000 MD steps. Large dips in performance
show�le I/O (e.g. writing binary checkpoint�les). The small
rise in average performance in each simulation is associated
with the emergence of the ordered BC8 phase.

We note that the FP64 peak FLOPS on Selene and Perlmutter
includes the usage of FP64 tensor cores on the NVIDIA A100, which
cannot be utilized with SNAP because the evaluation does not map
onto matrix multiplication. It is not surprising that Selene has twice
the Matom-steps/node-s of Perlmutter because it has two times the
number of NVIDIA A100 GPUs. We also see a rough performance
parity between one Summit node and one Perlmutter node despite
Perlmutter having two fewer GPUs, owing to the generational
improvements between the two machines.

Fig. 7 shows the performance of our science production run,
investigating the a-C!BC8 phase transition at di�erent tempera-
tures. Color represents restarts at di�erent temperatures. Signi�cant

9

Communication
becomes the 

bottleneck

More compute ≠ longer 
simulations



254/5/23

The prospect for MD at the exascale
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Reaching long timescales

• How could we use exascale machines to reach long timescales?

• Parallelizing over space alone is not viable for small systems

• Can we parallelize over time instead?
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Who needs long timescales anyway?

• For materials away from melting:
− Fast vibrations/fluctuations (ps)
− Slow conformational changes (ns-s)

• Short simulations are often not 
informative of long-time behavior

• This is bad for MD, but it is key for 
acceleration 
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Who needs long timescales anyway?

• Vibrational relaxation within state 
controlled by the curvature of V 
around the minimum
− tvib ~ 1 ps
− dt ~ 1 fs, no matter whether something 

interesting is happening or not!

• Transition between states requires
overcoming an energy barrier DE
− tesc ~ tvib exp(DE/kT)

tesc >> tvib > dt whenever DE>>kT
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State-to-state dynamics

Goal is to generate a single statistically correct state-to-state trajectory

When interesting events are rare, 
you don’t care precisely how 
boring the trajectory was in 

between
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Can we parallelize over space time?

[Perez, Cubuk, Waterland, Kaxiras, Voter, JCTC 12, 18 (2016)]

Parallelize over the present: try to 
generate the next escape event ASAP 

using many replicas

This can strong-scale scale if:
• Simulations are independent
• Pieces can be spliced accurately
• We can use all of the pieces we generated
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Mathematicians to the rescue

• Key ideas were derived by Arthur Voter using 
arguments intuitive to physicists/chemists

• Turns out that “derived” has a different meaning for 
mathematicians…

• Working with Tony Lelièvre, Claude Le Bris, Mitch 
Luskin, we endeavored to clean things up. First 
meeting at IPAM about 13 years ago…

• Lead to a much more sophisticated understanding 
of the generality of the methods
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State-to-state dynamics

Need to capture transition statistics:
• Distribution of first-escape times from W
• Distribution of first-escape points on dW

Key Concept: Quasi-stationary Distribution (QSD)
W

dW

2.1 The quasi-stationary distribution

Consider a state W ⊂ Rd, and let

T x
W = inf{t > 0,Xx

t "∈ W}

be the first escape time of W for the stochastic process Xx
t satisfying (1) and starting at

x ∈ W at time 0. The state W is in practice a level set of the map S, and we suppose in
the following that W is fixed, and is a bounded Lipschitz domain of Rd. A quasi-stationary
distribution ν, for the stochastic process Xt and associated to W , is a distribution with
support in W and such that, for any positive time t and for any measurable set A ⊂ W ,

ν(A) =

∫

W

P(Xx
t ∈ A, t < T x

W ) dν
∫

W
P(t < T x

W ) dν
. (3)

In words, if X0 is distributed according to ν, then, conditionally on not having left the
well W up to time t, Xt is still distributed according to ν.

For the convenience of the reader, we collect in this section a few elementary properties
of the QSD. For more details on the theory, we refer, for example, to [3, 13, 12, 4, 15, 14,
5, 6, 7].

