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Quantum dynamics of N particles interacting with a field

Schrodinger equation

Hamiltonian

Electron Hamiltonian

Two-body interaction

Particle-field int.

Field Hamiltonian
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Possible fields: phonon (lattice vibrations), random potential
(impurity). Also E.M.: —A — (—iV 4+ A)?



GOAL: Describe the dynamics of this complex quantum system
in various limiting regimes using simpler effective equations.

How do classical equations emerge and what quantum effects
are retained?

We consider different models by keeping some terms and ne-
glecting others.

COMPLEXITY:
e Complex environment (impurities)
e Many-body (N ~ 1023 particles)

e Long time evolution (compared to the atomic time scale).
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SIMPLIFICATIONS:

(i) Idealized limits:
e Micro — macro scale separation: de Broglie wavelength (A)
vs. “naked eye” (cm): 1A/1lem — O
e Weak coupling and/or low density of interactions.

(ii) Special initial conditions (e.g. no initial correlation)

(iii) Partial information (coarse graining, smoothing, weak limit)

(iv) Randomness.



Units: length = [Bohr radius] (h2/me?), energy
(me®/2h%).

[Rydberg]

Furthermore: 27 = 1.



List of models and equations
I. ONE-BODY MODELS (He_. = 0)
(1) Semiclassical limit — linear Vlasov equation

(2) Weak coupling and low density limits (random potential or
phonon) — linear Boltzmann eq.

II. MANY-BODY MODELS (He_¢ # 0)

(1) High-density mean field limit
Bosons — nonlinear Hartree eq. (nonlinear Schrodinger)
Fermions - nonlinear VIasov equation

(2) Weak coupling and low density limits — nonlinear Boltz. eq.
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I. Noninteracting (effectively one body) models: H._. =0

1. SEMICLASSICAL MODELS: Macro potential profile vs. mi-
Cro wavelength

In micro coordinates: O (x) = ~| wDa + <Am&v~§av

In macro coordinates: iedpW(X) = ~| %DN + <CQT\CQ

under Euler scaling (ze,te) = (X,T), € — 0.



1/¢ variation scale of the potential
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Wavefunction and potential scales in semiclassics



Limiting macroscopic equation: (linear) Vlasov equation

Or+V -V )Wr(X,V) =VV(X) - VyWr(X,V)

for the weak limit of the rescaled Wigner transform

A

Wy (x,v) = \@Aa + WVQA& — Mvm&cmgm

. _ X
Wi (X, V) = &:@ikﬂiv

Wr(X,V) := lim Wi (X, V)

e—0

Wigner transform (usually not positive) — phase space density:

[ W@, v)d = W@ R, [ Wy v)de = [§@)



KEY: WKB analysis, W (X) ~ kikv%mikv\m form preserved.

Result is fully classical: no remnant of quantum mechanics.



2. RANDOM POTENTIAL MODELS. H = |wDa + Vo (x)
V. 1S unscaled but random.
In d =1, then localization occurs for all .

Frohlich-Spencer, Aizenman: In all dimensions, |localization oc-
curs for X\ large. V, dominates.

Question: How does conduction occur?

1. phenomenological model: Boltzmann equation. ——= Long
time dynamics of the electrons are diffusive.

2. Perturbation theory: Boltzmann equation is basically correct
up to re-normalization of diffusion coefficient for d > 3; localiza-
tion for all A for d < 2.



Recall (xe,te) = (X, T), where z,t are microscopic (Schrodinger)
coordinates, so this is very long time (¢t ~ 1) for Schr. eq.

GOAL: describe the dynamics for arbitrary macro time 7" > 0.

We reduce V, and look for the first nontrivial regime beyond free
dynamics. Two possibilities:

(i) Low density limit (LDL) (Quantum Lorenz gas)

(ii) Weak coupling limit (WCL) (van Hove limit)



(i) Low density limit (LDL)

M
—30z+ Y Vol — za) in a box [—L, L]%

a=1
{zata=1,..m random point process (e.g. uniform or Poisson)

with density o 1= h& 0 (aspo~e L>e 1)

(ii) Weak coupling limit (WCL)

—IN+AVu(z) A—=0, (A~+E)

Vo time independent random field, e.g. Gauss, with correlation
on Mmicro scale:

R?(z — y) = EVi(2) Vi (y)
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quantum wave

1lcm
Low density scenery Weak coupling scenery
Number of obstacles: £ 2 Number of obstaclesg >
Density: O(g) Density: O(1)
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variation scale of the potential
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Typical LDL picture leads to Boltzmann
Few big collisions. Collision number is

finite (seen also from Dyson expansion)

Mean free path o~ 1
Time t ~ e 1
No. of coll. vt/o~ 1 ~ g1

/ﬁ\¥/ /9\\

Typical WCL picture leads to
Brownian motion in velocity (classiba

Many small collisions

0(1)
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Total effect oe 1 e~1\2 (variancel!)

