1% Los Alamos

NATIONAL LABORATORY

Molecular dynamics on
exascale computers: a
case study

Danny Perez
Theoretical Division T-1

)
NA‘S’% Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA. 4/5/23 1

What do we want out of exascale: more compute = more
science

. A Compute limit
Time More compute

Size

Accuracy

AAAAAAAAAAAAAAAAAA

Plan

» A case study of MD on exascale computers with the SNAP potential
- Porting SNAP to GPUs

— Parallel MD using SNAP: weak and strong scaling

* The timescale problem of MD
— Parallelizing over time instead of space with Parallel Trajectory Splicing

» Accuracy tradeoffs

1% Los Alamos

AAAAAAAAAAAAAAAA

Case study

Billion atom molecular dynamics simulations of carbon at
extreme conditions and experimental time and length scales

Kien Nguyen-Cong"
nguyencong@usf.edu
University of South Florida
Tampa, FL, USA

Anatoly B. Belonoshko
anatoly@kth.se
Royal Institute of Technology (KTH)
Stockholm, Sweden

Mitchell A. Wood
mitwood@sandia.gov
Sandia National Laboratories
Albuquerque, NM, USA

1% Los Alamos

NATIONAL LABORATORY

Jonathan T. Willman*
jwillma2@usf.edu
University of South Florida
Tampa, FL, USA

Stan G. Moore
stamoor@sandia.gov

Sandia National Laboratories

Albuquerque, NM, USA

Rahulkumar Gayatri
rgayatri@lbl.gov
NERSC
Berkeley, CA, USA

Evan Weinberg
eweinberg@nvidia.com
NVIDIA Corporation
Santa Clara, CA, USA

Aidan P. Thompson
athomps@sandia.gov
Sandia National Laboratories
Albuquerque, NM, USA

Ivan I. Oleynik
oleynik@usf.edu

University of South Florida

Tampa, FL, USA

9

Los Alamos

AAAAAAAAAAAAAAAA

ABSTRACT

| Billion atom molecular dynamics (MD)|using quantum-accurate
machine-learning|Spectral Neighbor Analysis Potential (SNAP)|ob-
served long-sought high pressure BC8 phase of carbon at extreme

pressure (12 Mbar) and temperature (5,000 K).| 24-hour, 4650 node |

production simulation on OLCF Summit demonstrated an unprece-
dented scaling and unmatched real-world performance of SNAP
MD while sampling|1 nanosecond of physical time.|Efficient im-
plementation of SNAP force kernel in LAMMPS using the Kokkos
CUDA backend on NVIDIA GPUs combined with excellent strong
scaling |(better than 97% parallel efficiency) enabled a peak comput-
ing rate of [50.0 PFLOPs (24.9% of theoretical peak) for a 20 billion
atom MD simulation on the full Summit machine (27,900 GPUs).
The peak MD performance of 6.21 Matom-steps/node-s is 22.9 times
greater than a previous record for quantum-accurate MD. Near per-
fect weak scaling of SNAP MD highlights its excellent potential
to advance the frontier of quantum-accurate MD to trillion atom
simulations on upcoming exascale platforms.

The SNAP method

U, = Y felrin)u;(6o,6,0)
i <Recut
BJIJQ.] = Ujl ®;1j2 Uj2: U;k
- Z;djz : U;k

Np
E(B) = BB
=1

N Np

Fj = _ZZBI%B;

i=1[=1

alejzj _ j Iuj

= 7 . J
ark J1J2 8I‘k

_|_Zj1 . 5U;1 +Zj2 .

1% Los Alamos

AAAAAAAAAAAAAAAA

ous

B2 or, i ory

"Fourier” coefficients of the local atomic density.
J is the order of expansion.

Symmetrized coefficients (rotation invariant)

Energy is a sum of per-atom energies, which are
assumed linear in B. Ng~J3

Forces obtained via chain rule

Vanilla SNAP code

Complexity (per atom)

for (int natom=0; natom<num_atoms; ++natom)

{
// build neighbor-list for each atom C) 1

modern ML potentials are

complex

Fp==) S mo Listing 1: SNAP code

‘@ Los Alamos 4523 7

AAAAAAAAAAAAAAAAAA

If you don’t run efficiently on 1 node, you

won’t run efficiently on 10,000 nodes.

