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Chapter 1

Introduction and Overview

1.1 Epitaxial Systems across Length and

Time Scales

Most phenomena in materials science result from the interplay between
processes that are operative over a wide range of length and time scales.
For example, the formation of dislocations within a material (atomic
scale) and their mobility across grain boundaries of the microstructure
(“mesoscopic” scale) affect the deformation behavior of the material
(macroscopic scale). A complete understanding of mechanical proper-
ties thus requires theoretical and computational tools that range from
the atomic-scale detail of first principles density functional methods
to the more coarse-grained picture provided by continuum elasticity
theory.

At this level of discussion, epitaxial phenomena are no different
from any other problem in materials science. Understanding the mor-
phology and properties of epitaxial films requires accommodating the
atomic-scale information about the movement of adatoms on surfaces
and their various bonding configurations into the macroscopic evolution
of the thin film. As Fig. 1.1 indicates this involves quite a large dispar-
ity of length and times scales, with quantum and classical molecular
dynamics providing a resolution of the order of an atomic vibrational
period (10−12–10−15 s), while typical time scales for the formation of
an atomic layer are of the order of 1 s–1 min. This precludes the di-
rect simulation of epitaxy with these methods, so one of the central
problems of describing epitaxial phenomena is finding a way of sys-
tematically incorporating the atomistic information provided by first

1



2

Continuum

Monte Carlo

"Classical"
 Molecular
 Dynamics

   Ab initio
("Quantum")
  Molecular
  Dynamics

1Å 10Å 100Å 1000Å 1µ

1s

1µs

1ps

Length

T
im

e

Kinetic

Equations of
Motion

interface
structure

 quantum dot
  size, shape

      device
characteristics

size, shape
distribution

    atomic
intercations

      3D
nucleation

ordering
kinetics

ensemble
properties

  a
to

m
ic

vi
br

at
io

ns
ad

at
om

ho
pp

in
g

   
at

om
ic

de
po

si
tio

n

Figure 1.1: Schematic illustration of the types of theoretical methods avail-
able for kinetic problems in materials science along with the length and time
scales over which these methods provide information. Specific phenomena
at the various length and time scales that are required for describing the
performance of devices based on quantum dots are shown for comparison.

principles methods into computational schemes that are appropriate
for macroscopic, or at least mesoscopic, length and time scales.

In these tutorials we review the phenomenology of epitaxy across the
length and time scales shown in Fig. 1.1 and the theoretical and mod-
elling approaches that have been used to explain various experimental
results, using quantum dots as a case study. After a brief discussion of
the experimental apparatus used for the realization and analysis of epi-
taxial growth, we survey the theoretical methods that have been applied
to studying epitaxial phenomena. Included will first-principles density
functional methods, classical molecular dynamics, kinetic Monte Carlo
simulations, and continuum equations of motion.
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Ab initio techniques provide detailed information regarding specific
atomic configurations, and thus are best suited to characterizing bar-
riers and pathways to diffusion and other kinetic processes, and to
determining the stability of relatively small collections of atoms. The
molecular dynamics method shares with ab initio total energy calcula-
tions the common feature that the nuclear and electronic coordinates
are separated to obtain an effective Hamiltonian for the electronic co-
ordinates. This Hamiltonian can then be used to obtain a potential
energy surface for the nuclei as a function of their positions. In total
energy calculations, this is used to identify local minima in the total
energy to obtain stable structures for a given configuration of atoms.

In the molecular dynamics method, the expression for the total en-
ergy of the system as a function of the positions of the atoms is written
as an expansion in terms of potentials, and the subsequent motion of the
atoms is determined by the forces acting on the atoms. In the molecular
dynamics method information concerning energy barriers for particular
kinetic processes and the relative likelihood of different events is a nat-
ural outcome of choosing a particular potential. Molecular dynamics in
principle provides the most accurate way of modelling epitaxial growth
and other dynamical processes, but suffers from the interaction poten-
tials not being easily determined and from the fact that the basic time
step does not permit especially lengthy simulations on large systems.

In the Monte Carlo method, the rate-determining events must be
identified and rate constants must be estimated. The simplicity of the
Monte Carlo method means that the details of local interatomic in-
teractions are not explicitly incorporated into the model, but various
processes are included on average through effective kinetic parameters.
Thus, although this methods cannot be used to address effects that are
too specific, comparisons with experiments are easier to make, because
the simulations can be run under a greater variety of conditions. Fur-
thermore, the Monte Carlo method provides a framework within which
to identify the consequences of particular aspects of model potentials.
Monte Carlo simulations alleviate many of the problems due to the
discrepancy between simulated and real time scales in molecular dy-
namics by including explicitly only the rate-limiting steps. The main
disadvantage of this method is that each process must be individually
identified and included ‘by hand.’

Continuum equations of motion have been used in theoretical de-
scriptions since the pioneering work of work Burton, Cabrera and Frank.
This approach does not contain the atomic-scale detail of molecular dy-
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namics or Monte Carlo simulations, but does provide a way to making
connections with thermodynamic quantities and is useful for examining
the coarse-grained behavior of a kinetic system. Proposed continuum
equations for various regimes of epitaxial growth will be discussed and,
where possible, comparisons between continuum equations and lattice
simulations will be made.

1.2 Introduction to Epitaxial Phenomena

Epitaxial growth is a process during which a crystal is formed on an
underlying crystalline surface as the result of deposition of new ma-
terial. The study of this process dates back over one hundred fifty
years, but it was not until the work of Louis Royer in the 1920s that
the systematics of epitaxial growth began to be revealed (Royer, 1928).
Royer carried out an extensive study of the growth of ionic crystals
on one another and on mica, mainly from aqueous solution and, us-
ing optical microscopy, summarized his observations with a set of rules
based on crystal structure. These rules led Royer to coin the term ‘epi-
taxy’, which is a combination of the Greek words epi, meaning ‘upon’,
and taxis, meaning ‘arrangement’, to convey the notion of growing a
new crystal whose orientation is determined by a crystalline substrate
and to distinguish epitaxial growth from polycrystalline and amorphous
growth.

The development of vacuum technology in the 1960s—an off-shoot
of the American space program—opened the way to the deposition
of materials on well-characterized substrates in a controlled environ-
ment. Epitaxial growth techniques are now used fabricate thin films
of essentially all materials types. The motivation for this is twofold.
Epitaxial thin films can exhibit properties and structures that have no
bulk counterparts. Examples include magnetic properties of metallic
structures and electronic, transport, and optical properties of semi-
conductor structures. Thus, epitaxial films are a fertile arena for the
study of fundamental properties in reduced dimensions. However, the
overriding reason for the recent rapid expansion of the study of epi-
taxial phenomena is information technology. For semiconductors, this
is a natural result of the drive toward increasing electronic miniatur-
ization that was ushered in by the invention of the integrated circuit
and planar fabrication technology. Although epitaxial techniques have
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not yet had an impact on Moore’s law1, there are several widespread
commercial applications of semiconductor epitaxial structures, such as
high-electron-mobility transistors, which find application in satellite
television receivers and mobile telephones, and lasers, which are used
in compact disk players. Magnetic thin film structures are viewed as
being central to meeting the expanding needs of long-term data storage,
particularly from graphics-intensive applications, and ferroelectric ma-
terials are being studied for possible use as non-volatile storage media.
Since the production of semiconductor thin film structures has been the
dominant application of epitaxial techniques, we begin by reviewing the
recent history of their development.

The modern era of the epitaxial growth of semiconductors was
founded on a suggestion in the late 1960s by Leo Esaki and Raphael
Tsu (1970), then working at the IBM Research Laboratories in York-
town Heights, New York. They proposed that structures composed of
layered regions of semiconductors with different band gaps would have
a spatially-varying potential energy surface that would confine carriers
to the narrower band-gap material. If there were few enough adjacent
layers of this material, then the carriers could be confined within re-
gions comparable to their de Broglie wavelength—the natural length
scale that governs their quantum mechanical behavior. For this reason,
these narrow regions are now called ‘quantum wells.’ Electrons (and
holes) in quantum wells were predicted to exhibit remarkable optical
and transport properties that could be controlled by varying the width
of the wells and the materials forming the heterogeneous interfaces sur-
rounding the well.