Let Xt be the stochastic process satisfying (1). We introduce its infinitesimal generator:

L = −∇V ·∇+ β−1∆,

and we denote by L∗ = div (∇V ·) + β−1∆ its adjoint.
We start by stating a Feynman-Kac formula that will be useful below.

Proposition 1 Consider a smooth solution v(t, x) to the problem:











∂tv = Lv for t ≥ 0, x ∈ W ,

v = ϕ on ∂W ,

v(0, x) = v0(x),

where ϕ is a smooth function. Then,

v(t, x) = E

(

1Tx
W<t ϕ(X

x
Tx
W
)
)

+ E
(

1Tx
W≥t v0(X

x
t )
)

,

where Xx
t is the process starting at x at time 0 and T x

W the first exit time from W .

Proof : Fix a time t and consider u(s, x) = v(t− s, x), which satisfies











∂su+ Lu = 0 for s ∈ [0, t], x ∈ W ,

u = ϕ on ∂W ,

u(t, x) = v0(x).

Using Itô calculus, we see that: ∀s ∈ [0, T x
W ∧ t],

u(s,Xx
s ) = u(0, x) +

∫ s

0
(∂su+ Lu)(r,Xx

r ) dr +
√

2β−1

∫ s

0
∇u(r,Xx

r ) dWr

= u(0, x) +Ms,

6

If X0 is distributed according to QSD, then, conditionally on not having 
left W up to time t, Xt is still distributed according to QSD
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Quasi-stationary distribution

Consider an ensemble of trajectories initialized somewhere in state W

t=0

Impose absorbing boundaries 
on dW
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Quasi-stationary distribution

Evolve that ensemble in time, removing any trajectory that escapes 

t=1
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Quasi-stationary distribution

Look at the distribution of whomever is left

t=2
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Quasi-stationary distribution

That distribution eventually converges…

t=3
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Quasi-stationary distribution

And no longer varies with time…

t=4
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Quasi-stationary distribution

This limiting distribution is the QSD of state W

t=infinity
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QSD for Langevin dynamics

In the following: 
• Overdamped Langevin dynamics
• Absorbing boundary conditions on dW
• Generator has eigenvalues 0 > −𝜆!> −𝜆"≥ −𝜆# …
• QSD is eigenfunction u1(X) of generator 

corresponding to 𝝀𝟏

Most of the following also applies 
to other dynamics, if:
• QSD exists
• QSD is unique
• Convergence to the QSD is fast

W

dW
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QSD for Langevin dynamics
%&
%'
= 𝐿𝜌 onW

𝜌 = 0 on 𝜕𝑊

With 𝐿 = −∇𝑉 0 ∇ + 𝛽(!∆
Then:

𝜌 𝑋, 𝑡 =7
)

𝑒(*!' 𝑐)+𝑢)(𝑋)

For 𝑡 > (l2−l1)−1 and conditional on not having escaped, 

=𝜌 𝑋, 𝑡 ≅ 𝑢! 𝑋 + 𝑂(𝑒( *"(*# ')
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Properties of the QSD
• The QSD of W is unique
• Convergence to the QSD is exponential with rate (l2-l1)

From the QSD:
• First escape time is random and exponentially distributed with rate l1
• First escape point is random and uncorrelated with escape time

This is true for any state definition!

Overdamped Langevin: [Le Bris, Lelievre, Luskin, and DP, MCMA 18, 119 (2012)]
Langevin: [Lelievre, Ramil, Reygner, arXiv:2101.11999]

Rate of memory loss

Does not depend
on history before 
reaching the QSD
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After spending tc > (l2-l1)-1 in W, 
the next escape from W becomes

Markovian*

After only a short time in the state,
the next escape time/location distribution

is a complex function of the entry point

* Up to an exponentially small error in tc

All trajectories that spent tc > (l1-l2)-1 

in W are statistically equivalent with 
respect to how and when they will 

leave W*
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Trajectory building block

Define a segment as a trajectory that spent at least tc in the same state before its
beginning and before its end. 