AAAAAAAAAAAAAAAAAA

4/5/23 8

MD on GPUs

° Most |arge_sca|e maCh|neS rely on |ﬁ Frontier HPE Cray EX235 AMD Ost 3+ Gen EFYC 640 2GH2 AMD hstinct MESOX, Shagshat-10
. . . . Fugaku Fujtas ASAFX (48C, 2.20Ms), Tetu Interconnect D
G PUS to prOVIde the majorlty Of thelr n tumi HPE Cray EX235a AMD Ot 3o Gen EFYC 64 2GHz, AMD hstinct MGSOX, Shagshat-10

CO m p u tl n g pOWe r. E Leonarde Avox Sclseqeara irteliecn (X2C, 2.8 Grz), NVIDIA AT00 guad-ral NVIDIA HORIOO kdrisand

Summit 1B POWERD (22C, 3.00GHz), NVIDIA Voita GVI00 (20C), Dusl-Radl Mellazca EDR Izlrvband

» Good GPU performance is essential!

« Unfortunately, achieving high GPU
performance is not easy, especially for
SNAP:

* Deeply nested loops
» Loop structure not regular
» Loops are “narrow”

1% Los Alamos

AAAAAAAAAAAAAAAA

Original SNAP implementation circa 2012

» Christian Trott (SNL) ported the LAMMPS SNAP C++ code to Kokkos in
ExaMiniMD (proxy app), then ported to Kokkos LAMMPS by Stan Moore (SNL)

» Used advanced Kokkos features: hierarchical parallelism and scratch memory,
unsure how to get better performance at the time

« Still: depressing fraction of peak on GPU compared to CPU

AAAAAAAAAAAAAAAA

SNAP Peak/node J Fraction-of-Peak

Node Machine Year || (Katom-steps/s) (Tflops) (normalized)
IBM PowerPC Mira (ANL) 2012 2.52 0.205 1.0

Intel SandyBridge Chama (SNL) 2012 17.7 0.332 4.34
AMD CPU Titan (ORNL) 2013 5.35 0.141 3.09
NVIDIA K20X Titan (ORNL) 2013 2.60 1.31 0.161

Intel Haswell Cori (NERSC) 2016 29.4 1.18 2.03

Intel KNL Cori (NERSC) 2016 11.1 2.61 0.346
NVIDIA P100 Ride (SNL) 2016 21.8 5.30 0.335

Intel Broadwell Serrano (SNL) 2017 254 1.21 1.71

No silver bullet

9

Adjoint refactor: algorithmic redesign that reduced the computational complexity and memory
footprint by large factor

Flattened jagged multi-dimensional arrays: reduced memory use
Major kernel refactor: Broke one large kernel into many smaller kernels, reordered loop structure
Changed the memory data layout of an array between kernels via transpose operations

Refactored loop indices and data structures to use complex numbers and multi-dimensional arrays
instead of arrays of structs

Refactored some kernels to avoid thread atomics and use of global memory
Judiciously used Kokkos hierarchical parallelism and GPU shared memory

Fused a few selected kernels, which helped eliminate intermediate data structures and reduced
memory use

Added an AoSoA memory data layout which enforced perfect coalescing and load balancing in one
of the kernels

Symmetrized data layouts of certain matrices, which reduced memory overhead and use of thread
atomics on GPUs (also improved CPU performance)

Large refactor of Wigner matrices + derivatives to use AoSoA data layout

Los Alamos [Gayatri et al, arXiv:2011.12875v1]

Vignette 1: loop structure matters

// build neighbor-list for all atoms

9

for (int natom=0; natom<num atoms; ++natom

Los Alamos

AAAAAAAAAAAAAAAAAA

for (int natom=0; natom<num_atoms; ++natom)

There is a sweet spot: breaking things
down too fine can hurt

compute_dB(); //dBlist (num_atoms, ...)

Listing 1: SNAP code

for (int natom=0; natom<num_atoms; ++natom)
for (int nbor=0; nbor<num_nbors; ++nbor)
update forces ();

Listing 2: Refactored TestSNAP code

Ease register pressure, each kernel can be tuned separately
Increased memory usage, code complexity

4/5/23

12

Vignette 2: there is more than one way to write a loop

Bj1j2j = Ujl ®j j sz: U’

Looks obvious... once someone else tells

you about it.