At the time that Esaki and Tsu made their proposal, the available
technology could not produce materials of sufficient quality to verify
the predicted effects. However, the first observation of confinement
effects in a quantum well triggered a world-wide effort aimed at im-
proving and extending the basic idea of Esaki and Tsu to other carrier-
confining semiconductors, which are collectively referred to as ‘quantum
heterostructures.’ With many major subsequent developments, epitax-
ial growth techniques have matured to the point where atomic-scale
control over interface quality has become a matter of routine. The con-
trol over interface definition and doping profiles has also made planar

1Moore’s law (Moore, 1965) is the observation made by Gordon Moore, one of
the founders of Intel, that the densities of semiconductor components on integrated
circuits had and would continue to double on a regular basis (every 18 months).
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heterostructures a popular testing ground for many fundamental ideas
in condensed matter physics and has led to the discovery of new physi-
cal phenomena such as the quantum Hall and fractional quantum Hall
effects.

During the late 1970s epitaxial growth techniques began to be ap-
plied to metal epitaxy, magnetic metal epitaxy, and eventually, in the
mid 1980s, to the preparation of high-quality epitaxial magnetic rare-
earth superlattices. The driving force for this was the expectation
that, in analogy with the growth of low-dimensional semiconductor
heterostructures, epitaxial technology could provide high-quality, epi-
taxial magnetic metallic structures which might exhibit new magnetic
phenomena. This expectation was, in fact, realized by several discov-
eries in the late 1980s, one of the most surprising of which was giant
magnetoresistance (GMR).

Subsequently, Parkin et al. (1991), using a system incorporating
UHV design features, discovered that magnetron-sputtered polycrys-
talline multilayers (Fe/Cr, Co/Cr, Co/Ru) exhibited interlayer exchange
coupling which oscillated from antiferromagnetic to ferromagnetic as a
function of the nonmagnetic spacer thickness. Moreover, the magne-
toresistance was oscillatory and its magnitude comparable with that
in epitaxial structures (e.g. in Fe/Cr multilayers) prepared by MBE.
This discovery had several major implications. It showed that poly-
crystalline magnetic multilayers, prepared by the widespread technique
of sputtering, had properties similar to those of single-crystal multilay-
ers prepared by epitaxial growth. This also had technological signifi-
cance, since sputtering is a manufacturing technique used for producing
magnetic storage devices. But it also raised questions about the effect
of crystalline orientation, interface roughness, and structural quality
of the multilayers on interlayer coupling and GMR. This stimulated
widespread research in this area, including in situ studies of multilayer
growth and interface formation.

In this chapter, we will introduce the basic epitaxial growth methods
and describe the surface analytical techniques that are used to monitor
and characterize the surface of the growing material. We then turn
our attention to the types of growth morphologies that can occur when
one material is deposited onto another material. Although the catego-
rization that has been developed is based largely on observations using
optical and electron microscopy, it remains a useful starting point from
which to understand the morphology in light of the atomistic informa-
tion provided by current methods of observing epitaxial systems, most
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notably, the scanning tunneling microscope.
Several textbooks (Stringfellow, 1989; Tsao, 1993; Yang et al. 1993;

Barabási and Stanley, 1995; Markov, 1995; Villain and Pimpinelli,
1998) have appeared in recent years that cover various aspects of epi-
taxial growth. These should be consulted for more detailed discussions
than those provided here.

1.3 Molecular-Beam Epitaxy

The simplest way conceptually of realizing epitaxial growth is with a
process known as molecular-beam epitaxy (MBE) (Joyce, 1984). This
technique has its origins in a series of experiments, based on silicon,
carried out by Bruce Joyce and his colleagues in the mid-1960s. Ma-
jor developments, particularly in the application to III–V compound
semiconductors, took place at Bell Laboratories in Murray Hill, New
Jersey some three to four years later, inspired by Al Cho and John
Arthur. A historical review based on many of the seminal papers has
been compiled by Cho (1994).

MBE is essentially a two-step process carried out in an ultra-high
vacuum (UHV) environment (Fig. 1.2). In the first step, atoms or
simple molecules that are the constituents of the growing material
(e.g. atomic Ga and either As2 or As4 for GaAs, and atomic Si for
Si) are evaporated from solid sources in heated cells, known as Knud-
sen cells, collimated into beams and directed toward a heated substrate
which is typically a few centimeters in size. The particles within these
beams neither collide with one another nor undergo chemical reactions,
i.e. the deposition onto the substrate is ballistic and particles are said to
undergo molecular flow—hence the name molecular-beam epitaxy. The
substrate is often rotated for more uniform deposition rates across the
substrate.

The second step of MBE is the migration of the deposited species on
the surface prior to their incorporation into the growing material. The
movement of these species across the surface and the resulting surface
profile, or morphology, are among the central issues of epitaxial growth
and depends on many factors, including deposition rates, the surface
temperature, the surface material and its crystallographic orientation,
just to name a few. The explicit dependence of the morphology on the
deposition rate of new material means that MBE (and other epitaxial
growth techniques) are inherently nonequilibrium, or driven, processes.



8

Ga beam As  beam

Electron gun

Crystal
surface

Shadow edge

Specular beam spot

Diffracted
beamsIncident angle

θ = 0.5~3.0˚

RHEED
screen

Direct beam spot

θ
θ

2

Figure 1.2: The arrangement of the substrate, the RHEED measurement
apparatus, and the deposition of material within the UHV environment of
an MBE growth chamber (Shitara, 1992).

This provides an important distinction from crystal growth from solu-
tion, where the supply of material to the growing crystal takes places
by bulk diffusion through the surrounding solution, and is therefore a
near-equilibrium process. Growth near equilibrium is governed almost
exclusively by thermodynamic considerations. For epitaxial growth,
thermodynamics still provides the overall driving force for the morpho-
logical evolution of the surface, but the extent to which equilibrium is
attained even locally is the result of kinetics, i.e. the rates of processes
that determine how a system evolves under a given set of external con-
ditions (Madhukar, 1983).

A major strength of MBE is that the UHV environment enables the
application of in situ analytical techniques to characterize the evolution
of the growing material at various levels of resolution—from microns
down to the arrangement of atoms. Particular techniques and the in-
formation they provide will be discussed in Section 1.4.
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1.4 In-Situ Observation of Growth

An important advantage of performing growth experiments within a
UHV environment is the wealth of surface analytic techniques available
to examine the growing surface in situ. The most prevalent of these are
based on diffraction and real-space imaging. Diffraction techniques in-
clude reflection high-energy electron diffraction (RHEED), low-energy
electron diffraction, helium-atom scattering, and grazing-incidence x-
ray diffraction. Real-space imaging techniques include the scanning
tunneling microscope (STM), the atomic-force microscope (AFM), low-
energy electron microscopy and reflection electron microscopy. Notable
advances have also been made with optical techniques, with appli-
cations to both MBE and MOVPE, but these have not yet had the
widespread impact of other methods. In this section, we will describe
the most commonly-used techniques: RHEED, the STM and the AFM.

1.4.1 Reflection High-Energy Electron Diffraction

Surface electron diffraction is a standard method for examining the
growth of thin films in situ (Larsen and Dobson, 1988) and dates back
to the early days of electron diffraction. A RHEED measurement is
carried out by directing a high energy (10–20 keV) beam of electrons
at a glancing angle ('0.5◦–3◦) toward the surface (Fig. 1.2). The elec-
trons penetrate a few layers into the surface and those that emerge are
recorded on a phosphorescent screen. There are three principal rea-
sons why RHEED is so suitable as a diagnostic tool for MBE: (i) it
is a relatively simple measurement to set up, requiring only an elec-
tron gun and a collector screen, (ii) it is geometrically compatible with
the molecular beams emanating from the Knudsen cells and so does
not interfere with the growth process, and thus (iii) it can be carried
out during growth. The primary disadvantage of RHEED is that the
‘images’ of the surface are diffraction patterns. These are difficult to
interpret quantitatively in real-space terms because the strong interac-
tion between the electrons and the atoms causes the incident electrons
to be scattered several times before emerging from the crystal. This
‘multiple scattering’ means that RHEED diffraction patterns, unlike
kinematic diffraction patterns, cannot be ‘inverted’ by performing a
Fourier transform.

The RHEED diffraction pattern provides several types of infor-
mation about a surface, including the crystallographic symmetry and
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Figure 1.3: Specular RHEED oscillations on GaAs(001) in the temperature
range 560–590◦. The incident azimuth of the electron beam is [010], the
incident polar angle is 1◦, and the beam energy is 14 keV (Shitara, 1992).

the extent of long-range order. But the most common application of
RHEED is based on measuring the intensity of the specular beam (equal
incident and reflected angles). A typical example taken during growth
on GaAs(001) is shown in Fig. 1.3. Most apparent in this trace are
the oscillations. These oscillations, which are due to the repeated for-
mation of bi-atomic Ga-As layers, provided the first direct evidence of
layer-by-layer epitaxial growth in this system (Neave et al. 1983; Van
Hove et al. 1983). The period of the oscillations indicates that the time
required to form a complete bi-layer is of the order of seconds. Since the
molecular beams can be turned on and off mechanically with a shutter,
the amount of material deposited can be controlled to within a frac-
tion of a layer. Thus, a prescribed amount of one material (e.g. GaAs)
can then be deposited onto a flat surface, followed by a prescribed
amount of a second material (e.g. AlAs). This process can be repeated
to form a superlattice. The electronic properties of superlattices and
other quantum heterostructures can be controlled by the amount and
type of materials deposited. For semiconductor heterostructures, these
characteristics determine the lateral size of the quantum well and the
depth of the confining potential.