* Up to an exponentially small error in tc

QSD sample in state 1 QSD sample in state 3

A valid state-to-state trajectory can be assembled by 
splicing independent segments end-to-end*

Exactly what we need for strong-scaling!
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Parallel Trajectory Splicing (ParSplice)

[Perez, Cubuk, Waterland, Kaxiras, Voter, JCTC 12, 18 (2016)]
[Aristoff, SIAM/ASA Journal on Uncertainty Quantification 7, no. 2 (2019): 685-719]
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Parallelizing over the past with bookkeeping

X

Don’t throw away! Store for 
eventual revisits
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Super-basins

Los Alamos National Laboratory

Revisits are extremely 
common in many materials 

system!

Parallelize over the past: store 
work done but not used for 

(potential) future use.

Precomputation/caching is a 
common strategy
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Parallelize over the future with speculation
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Statistical oracle

p1-2

p2-3
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Statistical oracle We use this model to speculate where the 
trajectory will be in the future

Model quality affects efficiency, but not
accuracy

See A. Garmon, DP, MSMSE 28, 065015 (2020) for more detail on model construction
See A. Garmon, V. Ramakrishnaiah, DP, arXiv:2010.11792, for use of model for resource allocation

Parallelize over the future: allocate 
work based on where you think the 

system will be in the future

Speculation is a common strategy at 
the instruction level (branch 

prediction), but not so much the task 
level

More on this in WS 1
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Shape Fluctuations in 
Nanoparticles

• Metallic nanoparticles (150-300 atoms)
• Between 3,600 and 36,000 cores

• Long simulations: up to 4 ms
• Many transitions: up to ~100M per run
• Many states: up to ~1M per run 

Rao Huang
(Xiamen U.)

Huang, Lo, Wen, Voter, Perez, JCP 147, 152717 (2017)
Perez, Huang, Voter, JMR 33, 813 (2018)
Huang, Wen, Voter, Perez, Phys. Rev. Mat. 2, 126002 
(2018) 
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Benchmark results: An Easy Case

Ncores Trajectory length 

(ps)

Generated segment 

time (ps)

#Transitions #States <ttrans/M tc> <R> Simulation 

rate 

(µs/hour)

9,000 556,093,988 556,539,980 4,614 28 13.39 166 139

18,000 1,315,941,923 1,346,516,503 24,610 64 2.97 384 333

27,000 2,209,432,238 2,214,868,608 13,479 47 4.55 294 552

36,000 2,291,027,808 2,318,254,470 50,258 60 1.26 909 592

T=300K, LANL Grizzly, 4h runs

Peak simulation rate: 10 µs/min, 10 ms/day99% of generated segments were spliced

Rare events
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Benchmark results: Hard Cases

T (K) Trajectory length 

(ps)

Generated segment 

time (ps)

#Transitions #States <ttrans/M tc> <R> Simulation 

rate 

(µs/hour)

300 340,699,441 341,011,427 2,227 15 21.25 149 85

400 267,608,621 305,631,041 21,629,711 4,785 0.0017 4545 69

600 194,178,176 269,536,048 90,096,511 24,161 0.00029 3846 48

700 70,212,784 228,559,866 33,780,937 250,867 0.00028 135 17

800 1,754,393 220,695,348 738,292 36,613 0.00033 20 0.45

900 169,943 10,673,302 64,208 11,577 0.00030 6 0.043

Very fast events: need only a few segments
to escape

75% of generated segments were spliced
2700x speedup over MD

Most of performance 
from revisits~4x from speculation

Multiple levels of parallelism contribute in hard cases

Reduces to MD if dynamics is fast and new/unpredictable 
things happen all the time 
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Parallelizing over space

• The efficiency of ParSplice is 
limited by the global rate at which 
events occur: the rarer the better