O(J° Npvor) storage for Z O(J3) storage for Y
O(J?3) force calculation O(J) force calculation

‘@ Los Alamos 4/5/23 13

AAAAAAAAAAAAAAAAAA

Memory matters

9

Adjoint refactor: algorithmic redesign that reduced the computational complexity and memory
footprint by large factor

Flattened jagged multi-dimensional arrays: reduced memory use

Major kernel refactor: Broke one large kernel into many smaller kernels, reordered loop structure

Changed the memory data layout of an array between kernels via transpose operations

Refactored loop indices and data structures to use complex numbers and multi-dimensional arrays
instead of arrays of structs

Refactored some kernels to avoid thread atomics and use of global memory

Judiciously used Kokkos hierarchical parallelism and GPU shared memory

Fused a few selected kernels, which helped eliminate intermediate data structures and reduced
memory use

Added an AoSoA memory data layout which enforced perfect coalescing and load balancing in one
of the kernels

Symmetrized data layouts of certain matrices, which reduced memory overhead and use of thread
atomics on GPUs (also improved CPU performance)

Large refactor of Wigner matrices + derivatives to use AoSoA data layout

Los Alamos

AAAAAAAAAAAAAAA [Gayatri et al, arXiv:2011.12875v1]

No silver bullet

TestSNAP progress relative to baseline for 2J14

9
8

7

Baseline V1 V2 V3 V4 V5 V6 V7

Fig. 3: TestSNAP progress relative to baseline for 2J14 prob-
lem size on NVIDIA V100.

‘@ Los Alamos 415123 15

NATIONAL LABORATORY

Some ideas are transferable, but...

Optimization targeted NVIDIA/V100

180:‘ S8 AI0 - « 26x performance improvement for
160 |a-aMI250X (one die) . V100
[| E-EMI100 i
2 1401 o 1 * Almost all optimization improved
g 120p] performance on AMD/MI250X also
= 1001 o 1 - 24xfor MI250X
% 801 -
M 60_ —F]]
40k 1 + MI250X/V100 FLOPS = 2.4x
20k { < MI250X/V100 SNAP = ~0.7x
Ja2018 Tan2020 Jan2022 * We lost over 3x
SNAP Version performance/FLOPS, why?

AAAAAAAAAAAAAAAAAA

The devil is in the details

“Marketed” peak flop rate not always a

predictor of real world performance

‘@ Los Alamos 4/5/23 17

AAAAAAAAAAAAAAAAAA

Time is money

« New ML approaches for potentials

180F reeA100 i are constantly being proposed
- (@-®V100 1
160 |a-aMI250X (one die) -
" [B-aMI100 1
2 140p _o 1 * We cannot afford to spend years
g 120p i optimizing each
T 100f .
= - —A
S 80r . :
> - 1+ We either need to:
X 60 —f] . .
0l i — Become dramatically better at this
- . - Down-select to a few forms that are
201 g worth investing in
17018 Tan2020 Tan2022 — Teach the machines to optimize

SNAP Version themselves

1% Los Alamos

AAAAAAAAAAAAAAAA

Algorithmics are also important!

» Very low-level optimization are crucial

« Mathematics can certainly help here, but probably won'’t be the main focus on
this program until new ideas are fleshed up and ready to be implemented (e.qg.,
around the Hackathon)

» Perhaps of more immediate interest: high-level algorithmics choices also make
a huge difference, especially for parallelization schemes: mathematics and
domain knowledge are critical there

AAAAAAAAAAAAAAAA

Parallel MD

Communication required at every step
‘ Most cycles spent here

Get forcend a=F/m m
Scalable if
computation >> communication

Each processor owns its domain

~N
‘:9 Los Alamos 4/5/23 20

AAAAAAAAAAAAAAAAAA

MD weak-scales

More compute = larger
simulations

‘@ Los Alamos 4/5/23 21

AAAAAAAAAAAAAAAAAA

Weak-scaling

—~_
1% Los Alamos

I T TTTTI I T TTTTI I T TTTTIH LI

T
|

A

]

lo—o 373,248 atoms/node |
— — Ideal (1 node)

I N I I I B B
T A I T O I I

Matom-steps/(node-s)
S = N W kR, N O

Ideal (64 nodes)
RN Ll Ll [
1 10 100 1000
nodes

Figure 5: Weak scaling for amorphous carbon samples mea-
sured as MD performance vs node count. Sample sizes range
from 373,248 atoms to 1,528,823,808 atoms and correspond
to 373,248 atoms/node. Ideal scaling comparing to 1 and 64
nodes is indicated by dashed and dotted horizontal lines, re-
spectively.