Another feature to notice about the oscillations in Fig. 1.4 is the
decaying envelope. The reason for this decay will be discussed in detail
later in this course, so for the moment we simply mention that this
envelope is due to the layer-by-layer growth being imperfect, i.e. sub-
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sequent layers begin to form before the preceding layers are complete.

1.4.2 Scanning Tunneling Microscopy

The scanning tunneling microscope, invented in 1982 by Gerd Binnig
and Heinrich Rohrer (Binnig and Rohrer, 1985) at the IBM Research
Laboratories in Zürich, Switzerland, uses an atomically sharp tip placed
sufficiently close (a few Ångstroms) to a surface to produce an electron
tunneling current. By measuring this current as a function of position,
images are obtained which reflect the electronic density near the surface.
Under favorable circumstances, these images have a lateral resolution
of ≈1 Å and a vertical resolution of ≈0.1 Å.

The basic principle of the STM can be understood with the model
introduced by Tersoff and Hamann (1983) some years ago. The tip is
represented by a spherical potential well within which the Schrödinger
equation is solved. By retaining only the spherically-symmetric solu-
tions, a simple expression is obtained for the tunneling current I at low
bias voltage V : I∼eV %(r0, Ef ), where %(r0, Ef ) is the local density of
states at the Fermi energy, Ef , of the scanned surface at the position
r0 of the tip. Thus, scans taken at constant current measure contours
of constant Fermi-level charge density of the sample. Although this
expression ignores the properties of the tip, which modifies the tunnel-
ing current in several ways, it does show that the STM is sensitive to
charge densities, rather than simply atomic positions.

The STM revolutionized the field of surface science and has seen ap-
plications that extend far beyond traditional boundaries of condensed
matter physics. Its impact on fundamental studies of epitaxial growth
has also been immediate and far-reaching, but the inherently kinetic
nature of growth does introduce some technical complications that are
absent in studies of static surface structure. If an STM is placed in a
growth chamber, the tip shadows the incoming molecular beam. Thus,
the application of the STM to image growing surfaces has had to rely on
one of two indirect strategies. The most common is to image a surface
that has been quenched after a prescribed period of growth, thereby
providing a ‘snapshot’ of the surface. But recently it has become pos-
sible to arrange scan and growth rates to image the same region of
a surface during growth (Voightländer and Zinner, 1993; Pearson et
al. 1996). Though technically more demanding, this approach is the
more desirable in principle because specific kinetic events can be tracked
and no quenching is required, thus providing a more faithful record of
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Figure 1.4: STM images (2900 Å× 2900 Å) during growth on vicinal Si(001)
at 725 K at 8 ML/h (Voigtländer et al. 1997). The starting surface is shown
in (a) and the same region of the surface after the deposition of 0.22, 0.53, and
0.94 ML is shown in images (b)–(d), respectively. The straight SA step and
rough SB step are shown (a), with the white lines indicating the directions
along which the dimer rows run along the two types of terrace. Islands
formed during deposition are enclosed within the circles in (b) and islands
of the next layer after the islands in (b) have coalesced with the advancing
step are indicated by arrows in (c) and (d). (Courtesy B. Voigtländer)

surface evolution. However, because of the very slow growth rates re-
quired in current implementations of this ‘in vivo’ method, the growing
surface is exposed for relatively long times to the ambient impurities
which are always present in the growth chamber. This can affect the
growth in several ways, so care must be taken when interpreting these
images to insure that they reflect the intrinsic growth characteristics of
the material.

STM images of the (001) surface of Si are shown in Fig. 1.4. These
images reveal an important feature that is typical of semiconductor
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surfaces (and surfaces of many other materials). Because the local co-
ordination of surface atoms is lower than that in the bulk, there are
broken, or dangling, bonds which leave the surface in a high-energy
state. The formation of new bonds to lower the surface free energy re-
sults in a rearrangement of surface atoms. We will distinguish between
two types of such rearrangement: relaxation and reconstruction. A re-
laxation preserves the symmetry and periodicity of the bulk unit cell.
Expressed in units of the 2D primitive lattice vectors, such a structure
is said to be 1×1. This is the typical case for non-polar semiconductor
surfaces. A reconstruction involves more complex atomic distortions
that modify the size and symmetry of the unit cell, leading generically
to an n×m structure. In the images in Fig. 1.4, adjacent atoms on the
surface of Si(001) form dimers, which produces a doubling of the unit
cell along the axis of these dimers, i.e. a 2× 1 reconstruction.

1.4.3 Atomic Force Microscopy

When an STM is brought close to a surface, the atoms near the apex
of the tip exert a force on that surface which is of the same order of
magnitude as the interatomic forces within the surfaces. This effect is
the principle behind the atomic force microscope (Binnig et al. 1986).
An STM tip, mounted on a flexible beam, is brought just above a
surface. The force between the surface and the tip causes a small
deflection of the beam. The surface is then scanned while maintaining
a constant force between the tip and the surface with a feedback loop
similar to that used in the operation of an STM.

The AFM complements the STM in several ways. Because the STM
relies on a tunneling current for its operation, it is sensitive mainly to
the density of electronic states near the Fermi level of the sample, as
discussed in the preceding section. Thus, this density of states must
be non-zero, i.e. the sample being scanned must be conducting. How-
ever, since the AFM tip responds to interatomic forces, which include
contributions from all electrons, the sample need not be a conductor.
Additionally, since the tunneling current decreases exponentially with
the tip-sample distance, the STM tip must be placed a few Ångstroms
from the surface to maximize the resolution of the image. The AFM
most commonly operates in this mode (the ‘contact’ mode) as well, but
it can also operate at much larger distances from the surface (50–150
Å) for samples susceptible to damage or alteration by being in close
proximity to the tip (the ‘non-contact’ mode). Although achieving lat-
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Figure 1.5: Schematic evolution of the (a) Frank–van der Merwe, (b)
Volmer–Weber, and (c) Stranski–Krastanov heteroepitaxial growth modes.

eral atomic resolution with the STM is now commonplace, it is much
more demanding technically with the AFM. Thus, many applications
of the AFM involve scanning large areas to image the gross features of
the morphology of the sample. This has the advantage of not requiring
a UHV environment and AFMs often operate in ambient atmosphere
or in a liquid (Quate, 1994).

1.5 Epitaxial Growth Modes

Numerous experiments (Kern et al. 1979, Venables et al. 1984) have
revealed that, for small amounts of deposited material, the epitax-
ial growth morphology is one of three distinct types. By convention
(Bauer 1958, Le Lay and Kern 1978), these are referred to as: Frank–
van der Merwe morphology, with flat single crystal films consisting
of successive complete layers, Volmer–Weber morphology, with three-
dimensional (3D) islands that leave part of the substrate exposed, and
Stranski–Krastanov morphology, with 3D islands atop a thin flat film
that completely covers the substrate. These morphologies are illus-
trated schematically in Fig. 1.5.

For lattice-matched systems, the Frank–van der Merwe and Volmer–
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Weber morphologies can be understood from thermodynamic wetting
arguments based on the interfacial free energies (Bauer 1958). We
denote the free energy of the epilayer/vacuum interface by γe, that of
the epilayer/substrate interface by γi, and that of the substrate/vacuum
interface by γs. Then Frank–van der Merwe growth is favored if the
free energies of the epilayer and the interface between the epilayer and
the substrate is less than that of the substrate:

γe + γi < γs (1.1)

In this case, as the epilayers are formed, the free energy decreases ini-
tially before attaining a steady-state value for thicker films. Alterna-
tively, if

γe + γi > γs (1.2)

then Volmer–Weber growth is favored. In this case the free energy
increases if epilayers are formed on the substrate, rendering a uniform
layer thermodynamically unstable against a break-up into regions where
the substrate is covered and those where it is uncovered.