• This limits performance on large 
systems where the exit rate 
scales with N

• However, most transitions are 
spatially localized. Can we use 
this to make ParSplice sensitive 
only to the local event rate?
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Spatial Parallelization Strategy 
1. Divide the simulation cell into a grid of sub-domains. 
2. Extract and prepare the sub-domains

Fixed region

Buffer region

Active region

3. Execute MD simulations on each sub-domain. 
Multiple instances of each sub-domain execute 
concurrently using ParSplice

4. ParSplice assembles the generated trajectory
5. When a transition occurs, re-synchronize 

neighboring sub-domains



554/5/23

Domain synchronization

A B C A B C A B C

D E F D E F D E F

G H I G H I G H I

A B C A B C A B C

D E F D E F D E F

G H I G H I G H I

A B C A B C A B C

D E F D E F D E F

G H I G H I G H I

1. Create different sub-lattices (A-I). 
No sub-domain should have a neighbor in the same 
sub-lattice

2. Splice trajectories on one sub-lattice at the time for a 
preset time horizon

3. If a transition occurs in one domain, synchronize 
neighboring domain, and re-schedule them for 
execution. If the domains are larger than an “event 
size”, synchronization conflicts won’t occur.

4. Move to the next sub-lattice

[Shim and Amar, Phys. Rev. B 71, 115436 (2005)]

This type of domain decomposition is 
strong-scalable because 

synchronization is not required at 
every timesteps, but only at every 

(rare) event.

Applicable to many different methods
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How to run this at scale? ParSplice as a workflow

• Short tasks (~sec)
• Limited scalability per task 

(~1 GPU - a few nodes)
• Inter-task dependencies 
• Just-in-time task identification
• Large computing resources 

• Many, short, tightly-coupled tasks

• Scheduling with queuing system
• File-based communication
• Synchronous communication

• Internal task management
• File-less API-based engines
• Asynchronous communication and 

I/O
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High-level model

• Top-down scheduling of complex workflows on large heterogeneous hardware 
is hard

• EXAALT model: let hardware availability drive execution

• EXAALT is a PULL model: the framework requests tasks from the workflow to 
maintain high hardware usage

• The workflow should be able to identify new tasks at any time
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Under the hood of EXAALT

Store/move data

Execute tasks

Generate tasks, 
process results

Manage task 
execution x 10 – 102 managers

x 103 – 106 workers

Task management
Data management

Task execution
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Task request
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Tasks
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Data dependencies
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Task + data
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Task execution
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Task outputs
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Returned data
Stored data
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Design goals/choices

• Pull model: the hardware is telling you what it wants

• No worker should ever be idle:
− Communication/data motion should occur in the background

• Everything is asynchronous/non-blocking: 
− Communication between WM and TM
− Access to datastore

• Flat consumer-producer model not scalable: use TMs as middle-men
− Maintain local task queues and fulfills data dependencies
− TM pre-emptively requests more tasks before running out
− Aggregates small messages into larger ones
− TMs can be hardware-specific
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Support for heterogeneous hardware

• MPI ranks assigned to each TM at 
launch 

• Can tie specific hardware to specific 
TM: “GPU” TM and “CPU” TM and 
route tasks accordingly

• Can dynamically adjust granularity of 
workers under each TM. 

“GPU” Ranks “CPU” Ranks
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EXAALT
Pros:
• Very scalable! 
• Simple API
• Python bindings
• Growing engine ecosystem

− Native python code
− MD: LAMMPS 
− QM: NWChem, Quantum Expresso, 

DFT-FE, LATTE 
− KMC: SPARRKS 
− DDD: ModeLIB (DDD) [in development]
− Support for MolSSI/MDI plugin model

Cons:
• Not designed for all workloads
• Early stage of development

DFTB (which can be deployed on many cores per worker), these results indicate that the task-
management framework is very likely to scale all the way to exascale.  
 