Strong-scaling

(a) Time-to-solution 4650 nodes (b)) Performance 465 nodes

For “small” systems, strong-
scaling breaks down.

“Max” simulation rate:
~10ns/day

as dashed lines. Perfect scaling in (b) would b
line (not shown).

AAAAAAAAAAAAAAAAAA

Breakdown of strong-scaling

1 BILLION ATOMS 20 BILLION ATOMS

More compute # longer

simulations

Communicatia :
becomes the counts on the full machine as measured by the timers in

LAMMPS. “SNAP” indicates time spent in the force computa-
tion, “MPI Comm” indicates time spent in communication,
and “Other” indicates time spent in I/O, the Langevin ther-
mostat, Verlet time integration, and other services.

bottleneck

1% Los Alamos

24

The prospect for MD at the exascale

G Time
10 7
2 10> < Materials
o = Science
© 12 ©
5 10 < .
E 9 T S,
g10 7 50N\
2 6 _lo o @bl v
Ne
10 ~_ Ranny ®
3 ~ Nano-science
10 N
\\ ~~~~~~
. ,
| | [>
fs ps ns us ms S ks

‘@ Los Alamos Timescale 4523 25

AAAAAAAAAAAAAAAAAA

Reaching long timescales

« How could we use exascale machines to reach long timescales?
« Parallelizing over space alone is not viable for small systems

« Can we parallelize over instead?

1% Los Alamos

AAAAAAAAAAAAAAAA

Who needs long timescales anyway?

38 3 3 F 3

£ 3 F » . » ‘ » For materials away from melting:
- Fast vibrations/fluctuations (ps)

. . ' — Slow conformational changes (ns-s)

S0 8 F 30 8

. e . . - . . « Short simulations are often not

informative of long-time behavior

L 38 3 F 3 F
3 F 3 F 3 F 3§) - Thisisbad for MD, butitis key for

acceleration

4/5/23 27

Who needs long timescales anyway?

* Vibrational relaxation within state

» Transition between states requires

'

controlled by the curvature of V
around the minimum
- Tip~1ps
- Qt ~1 fs_,

e T >> T, > dt whenever AE>>KT

overcoming an energy barrier AE
= Tesc ~ Tvib eXp(AE/kT)

LOS AIQIMOS

AAAAAAAAAAAAAAAAA

4/5/23 28

State-to-state dynamics

When interesting events are rare,
you don’t care precisely how

boring the trajectory was in
between

Goal is to generate a single sfaftistically correct state-to-state trajectory

AAAAAAAAAAAAAAAAAA

4/5/23 29

Can we parallelize over space time?

Parallelize over the present: try to
generate the next escape event ASAP
using many replicas

This can strong-scale scale if:
Simulations are independent
Pieces can be spliced accurately
We can use all of the pieces we generated

Mathematicians to the rescue

» Key ideas were derived by Arthur Voter using
arguments intuitive to physicists/chemists

mathematicians...

« Working with Tony Leliévre, Claude Le Bris, Mitch
Luskin, we endeavored to clean things up. First
meeting at IPAM about 13 years ago...

« Lead to a much more sophisticated understanding
of the generality of the methods

‘@ Los Alamos 45123 31

AAAAAAAAAAAAAAAAAA

State-to-state dynamics

dw

Need to capture transition statistics: 1
 Distribution of first-escape times from W
 Distribution of first-escape points on dW

Key Concept: Quasi-stationary Distribution (QSD)

/ P(XT € A, t <T%)dv
v(A) = =%

/ P(t < Ty) dv
W

If X, is distributed according to QSD, then, conditionally on not having
left W up to time t, X, is still distributed according to QSD

AAAAAAAAAAAAAAAA

Quasi-stationary distribution Impose absorbing boundaries

‘/\ on dW
W

Consider an ensemble of trajectories initialized somewhere in state W

1% Los Alamos

AAAAAAAAAAAAAAAA

Quasi-stationary distribution

W |

Evolve that ensemble in time, removing any trajectory that escapes

1% Los Alamos

AAAAAAAAAAAAAAAA

Quasi-stationary distribution

W |

Look at the distribution of whomever is left

AAAAAAAAAAAAAAAA

Quasi-stationary distribution

W

That distribution eventually converges...