Stranski–Krastanov growth may be viewed as the transition from
the Frank–van der Merwe to the Volmer–Weber growth mode. This
growth mode is not well understood but is thought to be closely related
to the accommodation of elastic energy associated with lattice misfit
between the epilayer and the substrate. Growth in the first monolayer
or so initially proceeds in a layer-by-layer manner, but the epilayer is
strained to match the lattice constant of the substrate. As the epilayer
thickens the strain energy increases and reaches a point where it can
be lowered through the formation of isolated 3D islands in which strain
is relaxed by misfit dislocations. But there is another scenario within
the Stranski–Krastanov morphology: the formation of islands without
dislocations—called coherent islands—atop one or more wetting layers
(Eaglesham and Cerullo, 1990; Madhukar and Rajkumar, 1990). Such
islands have been observed for a number of systems (Petroff and Den-
Baars, 1994; Seifert et al. 1996); in Fig.1.6 we show an example of such
an island of InP on GaInP(001).

Figure 1.7 shows a sequence of STM images taken during the for-
mation and evolution of 3D InAs islands on GaAs(001) at 420◦C. The
growth of InAs on GaAs(001) proceeds first by the nucleation of 2D is-
lands which coalesce into coherently strained layers. These are the ‘wet-
ting’ layers in the conventional Stranski–Krastanov description. The
3D islands are first observed just after 1.7 monolayers. The transition
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Figure 1.6: High-resolution cross-section micrograph of an uncapped InP
island on GaInP grown by MOVPE at 580◦ C along the (a) [110] and (b)
[1̄10] directions (Georgsson et al. 1995). Note that the islands are elongated
along [110] and that the planes of atoms are appreciably curved toward the
center of the island near the substrate caused by the compressive strain, but
there is no evidence of any dislocations.

to growth by 3D islands is quite abrupt, occurring over less than 0.1
monolayers. This transition can be followed by RHEED, which shows a
change from a streaky pattern, characteristic of layer-by-layer growth,
to a spotty pattern that corresponds to the transmission of the electrons
through the 3D islands. As more material is deposited, the islands grow
in number, but soon reach a saturation density.

1.6 Physics in Reduced Dimensions

The properties of artificially structured materials provide new oppor-
tunities for technological applications. Many of these applications are
driven by the expanding, and seemingly insatiable, requirements of in-
formation processing, information transfer (communication), and in-
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Figure 1.7: Filled states STM images (2000 Å × 2000 Å) of InAs deposited
on GaAs(001)–c(4×4) at 420◦C at coverages of (a) 1.7, (b) 2.0, (c) 2.5 and
(d) 5.5 monolayers. (Courtesy G. R. Bell)

formation storage. For semiconductors, the biggest impact of quantum
heterostructures has been in the area of optoelectronics, i.e. the gen-
eration, control, and detection of light. The advent of quantum wells,
in particular, has revolutionized this field and has already seen several
devices put into commercial production. There is also considerable on-
going research into extending the practical utility of low-dimensional
structures to quantum wires and especially quantum dots, where the
optical properties are predicted to be even further enhanced over those
of quantum wells. However, these lower-dimensional structures must
await further developments in processing before they can aspire to hav-
ing the impact of quantum wells.

One of the most important factors for the physics of low-dimensional
structures is that the small sizes of structures which can now be pro-
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duced means that the motion of electrons (and holes) is severely re-
stricted, or confined, in at least one direction. This confinement reduces
the effective dimensionality of the carriers, which is manifested in re-
markable optical, transport and magnetic properties of the materials
forming the heterostructure. Some of these properties, which can be
traced to changes in the density of single-particle states, are straightfor-
ward to understand, being simply the result of the geometrical effects
of reduced dimensionality. Other phenomena, however, such as the
Coulomb blockade and the Wigner crystal, require that interactions
between electrons be taken into account to obtain a complete explana-
tion of the observed behavior. Many issues related of these effects have
not yet been fully resolved and remain under active investigation.

Quantum effects arise in systems which confine electrons to regions
comparable to their de Broglie wavelength. When such confinement
occurs in one dimension only (say, by a restriction on the motion of the
electron in the z direction), with free motion in the x and y directions, a
‘two-dimensional electron gas’ (2DEG) is created. Confinement in two
directions (y and z, say), with free motion in the x-direction, gives a
‘one-dimensional electron gas’ (1DEG) and confinement of its x, y, and
z motions at once gives a ‘zero-dimensional electron gas’ (0DEG). The
density of electronic states is a strong function of the spatial dimension.
This has a strong influence on the transitions between different energy
states, an effect which can be exploited in a number of ways, most no-
tably in optical and transport properties in quantum heterostructures.

1.6.1 The Coulomb Blockade

Consider the classical description of what happens when one tries to
charge an isolated conductor with a single electron. The increase in
the energy by adding the electron is just the charging energy, e2/2C,
where C is the capacitance of the body being charged. The capacitance
of a macroscopic conductor is large enough so that this energy penalty
is negligible compared with the thermal energy at room temperature,
kT ≈ 1/40 eV, so for this situation there is no measurable barrier for
this process. However, for very small conductors at low temperature
it is possible for the charging energy to exceed the thermal energy. As
a result it is energetically unfavorable for an electron to charge the
conductor until the external driving force is sufficient to supply the
extra energy. This is the regime of the Coulomb blockade, where no
current can flow through the conductor.
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Many systems are capable of displaying a Coulomb blockade at low
enough temperatures. Some of the earliest observations of this phe-
nomenon date back to the 1960s where zero bias anomalies in the cur-
rent flowing through a large array of small tin particles were explained
in terms of the charging energy of the particles (Zellar and Giaever,
1969). In these original experiments the current flowed through a large
number of tin islands and only the average or dominant properties
could be observed. Nanofabrication technology has now developed to
the stage where the Coulomb blockade can be observed in a variety
of settings. It is of special interest in low-dimensional semiconductor
systems because of the fact that the discreteness energies within het-
erostructures makes the on/off nature of the conductance very precise.
This forms the basis of the single-electron transistor (Kastner, 1992),
which will be discussed in the next chapter.

There are three ingredients that conspire to form a Coulomb block-
ade: the quantization of the electronic charge, the small size of the
structures (and, therefore, the low electron densities), and low temper-
atures. Consider what happens when one tries to send a current along a
one-dimensional quantum wire containing a quantum dot at a very low
temperature ('100 mK). We can regard this situation as corresponding
to the dots connected by leads (the quantum wire). The conductance is
a measure of how easily current can flow through the dot. But adding
one electron to the charges already in the dot takes energy; how much
is determined from elementary considerations, since the quantum dot
is essentially a capacitor. To add an amount of charge Q to a capacitor
whose capacitance is C requires an energy E = Q2/2C. Thus, to put
one more electron into the dot costs an energy e2/2C. Similarly for a
hole to tunnel into the 1DEG (i.e. for the electron to leave the dot)
takes energy −e2/2C. This means that electrons at the Fermi energy
of the wire can get into the dot only if this energy is e2/2C higher than
the lowest available electron state in the 1DEG and, once it is there,
can only get out again if it can lose at least e2/2C on the other side.
This leads to a gap of e2/C in the tunneling density of states.

If thermal fluctuations are not to mask the charging energy of the
Coulomb blockade the temperature has to be low enough to ensure
that the inequality kT ¿ e2/2C is satisfied. This condition repre-
sents the greatest challenge to the manufacture of single-electron de-
vices which would operate at room temperature. At T = 300K the
thermal energy is 25.8meV, corresponding to a total capacitance C ≈ 3
aF (1a = 10−18). For robust operation the capacitance should be 10–
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100 times smaller than this value, leading to total device capacitances
of the order of 10−20 F. At present most single-electron structures have
values of C > 1 aF and only operate at cryogenic temperatures. Room
temperature operation will require devices in which the charging is-
lands are less than 100Å in size. Although this represents a significant
challenge to microfabrication techniques, recent progress has been quite
encouraging.

In addition to a small total capacitance, the charging region of a
single electron device must be connected to the outside world via leads
whose resistance exceeds approximately 26 kΩ; otherwise, the Coulomb
blockade will be masked by quantum fluctuations (Averin and Likharev,
1992). To see why, consider the Heisenberg uncertainty relation in the
form ∆E∆t ' h. Quantum fluctuations will destroy the Coulomb
blockade if the uncertainty in the energy ∆E exceeds the charging en-
ergy. To ensure this is not the case an electron must stay on the charg-
ing region for a time ∆t > hC/e2. We can equate the charge/discharge
time τ of the region to its RC time constant, i.e. ∆t ≈ τ ≈ RC, where
R is the total resistance through which the island is charged. This leads
to the result that the resistance of any junction in the single electron
device must be greater than Rmin = h/e2 = 25.8 kΩ.