— 0= ¢ —— v/”/\m



BOLTZMANN EQUATION: phenomenological. Describes a free
evolution + a (random) Markovian collision mechanism.

Linear Boltzmann eq. (on macro scale)

Or+V V) (X, V) = [ |o(V,0) (X, 1) =0(U, V) f2(X, V)| dv

e fr(X,V) — one particle phase space density

e o(U, V) collision kernel (U incoming, V outgoing velocity). Sup-
ported on 6(U? — V?2) if collision is elastic.

U (in) ©
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Theorem [Erdos-Y]. d > 2. If the weak limit
fr(X, V) = lim EW{ (X, V)

e—0
exists for T' = 0O, then it exists for any 7" > 0 and it solves the
linear Boltzmann equation with collision kernel

(i) (LDL) o(U,V) = |T(U,V)[26(U2 — V2), where T(U,V) is the
quantum scattering cross section for |WD + Vo

(i) (WCL) o(U, V) = |R2(U~V)|26(U2—V2) (Born approximation
of the scattering cross section)

e Spohn: for short time and WCL Gaussian case.

e Time reversibility is lost due to the weak limit (not due to the
randomness)
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po) _ SPCEH) g

Scaling limit Scaling limt
+ Wigner + Wigner
+ Expectatio

f(0) B(T) f(T)

Boltzmann semigroup

The long time (t = Te~1) Schrédinger evolution is modelled by
a finite time (T") Boltzmann evolution on the macroscopic scale.

Detailed short scale information is lost (irreversible).
Effective equation is classical, but quantum features are retained

in the collision kernel.
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Similar result holds for phonons (Erdos).



LDL WCL
Classical dyn Boltzmann (Integrated) Brownian
[Spohn/Gallavotti] [KP, DSL]

Quantum dyn: Boltzmann Boltzmann

Classical WCL: Vout = Vin + O(X)
— Many small kicks == Brownian motion

Quantum WCL: Single collision process

Yout = @%ﬁmm + Yeoll @%ﬁmm “ 1 Yeoll

Prob. of collision is ||t.l|° = O(MA?). Rarely collides, but if it
does, then outgoing wave is very different. Effectively a few big
kicks.
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II. MANY-BODY MODELS: H._. # 0.

N
H=-3Y Dzt dee Y P(z;—z))
=1 1<i<j<N

1. Mean field limit: N particles, N — oco. A¢e Small.

Scaling is given by setting the Kkinetic and potential energies
comparable.

Bosons: A\ce = % Kinetic energy ~ potential energy = O(N)

If W =][;v¥(z;) (possible only for bosons) then each particle is
subject to the same deterministic potential (LLN for z;)

N

3 L @ alb @l % @y (@) = (®x[9F)(@)
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THEOREM [Bosons] Assume Wg = [];¢g(z;) initial N-body
product state. Then Wy = [[;¢:(x;) as N — oo, where

10y = |w>§ + Ae * _@@_mv Wt (NL Hartree equation)

KEY PROBLEM: W; is NO'T exact product.
[Hepp, Spohn, Ginibre-Velo, Bardos-Golse-Mauser]
[Erdos-Y] ®(z) = %|z|~! Coulomb case. (BBGKY hierarchy)

Digression: Study asymptotic dynamics of the Hartree equa-
tion [Soffer-Weinstein, Frohlich-Tsai-Y], especially the soliton
dynamics.
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(ii) Fermions: \ = Zw\w since Kinetic energy ~ N°/3. [Narnhofer-

Sewell, Spohn] nonlinear Vlasov equation

Equation is classical, but the fermionic nature dictates the scaling
and pushes it to the semiclassical regime.

2. Kinetic limit: (ze,te) = (X, T), de,e = /€, € =0

Expect: Nonlinear Boltzmann eq.
(O 4V - Vy)F = \q? L FY(1 4+ FYFPE — FF'(1+ F)(1 + F)

+ for Bosons or Fermions. Open question. (classical model:
[Lanford]).

3. Euler Limit. Euler equations.
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Longer time scales t > A2, Expect diffusion.
We proved: Schrddinger = Boltzmann if t = TA™2

A fixed, t — .

S(t) = \&m_ﬁA&V_m% mean square displacement
S(t) < C(\) for all t, d=2
S(t) ~ t d>3

Starting point: ¢ ~ A\ 3.
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