AAAAAAAAAAAAAAAA

Quasi-stationary distribution

W

And no longer varies with time...

AAAAAAAAAAAAAAAA

Quasi-stationary distribution

W |

t=infinity

This limiting distribution is the QSD of state W

AAAAAAAAAAAAAAAA

QSD for Langevin dynamics

In the following:
« Overdamped Langevin dynamics
« Absorbing boundary conditions on dW

« Generator has eigenvalues 0 > —4,> —1,> —15 ...

« QSD is eigenfunction u,(X) of generator
corresponding to 4,

Most of the following also applies
to other dynamics, if:

« QSD exists

« QSD is unique

« Convergence to the QSD is fast

AAAAAAAAAAAAAAAA

dw

QSD for Langevin dynamics

L=Lponw
p=0ondW

With L = —VV -V + 1A
Then:

p(X,t) = z e et cduy (X)

k

For t > (A,—A;)~" and conditional on not having escaped,

PX,t) = u (X) + 0(e~Pamtty

AAAAAAAAAAAAAAAA

Properties of the QSD Rate of memory loss
« The QSD of Wis unique /
« Convergence to the QSD is exponential with rate (kz—M]

From the QSD:
[» First escape time is random and exponentially distributed with rate A,]

» First escape point is random and uncorrelated with escape time

. Does not depend
This is true for any state definition! ™\ ,, history before

reaching the QSD

Overdamped Langevin: [Le Bris, Lelievre, Luskin, and DP, MCMA 18, 119 (2012)]
Langevin: [Lelievre, Ramil, Reygner, arXiv:2101.11999]

AAAAAAAAAAAAAAAA

After only a short time in the state,
the next escape time/location distribution
is a complex function of the entry point

After spending t. > (A,—A;)1in W,
the next escape from W becomes
Markovian*

All trajectories that spent t. > (A;—A,)?
in W are statistically equivalent with
respect to how and when they will
leave W*

@) Los Alamos * Up to an exponentially small error in t.

AAAAAAAAAAAAAAAAAA

A valid state-to-state trajectory can be assembled by
splicing independent segments end-to-end*

Exactly what we need for strong-scaling!

i Los Alamos * Up to an exponentially small error in t. w23 43

Parallel Trajectory Splicing (ParSplice)

~ [Perez, Cubuk, Waterland, Kaxiras, Voter, JCTC 12, 18 (2016)]
K< Are i [Aristoff, SIAM/ASA Journal on Uncertainty Quantification 7, no. 2 (2019): 685-719]

Parallelizing over the past with bookkeeping

Don’t throw away! Store for
eventual revisits

'@ LOS AIAIMOS 4/5/23 45
K

AAAAAAAAAAAAAAAAAA

Super-basins

Parallelize over the past: store
work done but not used for
(potential) future use.

Precomputation/caching is a
common strategy

AAAAAAAAAAAAAAAAAA

4/5/23 46

Parallelize over the future with speculation

Statistical oracle

AAAAAAAAAAAAAAAAAA

Statistical oracle We use this model to speculate where the

Parallelize over the future: allocate
work based on where you think the
system will be in the future

Speculation is a common strategy at
the instruction level (branch
prediction), but not so much the task
level
See A Garmon More on thisin WS 1
T DT TNV E O TS TOT USC OT TTTO0 gree allocation

4/5/23 49

Shape Fluctuations in
Nanoparticles

Metallic nanoparticles (150-300 atoms)
Between 3,600 and 36,000 cores

Long simulations: up to 4 ms
Many transitions: up to ~100M per run
Many states: up to ~1M per run

Huang, Lo, Wen, Voter, Perez, JCP 147, 152717 (2017)
Perez, Huang, Voter, JMR 33, 813 (2018)

Huang, Wen, Voter, Perez, Phys. Rev. Mat. 2, 126002
(2018)

4}

HEng,
ﬁf‘émewuﬁ@f'!l??