1.6.2 The Wigner Lattice

A gas of electrons behaves very differently from a gas composed of neu-
tral weakly-interacting particles. One of the most striking differences is
the behavior of these two types of gases as a function of the density. At
large densities, interactions between the particles in atomic and poly-
atomic gases become increasingly important. But for an electron gas,
the phenomenon of screening leads to behavior that for many purposes
may be regarded as that of free electrons. Thus, a high-density elec-
tron gas behaves essentially like an ideal gas of Fermions.As the density
of an atomic or polyatomic gas is lowered, the interactions diminish in
importance and the gas approaches ideal behavior. For an electron gas,
however, decreasing the density increases the effect of the Coulomb po-
tential because the screening effect becomes much less effective. This is
the physical basis of the Coulomb blockade discussed in the preceding
section.

It was precisely such observations that led Eugene Wigner (Wigner,
1934) to propose the existence of a lattice of electrons as the ground
state of an interacting gas—what is now called a Wigner crystal. Wigner
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argued that below a certain critical density the kinetic energy will be
negligible in comparison to the potential energy. Thus, at low enough
temperatures the energy of a system of electrons would be dominated by
the pair-wise Coulomb potential between the particles and the behavior
of the gas will be determined by the configuration that minimizes the
potential energy. Since the potential of a random array is higher than
that of an ordered array, then in this regime the electrons will form
a crystal. In three dimensions, the case that Wigner considered, the
lowest potential energy is obtained for a body-centered cubic crystal.

There are two regimes to consider: the quantum regime, where
kBT ¿ EF, and the classical regime, where kBT À EF. The clas-
sical regime of Wigner crystallization is relatively easy to achieve when
the density ns of electrons is small, since EF ∝ ns. The potential energy
V per electron can then be estimated by

V ' e2

4πε0r
∝ n1/2

s (1.3)

The average kinetic energy can be obtained from the equipartition the-
orem, so the crossover temperature where the kinetic and potential
energies are of comparable magnitude is T ∝ n1/2

s . The first observa-
tion of a Wigner crystal was, in fact, in the classical regime for electrons
on the surface of liquid helium (Grimes and Adams, 1979).

The higher densities ns (and lower effective masses) of 2DEGs in
semiconductors means that EF À kBT . In this (quantum) regime, the
kinetic energy of the electrons remains nonzero even at the lowest tem-
peratures, being of order EF. Thus, the kinetic and potential energies
are comparable, so electrons in most semiconductors remain in a ‘liq-
uid’ state even at the lowest temperatures. Achieving lower densities
is not yet technically feasible, so an alternative approach is to apply a
large (∼ 10 T) magnetic field perpendicular to the 2DEG which has the
effect of confining electrons to small (∼ 5 nm) orbits. This makes the
2DEG easier to solidify and there have been a number of experiments
carried out that support the notion 2DEGs in GaAs crystallize in very
high magnetic fields and low temperatures (Goldman et al. 1990).
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Chapter 2

Quantum Theory of
Electrons

The observable properties of all forms of matter, and solids in partic-
ular, are determined completely by quantum mechanics from solutions
of a many-body Schrödinger equation for the motion of the electrons
and the nuclei. This includes all equilibrium properties and nonequi-
librium, or response, properties. Equilibrium properties encompass all
thermodynamic behavior, including the equations of state and phase
diagrams, and quantities such as the specific heat and compressibility.
Nonequilibrium properties include responses to various perturbations,
such as electromagnetic fields and mechanical impulses, which deter-
mine the optical, transport, and mechanical properties of materials.
However, because of the inherent difficulty of obtaining even grossly
approximate solutions of the full many-body Schrödinger equation, one
typically focusses on (sometimes ad hoc) approximations to this equa-
tion which are believed to capture the essential energetics of the prob-
lem of interest. This has resulted in a number of parallel strands in
Condensed Matter Theory and is, in part, responsible for the richness
of the subject as a whole.

In this Chapter, we carry out a systematic reduction of the full
quantum mechanical description of solids to obtain a more conceptu-
ally and computationally manageable set of equations which can be
applied to specific materials. What emerges are separate equations for
the degrees of freedom of the electrons and nuclei and the conditions
under which this partitioning is appropriate. We then discuss briefly
the basic information that is obtained by solving these equations, but
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our main focus, to be covered in later lectures, is the solution of the
Schrödinger equation for electrons.

2.1 The Many-Body Equation

The logical formulation of the quantum theory of solids begins with
the exact problem which is then made tractable by making several
systematic approximations. We are seeking solutions of the Schrödinger
equation:

HΨ({ri}, {Rα}, t) = ih̄
∂Ψ

∂t
(2.1)

where H is the exact many-body Hamiltonian and the wavefunction Ψ
is a function of the all of the electronic and nuclear coordinates, which
we denote by ri and Rα, respectively. A solid typically contains of the
order of 1025 electrons which are mutually interacting and moving in the
electromagnetic fields of ∼ 1024 positively-charged ion cores, which are
also mutually interacting. The solid as a whole is, of course, electrically
neutral. Under ordinary circumstances, neither the electrons nor ion
cores move at velocities anywhere near the speed of light (vi, V α¿ c)
so, as a first approximation, we can take the Hamiltonian to be the sum
of the nonrelativistic kinetic energies and Coulomb interactions of the
electrons and ion cores:

H =
∑
i

p2
i

2m
+
∑
α

P 2
α

2Mα

+ 1
2

∑
i,j

′ e2

|ri − rj|

+ 1
2

∑
α,β

′ ZαZβe
2

|Rα −Rβ|
−
∑
i,α

Zαe
2

|ri −Rα|
(2.2)

where pi and P α are the momenta of the electrons and ion cores, respec-
tively, m is the electron mass, Mα is the mass of the ion core at position
Rα, and Zα is the charge of that ion core. The sums over i and j run
over all of the electrons and the sums over α and β run over all of the ion
cores. The terms on the left-hand side of this equation represent, respec-
tively, the kinetic energies of the electrons and ion cores, the (repulsive)
Coulomb potential energy between the electrons and the corresponding
term for the ion cores, and the (attractive) Coulomb potential energy
between the electrons and the ion cores. This Hamiltonian should be
looked upon as a zeroth-order expression; it omits spin-orbit coupling,
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magnetic effects, and mass-velocity effects, all resulting from relativis-
tic corrections, and, if we do not consider all of the electrons explicitly,
core polarization effects. All of these corrections can be handled within
perturbation theory, provided that the zero-order wavefunction can be
obtained.

The first problem we face, already referred to, is how to break up
the electrons within each atom into outer, or valence, electrons (which
are given the explicit coordinates ri in the formulae above), and core
electrons, which are part of the ion core and are assumed to move with
the nucleus at all times. The fewer electrons that we consider explicitly,
the more we have to correct the Hamiltonian for polarization effects by
introducing many-ion interaction terms. The decision depends on two
considerations: (i) the nature of the atoms in the solid, and (ii) the
type of solid (ionic, covalent, metallic, molecular, etc.). In general, for
covalent and metallic solids, we begin by considering the material as a
collection of atoms. We can arbitrarily specify that all electrons on these
atoms whose binding energy is greater than, say, 30 eV will be taken
as part of the ion core and not treated explicitly. Operationally, this
means that all electrons outside of filled electronic shells are considered
explicitly. For molecular solids, we can apply a similar guide to the
binding energies of electrons to the molecule; for ionic solids, we begin
with the appropriate ions (e.g., Na+ and Cl−).

How do we know a priori whether a given solid is metallic, ionic,
covalent or something else? In principle, we should be able to solve the
problem and find out. But the magnitude of doing so is revealed when
one considers that (2.2) is the Hamiltonian not only for all possible
allotropic forms of the solid under consideration, but also applicable to
all other phases, including the liquid, gas, and even plasma phases. All
of these should emerge from a complete solution to the problem. At the
moment, even solving this problem at zero temperature is a hopeless
task, so we are forced to take a much more empirical approach.

2.2 The Adiabatic Approximation

We now proceed to attempt to solve the Schrödinger equation (2.1)
with the Hamiltonian (2.2) in as systematic a manner as possible. The
first approximation that we introduce can be analyzed in terms of a
perturbation expansion. The small parameter is the ratio of the elec-
tron mass to the mass of the ion core, m/Mα. This ratio is always less
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than 5× 10−4 and ordinarily is less than 10−5 (for atoms heavier than
calcium).