The raw data from these benchmarks can be found at 
https://confluence.exascaleproject.org/pages/viewpage.action?pageId=48759117  
 
 

 
FIG 4: Scaling of ParSplice for a 147-atoms nanoparticle using an EAM potential. Note that 
the line is a visual guide to assess linearity, and not an indication of the theoretical peak. 

 
 

In order to further demonstrate the usefulness of ParSplice in terms of scientific discovery, 
we investigated adatom diffusion on tungsten (W) surfaces. This phenomenon plays an important 
role in the process of surface roughening and nanostructure formation of tungsten plasma-facing 
components exposed to helium plasma implantation. The mobility of Wn clusters on W surfaces 
has been previously investigated by classical molecular dynamics (MD). However, the simulation 
time was limited to about 40 ns, which is insufficient for the diffusion of large clusters which 
experience relatively  high energy barriers. Within the EXAALT project, we have been testing the 
speed efficiency and accuracy of the ParSplice code for accelerated molecular dynamics (AMD) 
simulations to investigate the diffusion mechanisms of W clusters (Wn, n = 3-9) on W(110) and 
W(100) surfaces at 1000 K. W-W interactions were described by an EAM potential modified by 
Juslin and Wirth based on the Ackland and Thetford potential. 4096 or 4224 W atoms were used 
to describe the W(100) or W(110) surfaces, respectively, and were simulated on OLCF-Titan and 

MD intake rate EAM potential
Peak: 6x1010 atom-step/s

~50,000 tasks/sec



784/5/23

Mapping ParSplice unto Frontier

• Simulation executed using EXAALT on 7000 
Frontier nodes (75% of machine)

• ~1% of resources for management

• ~99% of resources to simulation

• Infrastructure re-assigns MD tasks to workers 
every ~7 seconds

• 81 sub-domains

• ~170 instances of each sub-domain execute 
concurrently

• 4 GPU dies for every instance

1x 1x

70x

13856x

4x GPUs
per worker

72 nodes for data and task management 
6928 nodes for MD simulations

EXAALT task-management system
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How much is too much?

• GPUs are becoming so powerful 
that large numbers of atoms are 
needed to saturate performance

• For expensive potentials (e.g., 
SNAP), around ~10K atoms per 
GPU

• For cheap potentials (e.g., EAM), 
~10M atoms per GPU
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GPUs are too powerful!
• Good news for expensive potentials

− Parallel MD: >300M atoms for SNAP
− ParSplice: ~10K atoms per replica, 50% of peak performance if running 1K atom

• Bad news for cheap potentials.
− Parallel MD: >300B atoms for EAM
− ParSplice: ~30M atoms per replica, 1% of peak performance if running 1K atom

• It is possible to oversubscribe GPUs, but only limited performance improvement 
with out-the-box methods

• Bad news for anything that doesn’t require expensive potentials and/or millions 
of atoms! 
− 90% of what people currently do with MD
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GPUs are too powerful!

• Solution would be to enable MD codes to run many systems concurrently in a 
seamless fashion

• A single MD timestep would propagate many systems at once

• Proof of concept (Lubbers and Mehta):
− Concatenate all systems into a single list of atoms
− Create a combined neighbors list, with potentially different simulation cell for each system
− Compute forces all at once on the GPU: atoms from different systems don’t see each 

other
− Integrate all systems in lockstep

One would need to expose this capability in a way that is transparent to users and allow for 
the reuse of existing algorithms. Interesting software engineering problem!
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What do we want out of exascale

Time

Size

Accuracy

Compute limit
More compute
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What do we get out of exascale with standard methods

Time

Size

Accuracy

Large size

High accuracy

Long times

Especially bad at
Low accuracy 

and 
small to medium size
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Conclusion/Outlook

• Large computers offers unprecedented opportunities for atomistic simulations, 
but also challenges

• The technology is pushing simulations towards more expensive models and 
larger simulations

• This is now true even at the single node level! 

• Significant methodological and software evolution will be required to avoid 
the simulation space moving away from scientifically relevant regimes