Number

Trajectory

Number of

Number

Eleavis of Atoms T(K) Length (ps) Transitions | of States Description
146 900 70,257,528 162,965 6,246 fec = deca = ico
0 800 672396434 | 1937031 | wramr| o 5
900 20,373,095 240306 | 117,680
& ” 800 | 15350168728 | 6,630,131 | 303,572 S
900 348,662,895 688,027 93,346 fec = ico
900 | 1986709692 | 4395285 | 252,153
231 1000 92,171,602 955,401 42,383 S—
1100 24,608,419 914,005 | 110,290
146 550 301,832,137 | 3,942,180 | 237,293 fee = ico
500 | 4,156,073707 | 6160286 | 240,594 g
- 550 23,712,165 656,202 241491 | fcc <> 5-fold caps = ico
600 21,690,608 | 1,039,065 | 144,713 e
deca=> fcc = ico
Cu . 500 489,113,720 | 93,863,998 | 368,356
600 91,701,072 | 9,863,950 | 847,016
500 438,302,547 49,409 12,817
550 66578597 | 4,623,717 | 262,785 T
- 600 85,056,822 184,737 | 169,217
700 832,190 237,840 89,356
146 600 237,233817 | 22,910,983 | 119,489 fee = ico
Au 190 600 521,506,615 | 10,198,278 85,875 fec <> 5-fold caps
231 800 774,813,889 795,678 | 159,743 | fcc = 5-fold caps =helical
500 122,897,307 | 2,558,937 71,357 —
146 550 21,613,546 1,988,646 | 136,297 ool cenvrec
5-fold axis
- 500 841,036,559 | 1,529,663 | 258,281
Ag 600 128965726 | 3,961,585 | 616,430
400 | 1,651,496973 | 2,416,400 60,802
190 500 109,165,848 | 1,414,790 | 154,083 T
600 30,620,753 | 1,091,307 | 147,863
231 500 20,445,451 946,623 92,818

Benchmark results: An Easy Case

Rare events
T=300K, LANL Grizzly, 4h runs

Trajectory length | Generated segment #Transitions Simulation

(ps) time (ps) rate

(ns/hour)

556,093,988 556,539,980 4,614 28 13. 166 139
18,000 1,315,941,923 1,346,516,503 24,610 64 2. 384 333
2,209,432,238 2,214,868,608 13,479 47 4 294 552

36,000 50,258 60 126 509 592
99% of generated segments were spliced Peak simulation rate: 10 ps/min, 10 ms/day
LOS AIQMOS 4/5/23 51

X
“ NATIONAL LABORATORY

Benchmark results: Hard Cases Most of performance

~4x from speculation from revisits

a o=
S < o
[\5} — [=}
<
3

Trajectory length | Generated segment #Transitions Simulation

rate

S
- (98]

(ps) time (ps)

(us/hour)

Parallel Efficiency

Multiple levels of parallelism contribute in hard cases

0.0017 45 69

21,629,711 4,785

24,161 0.00029 3846 48

250,86 0.00028 135 17

305,631,041

267,608,621

Reduces to MD if dynamics is fast and new/unpredictable
things happen all the time

364613 0.00033 20 0.45

0.00030 6 0.043

64,208 11,577

10,673,302

169,943

75% of generated segments were spliced Very fast events: need only a few segments
2700x speedup over MD to escape I

Parallelizing over space

« The efficiency of ParSplice is
limited by the global rate at which
events occur: the rarer the better

 This limits performance on large
systems where the exit rate
scales with N

 However, most transitions are
spatially localized. Can we use
this to make ParSplice sensitive
only to the local event rate?

AAAAAAAAAAAAAAAAAA

4/5/23 53

Spatial Parallelization Strategy

=
@ Los Alamos

1. Divide the simulation cell into a grid of sub-domains.
2. Extract and prepare the sub-domains

Fixed region

Buffer region

Active region

3. Execute MD simulations on each sub-domain.
Multiple instances of each sub-domain execute
concurrently using ParSplice

4. ParSplice assembles the generated trajectory

5. When a transition occurs, re-synchronize

neighboring sub-domains
4/5/23

54

Domain synchronization

This type of domain decomposition is
strong-scalable because
synchronization is not required at
every timesteps, but only at every
(rare) event.