2.2.1 Separation of Variables

We begin by following a procedure motivated by the separation of vari-
ables method used to solve linear partial differential equations. We first
write the wavefunction Ψ({ri}, {Rα}, t) as

Ψ({ri}, {Rα}, t) = ϕ({ri}; {Rα})ψ({Rα}) e−iEt/h̄

where the quantities Rα in ϕ are to be regarded as a set of parameters,
in a sense to be made clear below. Substituting this expression into
(2.1) and (2.2) yields Schrödinger equations for ϕ and ψ. The equation
for ϕ is∑

i

p2
i

2m
+ 1

2

∑
i,j

′ e2

|ri − rj|
−
∑
i,α

Zαe
2

|ri −Rα|

ϕn = Enϕn (2.3)

This is a Schrödinger equation in the electron coordinates only, which
can, in principle, be solved for the eigenvalues En({Rα}) and eigenfunc-
tions ϕn({ri}; {Rα}) for a fixed set of ion-core positions Rα. Thus, the
potential energy in this equation is derived from the mutual Coulomb
repulsion of the electrons and Coulomb attraction between the electrons
and the ions at their fixed positions. For each set of Rα, the solution
of (2.3) is a complete orthonormal set. The orthonormality is expressed
as ∫

· · ·
∫ ∏

j

drj ϕ∗n′({ri}; {Rα})ϕn({ri}; {Rα}) = δn,n′

and the completion relation is∑
n

ϕ∗n({r′i}; {Rα})ϕn({ri}; {Rα}) = δ(ri − r′i)

The Schrödinger equation for ψ is∑
α

P 2
α

2Mα

+ 1
2

∑
α,β

′ ZαZβe
2

|Rα −Rβ|
+ En({Rα})

ψn,λ = En,λψn,λ (2.4)

This is a Schrödinger equation in the nuclear coordinates only. The
electronic coordinates do not explicitly enter this equation at all. But
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they enter implicitly through the term En({Rα}) in the potential en-
ergy, which is the energy eigenvalue obtained by solving (2.3) as a
function of the Rα. Each value of n gives a different potential energy in
(2.4) and, thus, different different eigenvalues En,λ and eigenfunctions
ψn,λ({Rα}). For each value of n, the solutions to (2.4) are orthonormal,∫

· · ·
∫ ∏

β

dRβ ψ∗n,λ′({Rα})ψn,λ({Rα}) = δλ,λ′

and complete,∑
λ

ψ∗n,λ({R′α})ψn,λ({Rα}) = δ(Rα −R′α)

2.2.2 Adiabatic Wavefunctions

Neither (2.3) nor (2.4) alone represent solutions of the original problem
posed in (2.1) and (2.2). However, the product functions

Ψn,λ({ri}, {Rα}) = ϕn({ri}; {Rα})ψn,λ({Rα}) (2.5)

do represent approximate solutions to this problem. The orthonormality
and completeness of the ϕn and the ψn,λ discussed above imply that
the Ψn,λ are themselves orthonormal,∫

· · ·
∫ ∏

j

drj

∫
· · ·

∫ ∏
β

dRβΨ
∗
n′,λ′({ri}, {Rα})Ψn,λ({ri}, {Rα})

= δn,n′δλ,λ′

and complete,∑
n,λ

Ψ∗n,λ({r′i}, {R′α})Ψn,λ({ri}, {Rα}) = δ(Rα −R′α)δ(ri − r′i)

Thus, the set of functions (2.5) form a valid basis—called the adia-
batic basis—for any problem involving both electronic and ionic coordi-
nates: any eigenfunction of H in (2.2) can be constructed from a linear
combination of the Ψn,λ:

Ψ({ri}, {Rα}) =
∑
n,λ

an,λΨn,λ({ri}, {Rα})

where the an,λ are constants determined by the initial conditions.



30

The adiabatic approximation, also known as the Born–Oppenheimer
approximation (Born and Oppenheimer, 1927), is the assertion that the
Ψn,λ are themselves approximate eigenfunctions of (2.2). Physically, the
adiabatic approximation assumes that the moving ion cores contin-
uously deform the electronic wavefunctions (rather than causing any
sudden changes in the eigenstate), but that the electrons just provide
a potential energy for the ion-core motion. The latter is the change
in electronic energy brought about by the necessity of the electrons
following the motion of the ion cores.

The Born–Oppenheimer approximation would be exact if the Hamil-
tonian were diagonal in both n and λ. However, the matrix elements
between different ionic states λ and λ′ are

(nλ′|H|nλ) ∼ En,λδλ,λ′ + En,λ
m

M
(2.6)

where M is the weighted average of the ion-core masses Mα (weighted
by the fraction of electrons bound to the cores), and those between
different electronic states are

(n′λ′|H|nλ) ∼ En,λδλ,λ′δn,n′ + 2En,λ

(
m

M

)1/2

(2.7)

Equation (2.6) indicates that the ratio of the off-diagonal to diago-
nal ionic matrix elements is of the order of m/M ≤ 10−4. This indicates
that corrections to the Born–Oppenheimer approximation are not sig-
nificant, even for the lightest atoms. However, Eq. (2.7) shows that the
corresponding ratio for electronic matrix elements is only a factor of the
order of (m/M)1/2 ∼ 10−2. If this term is appreciable, then different
electronic states can be coupled, and we cannot assume, for example,
that the electrons are always in their ground state when we solve the
ion-core problem for the vibrational modes of the system. The matrix
elements are lead to the electron-phonon interaction, whose most strik-
ing manifestation is the formation of Cooper pairs (Cooper, 1956) (a
pair of electrons “bound” by the exchange of a virtual phonon) which
leads one mechanism for superconductivity (Bardeen et al., 1957), and
corresponds to sudden (i.e., nonadiabatic) transitions between different
electronic states without a large change in the ion-core positions. These
off-diagonal matrix elements of the full Hamiltonian can be considered
as inducing a scattering of the electrons by the motion of the ion cores.
Only when this term is small do the electronic energies change smoothly
as the ions move.
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2.3 The Ion-Core Schrödinger Equation

Suppose, for the moment, that the electronic problem in Eq. (2.3) can
be solved for every arrangement of ion cores. We must then solve the
associated ion-core problem in Eq. (2.4), which can be written as[∑

α

P 2
α

2Mα

+ Vn({Rα})
]
ψn,λ = En,λψn,λ (2.8)

where the total potential of the cores is given by the sum of their mutual
Coulomb repulsion and the potential due to the electronic motion:

Vn({Rα}) = 1
2

∑
α,β

′ ZαZβe
2

|Rα −Rβ|
+ En({Rα}) (2.9)

2.3.1 The Structure of Solids

Consider first the case where the electrons are in their ground state
(n = 0) for every set of ionic positions. Then the solution of (2.8)
yields a series of eigenvalues E0,λ. The ground-state energy is E0,0,
corresponding to the eigenfunction ψ0,0.

If the adiabatic approximation is valid at all, the function V0 must
have absolute minima with respect to each coordinate Rα (Born and
Huang, 1954):

∂V0

∂Rα

∣∣∣∣∣{Rβ,0}
= 0 (2.10)

where Rβ,0 is the equilibrium value of the Rβ. This means that there is
an equilibrium configuration for the ion cores, known as the structure
of the solid. For most, if not all materials, many other local minima
exist: these alternative structures give the allotropic forms of the solid,
which can be stable provided the Gibbs free energy are absolute minima
over a finite range of the temperature T and pressure P .

For most simple solids, the equilibrium positions as determined from
(x-ray, neutron, or electron) diffraction measurements show almost per-
fect periodicity. Such solids are called crystalline and their structure is
described by a lattice (a periodic array of positions) and a basis (an
arrangement of atoms associated with each lattice point). It has not
been possible to prove that such a periodic array must be the ground
state of a large collection of atoms, although the term

1
2

∑
α,β

′ ZαZβe
2

|Rα −Rβ|
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is minimized at fixed density for a periodic structure (i.e., one that keeps
all ion cores as far away from each other as possible.

2.3.2 Lattice Vibrations

The potential (2.9) is also used to describe the dynamics of small de-
viations of the ion-cores from their equilibrium positions. This is the
problem of lattice dynamics. In the simplest theory of this type, called
the harmonic approximation, the potential is expanded to second-order
in the these deviations, xα = Rα −Rα,0,

V0({Rα}) = V0({Rα,0}) + 1
2

∑
α,β

∂2V0

∂Rα∂Rβ

∣∣∣∣∣{Rγ,0}
xαxβ

where the first-order term vanishes on account of (2.10). The resulting
problem is equivalent to a set of coupled harmonic oscillators. When
quantized, these modes are referred to as phonons, which obey Bose–
Einstein statistics. Cubic and higher-order terms, which can be consid-
ered within the adiabatic approximation lead to phonon scattering.