Applicable to many different methods

g

[Shim and Amar, Phys. Rev. B 71, 115436 (2005)]

4/5/23 55

How to run this at scale? ParSplice as a workflow

» Short tasks (~sec)

 Limited scalability per task
(~1 GPU - a few nodes)

 Inter-task dependencies
» Just-in-time task identification
« Large computing resources

« Many, short, tightly-coupled tasks

AAAAAAAAAAAAAAAAAA

Jing system
nication
Jnication

File-based
Synchrona

Internal task management
File-less APl-based engines

Asynchronous communication and
/0

High-level model

« Top-down scheduling of complex workflows on large heterogeneous hardware
is hard

« EXAALT model: let hardware availability drive execution

« EXAALT is a PULL model: the framework requests tasks from the workflow to
maintain high hardware usage

« The workflow should be able to identify new tasks at any time

AAAAAAAAAAAAAAAA

Under the hood of EXAALT Task management

Data management
Task execution

Generate tasks,

~ SRR PRI+ Store/move data
process results Workflow Manager

In-memory cache

Manage task Task In-memory

. Task In-memory
execution Manager cache

- 2
Manager cache x 10 — 10 managers

Worker Worker Worker

Worker Worker Worker

LOS AIQIMOS x 103 - 10° Work§!/'§ 66

X
“ NATIONAL LABORATORY

Wor flow Manager

Persistent data-store

In-memory cache

Task request
Y

. ask In-memory
Manager cache

Worker Worker Worker

\~
W LoD NI

Task In-memory
Manager cache

Worker Worker Worker

4/5/23 67

Persistent data-store

In-memory cache

Workflow Manager

Tasks

Teask In-memory Task In-memory
Manager cache Manager cache

Worker Worker Worker Worker Worker Worker

\~
W LoD NI

4/5/23 68

Workflow Manager

Persistent data-store

In-memory cache

Data dependencies

Tao” '~-memory
Manager cache

Worker Worker Worker

\~
W LoD NI

Task In-memory
Manager cache

Worker Worker Worker

4/5/23 69

Persistent data-store

In-memory cache

Workflow Manager

Task In-memory Task In-memory
Manager cache Manager cache

Task + data

Worker Worker Worker Worker Worker Worker

\~
W LoD NI

4/5/23 70

Workflow Manager

Persistent data-store

In-memory cache

Task In-memory
Manager cache

Worker Worker Worker

Task execution gine

\~
W LoD NI

Task In-memory
Manager cache

Worker Worker Worker

4/5/23 71

Persistent data-store

In-memory cache

Workflow Manager

Task In-memory Task In-memory
Manager cache Manager cache

Task outputs

Worker Worker Worker Worker Worker Worker

\~
W LoD NI

4/5/23 72

Persistent data-store

In-memory cache

Workflow Manager

Returned data

Stored data
Task Task In-memory

Manage* == "Re Manager cache

Worker Worker Worker Worker Worker Worker

\~
W LoD NI

4/5/23 73

Design goals/choices

Pull model: the hardware is telling you what it wants

No worker should ever be idle:
— Communication/data motion should occur in the background

Everything is asynchronous/non-blocking:
— Communication between WM and TM
— Access to datastore

Flat consumer-producer model not scalable: use TMs as middle-men
- Maintain local task queues and fulfills data dependencies

- TM pre-emptively requests more tasks before running out

— Aggregates small messages into larger ones

— TMs can be hardware-specific

'@ LOS AIAIMOS
K

AAAAAAAAAAAAAAAA

Support for heterogeneous hardware

« MPI ranks assigned to each TM at
Workflow Manager

launch In-memory cache

+ Can tie specific hardware to specific = - S
T™: “GPU” TM and “CPU” TM and Manager cache Manager cache
route tasks accordingly

» Can dynamically adjust granularity of
workers under each TM.

“GPU” Ranks “CPU” Ranks

'@ LOS AIAIMOS 4/5/23 76
K

AAAAAAAAAAAAAAAAAA

EXAALT

* Very scalable!

« Simple API

* Python bindings

« Growing engine ecosystem

Native python code
MD: LAMMPS

QM: NWChem, Quantum Expresso,
DFT-FE, LATTE

KMC: SPARRKS
DDD: ModeLIB (DDD) [in development]
Support for MolSSI/MDI plugin model

Cons:
* Not designed for all workloads
 Early stage of development

'@ LOS AIAIMOS
K

NNNNNNN

LLLLLLLLL

Intake rate (atom step/s)

MD intake rate EAM potential

Peak: 6x1020 atom-step/s

14
10 : T T \\\H‘ T T T TTTTT T T T TTTTT
1013 ;ALCF-MIT& +]
1012 | ALCF-Theta -
1011 - NERSC-Cori/KNL X
1010 ;Lmear scaling » f -
E X
10° L al 5
N o]
108 L ‘ - ,
C + 3
107 L | | \7"’\\\\‘ | | \\\H\‘ | | \\\\H‘
10° 10° 10* 10°
of cores
~50,000 tasks/sec

108

Mapping ParSplice unto Frontier

Simulation executed using EXAALT on 7000
Frontier nodes (75% of machine)

~1% of resources for management
~99% of resources to simulation

Infrastructure re-assigns MD tasks to workers
every ~7 seconds

81 sub-domains

~170 instances of each sub-domain execute
concurrently

4 GPU dies for every instance

=
@ Los Alamos

[EXAALT task-management system

Persistent Datab
PRl Task Management ersistent Database

Master
In-memory cache

In-
memory
cache

7OX Task
Manager

Worker Worker
MD MD MD MD
13856x | = Engine: Engine: Engine:
LAMMPS LAMMPS B LAMMPS LAMMPS
4x GPUs
per worker

72 nodes for data and task management
6928 nodes for MD simulations

4/5/23 78

How much is too much?

« GPUs are becoming so powerful

that large numbers of atoms are SNAP: single node, GPU, or GCD
needed to saturate performance 2.0 —e— A100
0 ' —— MI250X
. . a —e— Skylake
* For expensive potentials (e.g., 215/
SNAP), £
©1.0-
o
« For cheap potentials (e.g., EAM), £°°
—o—90—0—0—0—0 00090
00 —F——m———
1K 4K 16K 64K 256K 1M
Atom count

'@ LOS AIAIMOS
K

AAAAAAAAAAAAAAAA

GPUs are too powerful!

for expensive potentials
- Parallel MD: atoms for SNAP

- ParSplice: atoms per replica, 50% of peak performance if running 1K atom

- Bad news for cheap potentials.
— Parallel MD: atoms for EAM
- ParSplice: ~30M atoms per replica, 1% of peak performance if running 1K atom

* It is possible to oversubscribe GPUs, but only limited performance improvement
with out-the-box methods

« Bad news for anything that doesn’t require expensive potentials and/or millions
of atoms!
- 90% of what people currently do with MD

'@ LOS AIAIMOS
K

AAAAAAAAAAAAAAAA

GPUs are too powerful!

 Solution would be to enable MD codes to run many systems concurrently in a
seamless fashion

* Asingle MD timestep would propagate many systems at once

* Proof of concept (Lubbers and Mehta):
— Concatenate all systems into a single list of atoms
— Create a combined neighbors list, with potentially different simulation cell for each system

— Compute forces all at once on the GPU: atoms from different systems don'’t see each
other

— Integrate all systems in lockstep

One would need to expose this capability in a way that is transparent to users and allow for
the reuse of existing algorithms. Interesting software engineering problem!

'@ LOS AIAIMOS
K

AAAAAAAAAAAAAAAA

What do we want out of exascale

_ A Compute limit
Time More compute

Size

Accuracy

AAAAAAAAAAAAAAAAAA

What do we get out of exascale with standard methods

Time
Long times

Especially bad at
Low accuracy
and
small to medium size

Size
Large size

>

High accurac
Accuracy g Y

AAAAAAAAAAAAAAAAAA

Conclusion/Outlook

« Large computers offers unprecedented opportunities for atomistic simulations,
but also challenges

» The technology is pushing simulations towards more expensive models and
larger simulations

« This is now true even at the single node level!

 Significant methodological and software evolution will be required to avoid
the simulation space moving away from scientifically relevant regimes

AAAAAAAAAAAAAAAA