2.4 The Electron Schrödinger Equation

We now return to the electronic problem in Eq. (2.3). The solution
of this equation yields a series of eigenvalues En and eigenfunctions
ϕn which completely characterize the electronic behavior of the system
for specified positions Rα of the ion cores. Once such a solution has
been obtained, the forces on the nuclei can be related to changes in the
quantum mechanical total energy En({Rα}) by combing the virial the-
orem (Slater, 1933) with the Hellmann–Feynman theorem (Hellmann,
1937; Feynman, 1939):

〈T 〉ϕ = −1
2
〈V 〉ϕ − 1

2

∑
α

Rα·∇En({Rα})

where 〈·〉ϕ denotes the quantum-mechanical average of the indicated
quantity in the state ϕ, and T and V are the kinetic and potential
energy terms, respectively, in (2.3).

A direct solution of Eq. (2.3) is impractical, since apart from there
being typically 1025 electrons interacting through a strong r−1 Coulomb
potential, the tabulation of the solution would not be a convenient way
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of understanding the behavior of the electrons. Accordingly, a variety of
approximate methods have been developed for solving the Schrödinger
equation for interacting electron systems. These will be taken up in the
next section.

2.5 Density Functional Theory

Since the formulation of quantum mechanics in the 1920s, two major ap-
proaches have emerged for the computation of the properties of atoms,
molecules and solids: Hartree–Fock theory and density functional the-
ory. The Hartree–Fock and related methods have been most popular
in the quantum chemistry community, while density functional theory
has been the dominant method used for calculations of solids. In this
Chapter we discuss the basic concepts of density functional theory and
its implementation for the computation of the properties of solids. To
set the stage for the discussion of the impact of quantum mechanics
and dynamical correlations on the motion of electrons, we begin with
a discussion of the Hartree and Hartree–Fock approximations, which
date back to the early days of quantum mechanics.

2.5.1 The Hartree and Hartree–Fock Approxima-
tions

To appreciate the role that quantum mechanics plays in electronic prop-
erties, we adopt an approach to solving the Schrödinger equation (2.3)
that is based on a variational principle. We suppose that the wavefunc-
tion ϕ of the system can be written as a product of wavefunctions φ,
one for each of the n particles in the system:

ϕ({ri}) = φ1(r1)φ2(r2) · · ·φn(rn) (2.11)

We then minimize the energy of the Hamiltonian in (2.3) with respect
variations in the φi. This yields an effective Schrödinger equation for
each of the φi:− h̄2

2m
∇2
i + e2

∑
j 6=i

∫ |φj(r)|2
|ri − r|

dr − e2
∑
α

Zα

|ri −Rα|

φi(ri) = εφi(ri)

(2.12)
where the integration in the Coulomb term is understood to include the
spin inner product. The first term on the left-hand side of this equation
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is the kinetic energy, the second term represents the Coulomb potential
generated by all the other electrons, and the third term is the attractive
Coulomb potential generated by the ion cores. The use of the product
wavefunction (2.11), which leads to the effective Schrödinger equation
(2.12) is known as the Hartree approximation. The obvious drawback
of this approximation is that the trial wavefunction (2.11) does not re-
spect the antisymmetric statistics of electrons. Moreover, the Hartree
approximation drastically underestimates the tendency for cohesion be-
cause there is too much overlap of electronic wavefunctions in regions
of repulsive Coulomb potential. Indeed, for metals, the Hartree approx-
imation predicts that there is no cohesion at all! We now consider the
effect of incorporating statistics into the trial wavefunction.

Given a basis of wavefunctions φi for n particles, an n-electron wave-
function which is antisymmetric under interchange of particles, is ob-
tained in the form of a Slater determinant:

ϕ({ri}) =
1√
n!

∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(r1) φ1(r2) · · · φ1(rn)

φ2(r1) φ2(r2) · · · ...

...
...

. . .
...

φn(r1) · · · · · · φn(rn)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.13)

Minimizing the energy of the Hamiltonian (2.3) with respect to varia-
tions in the φi, yields a somewhat different effective Hamiltonian from
that in (2.12):− h̄2

2m
∇2
i + e2

∑
j

∫ |φj(rj)|2
|ri − ri|

drj − e2
∑
α

Zα

|ri −Rα|

φi(ri)

−e2
∑
j

∫ φ∗j(r)φj(ri)φi(r)

|ri − rj|
drj = εφi(ri) (2.14)

where the integration in the Coulomb term is again understood to in-
clude the spin inner product. The first three terms on the left-hand side
of this equation are the same as those of the Hartree approximation.
The fourth term, which is a direct result of the antisymmetrized trial
wavefunction, but still originates in the electronic Coulomb interaction
of the Hamiltonian in (2.3), is called the exchange term. There are
several interesting features about this term. Notice first that the sum-
mations over j in the Coulomb and exchange terms are unrestricted.
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This is because the terms corresponding to j = i cancel. Secondly, the
negative sign indicates that this term lowers the energy of the system
in comparison with the Hartree approximation. Third, taking the spin
inner product has no effect on the Coulomb term: the sum is over all
states and spin orientations, just as in the Hartree approximation. But,
in the exchange term, the spin of state j must be parallel to the spin
of state i. This, together with the negative sign are a direct result of
the Pauli exclusion principle: the overlap of spatial wavefunctions with
the same spin is minimized, resulting in a decrease of their repulsive
Coulomb interaction energies. Finally, the Coulomb term is local in that
its effect on the ϕi(r) depends only on the behavior of ϕ near r. In the
exchange term, on the other hand, all values of ϕi enter the integral,
so this is a nonlocal term.

The cohesive energy of solids is somewhat improved in the Hartree–
Fock approximation by the tendency to keep electrons with parallel
spins apart, thus reducing their Coulomb repulsion. But the absence
of the same effect for electrons with anti-parallel spins means that the
tendency toward cohesion is still underestimated. This is essentially
a dynamical correlation effect because it cannot be accounted for by
the antisymmetrization of the wavefunction. The correlation energy is
therefore defined as the difference between the exact energy of a system
and the energy calculated in the Hartree–Fock approximation.

Although the Hartree–Fock approach has not been widely used for
calculating the electronic properties of periodic systems, it has been
very successfully applied to calculating the electronic structures and
total energies of organic molecules (Hehre et al., 1986). Moreover, in
the quantum chemistry community, a variant of the Hartree-Fock ap-
proach, based on an expansion in a complete basis of Slater determi-
nants, is used to calculate the properties of molecules. This approach,
called configuration-interaction, or simply CI, is formally exact, but
computationally very intensive because the convergence is notoriously
slow. In the next section, we describe an altogether different approach
to solving the Schrödinger equation in (2.3) that is in principle appli-
cable to all types of quantum mechanical systems (atoms, molecules,
and solids).

2.5.2 Basic Density Functional Theory

Hohenberg and Kohn (1964) and Kohn and Sham (1965) formulated a
theorem that enabled the solution of the Schrödinger equation in (2.3)
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to be placed on a sound mathematical basis. This theorem states that
the total energy E of a quantum mechanical system depends only on
the electron density % of its ground state, i.e., E is a functional of %:

E = E[%(r)]

and that the ground state energy minimizes this functional:

∂E[%]

∂%

∣∣∣∣
%0

= 0 (2.15)

where %0 is the exact electron density of the many-body ground state.
This provides an enormous conceptual simplification to the problem

of solving (2.3) because its reduces the number of degrees of freedom
from 3N , where N ∼ 1024, to the degrees of freedom of a scalar func-
tion in three-dimensional space, i.e., 3. The idea of using the electron
density as a fundamental quantity in the quantum theory of atoms,
molecules, and solids originated in the early days of quantum mechan-
ics with the work of Thomas (1926) and Fermi (1928). As a simple
example, all of the thermodynamic properties of an ideal electron gas
(e.g., energy, chemical potential, compressibility) are determined com-
pletely by its density. For the problem at hand, where the electron
density is determined also by the positions of the ion cores, the Kohn–
Sham–Hohenberg theorem allows us to write

E = E[%(r; {Rα})] (2.16)

where the Rα are still to be regarded as parameters, rather than vari-
ables (i.e., degrees of freedom), since the theorem applied to every set of
fixed ion-core positions. Equation (2.16) is the basis of density function
theory.

The basic idea of how the Kohn–Sham–Hohenberg theorem is ap-
plied to solve (2.3) is that each electron is viewed as moving in some
average effective potential Veff which is generated by the other elec-
trons and ion cores. This potential must be found self-consistently, since
the wavefunction for each electron is included in the effective poten-
tial of all other electrons as is seen, for example, in the Hartree and
Hartree-Fock approximations. Notice that in this picture, the “real”
electrons are replaced by “effective” electrons with the same total den-
sity which move as independent particles in the effective potential. The
Schrödinger equation that determines the wavefunctions of the effective
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electrons is thus of the general form

[
− h̄2

2m
∇2 + Veff

]
ψi(r) = εiψi(r) (2.17)

where the ψi produce the exact charge density:

%(r) =
∑
i

ni|ψi(r)|2 (2.18)

with the occupation number (ni = 0 or ni = 1) of the ith state. The
ψi do not constitute a single-particle approximation to the exact the-
ory; they are simply a way of representing the total electronic charge
density.

In density functional theory, the total energy is first decomposed as

E = T + e2
∫ %(r)%(r′)

|r − r′| dr dr′ − e2
∑
α

∫ Zα%(r)

|Rα − r|
dr + Exc[%] (2.19)

The simplest terms to understand are the second and third terms on
the right-hand side of this equation. The second term is the Coulomb
repulsion between the electrons and the third term is the Coulomb
attraction between the electrons and the ion cores. Both of these terms
are essentially classical in origin, a characteristics that will be used
explicitly below. The term T is the sum of the kinetic energies of all of
the “effective” electrons moving as independent in an effective potential.
With the wavefunctions of these particles given in (2.18), T is given by

T = − h̄2

2m

∑
i

ni

∫
ψ∗i (r)∇2ψi(r) dr

Since this term considers the electrons as moving independently, dy-
namical correlations are excluded by construction.

The last term on the right-hand side of (2.19) includes all of the
exchange and correlation contributions to the total energy and is called
the exchange-correlation energy. The exchange energy, as discussed for
the Hartree–Fock approximation, acts to reduce the Coulomb repul-
sion for electrons with parallel spins. The correlation energy is due to
the same effect for electrons with anti-parallel spins and is a result of
dynamical correlations between the electrons.



38

2.5.3 The Kohn–Sham Equations

Given the expression (2.19) for the energy, a procedure is now required
for implementing density functional theory in practical calculations. In
addition to this energy, the key equations are the expression (2.18) for
the many-body density in terms of single-particle wavefunctions, and
the stationarity (2.15) of the energy with respect to first-order vari-
ations of % about its ground-state value. Notice that any change in
the single-particle wavefunctions induces a corresponding change in %.
Thus, the variational condition (2.17) can be used to derive the condi-
tions that the ψi produce the ground-stare density. These are obtained
by substituting (2.19) and (2.18) into (2.15) and interpreting the vari-
ation with with respect to % as a variation of each of the ψi, and we
obtain equations of the form (2.17)[

− h̄2

2m
∇2 + Veff

]
ψi(r) = εiψi(r) (2.20)

where the effective potential is given by

Veff(r) = VC(r) + Vxc[%(r)]

which is the sum of Coulomb (VC) and exchange-correlation (Vxc) con-
tributions. These are called the Kohn–Sham equations. The wavefunc-
tions obtained by solving these equations yield the ground-state density
which minimizes the total energy and form an orthonormal basis,∫

ψ∗i (r)ψj(r) dr = δi,j

This condition is insured by the Lagrange multipliers εi, which appear
as eigenvalues of the ψi.

The Coulomb potential in (2.20) is obtained from the energy in
(2.19) as

VC(r) = −e2
∫ %(r′)

|r − r′| dr + e2
∑
α

Zα

|Rα − r|

This has a purely classical origin, since VC is a solution of Poisson’s
equation

∇2VC(r) = −4πe2q(r)
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where q(r) is the sum of the electronic and ion-core charge densities:

q(r) = %(r) +
∑
α

Zαδ(r −Rα)

The exchange-correlation potential Vxc is related to the exchange-
correlation energy Exc by

Vxc =
∂Exc

∂%

This equation is formally exact in the sense that no approximations
have been made in its derivation. However, while expressions for the
kinetic energy and Coulomb potential energies are known, there is no
know way of obtaining the exchange-correlation energy and, thus, the
exchange-correlation potential. Therefore, the utilization of the Kohn–
Sham equations in any other but a purely formal manner means that
a particular form must be assumed for the exchange-correlation term.
One such approach is discussed in the next section.

2.6 The Local Density Approximation

The Kohn–Sham theorem requires the exchange-correlation energy and
potential to be functionals of the total electron density %. One approx-
imate form of these functions that has been widely adopted is obtained
by assuming that Exc depends only on the local value of %:

ELDA
xc =

∫
%(r)εxc(r) dr

This is called the local density approximation (LDA) and its validity
rests on two assumptions:(i) exchange and correlation are dominated
by the density in the immediate vicinity of a point r, and (ii) these
effects do not vary strongly with position. The LDA has been found to
work well for many metals, but fails in systems with strongly varying
electron densities, such as those involving f -electrons. The LDA is thus
exact for an interact system with a constant density (see below), but
becomes less accurate as the variations of the density increase.

The implementation of the LDA requires still requires a functional
form for εxc, i.e., the exchange-correlation energy per electron as a
function of the electron density. This quantity has been studied in
a system of interacting electrons with a constant density because of
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a homogeneous background of positive charge to render the system
electrically neutral, called the homogeneous electron gas, with a num-
ber approaches, including many-body perturbation theory (Hedin and
Lundqvist, 1972) and quantum Monte Carlo methods (Ceperley and
Alder, 1980), and is now well established (Perdew and Wang, 1992).
Earlier studies (Pines, 1962) used many-body perturbation theory in
the limit of high density to calculate the correlation energy of this sys-
tem. As a result of this work, εxc is known accurately for a range of
densities. For the homogeneous electron gas, we can write Vxc = Vx+Vc,
where the exchange potential, Vx, is given by (Gáspár, 1954; Kohn and
Sham, 1965)

Vx = −2
(

3

π
%
)1/3

and the correlation potential, Vc, is (Hedin and Lundqvist, 1972)

Vc = −c ln
(
1 +

1

x

)
where

c = 0.0225, x =
rs
21

, rs =
(

3

4π%

)1/3

In these equations, the energies are in units of Hartrees (1 Hartree =
27.21165 eV) and the units for electron density are number of electrons
per Bohr radius cubed.

A huge body of calculations over the past 40 years have revealed
some systematic trends in LDA calculations in comparison with exper-
iment, where available, and with other calculations, such as CI. For a
large variety of systems, including solids, surfaces, and even molecules,
calculations of total energies have produces interatomic bond lengths
to within ±0.05 Å of measured values and, in the most favorable condi-
tions, to within ±0.02 Å. But, such calculations have also found system-
atic errors with results produced by the LDA: (i) weak bonds tend to be
too short, and (ii) binding energies are too large, sometimes with errors
of 50%. In the next chapter, we will describe one way of correcting the
LDA to alleviate these discrepancies.
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Chapter 3

Molecular Dynamics and
Kinetic Monte Carlo
Simulations

Computer simulation has played a central role in the development
of our understanding of epitaxial systems. Twenty years ago, Monte
Carlo simulations of the so-called solid-on-solid (SOS) model (Weeks
and Gilmer, 1979) provided essential data for the test of then cur-
rent analytic predictions for the macroscopic growth rate. This same
methodology and model are being used today with considerable success
to provide a microscopic interpretation for various diagnostic measure-
ments of the growth process. This type of result, combined with other
developments in the intervening years such as Monte Carlo simulations
of more realistic models (Madhkar and Ghaisas, 1987) and molecular
dynamics simulations (Dodson, 1990) helps explain the growing popu-
larity of computer methods in the study of epitaxial growth.

3.1 Molecular Dynamics

In the molecular dynamics method (Schneider et al., 1987; Dodson,
1990), real-space trajectories of the atoms are determined by numeri-
cal integration of Newton’s equations of motion. All of the physics is
contained in the forces acting upon each particle in the system, which
are determined by the interatomic potentials for the atoms in the sys-
tem. Other constraints may be placed on the system, such as a fixed

43
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temperature and the restriction of particle activity to a fixed volume
of space.

The expression for the total energy E of the system as a function
of the positions of the atoms, r1, r2, . . . is written as an expansion in
terms of n-body potentials:

E(r1, r2, . . .) =
1

2

∑
i6=j

V2(rij) +
1

3!

∑
i6=j 6=k

V3(rij, rjk, rik) + · · · (3.1)

Here, rij = ri − rj are interatomic separations, and Vn represents an
n-body interaction energy. We have assumed in writing (9) that we
are dealing with a single-component system, so the interaction energies
do not depend on the relative separations, not the atomic type. The
two-body term represents the interaction of two atoms at positions ri
and rj and depends only on the separation rij. The three-body term
V3 depends upon the relative orientations of triplets of atoms, i.e., no
simply upon interatomic distances but on bond angles as well. For the
expansion of the potential in terms of n-body potentials to be mean-
ingful, it must converge rapidly with increasing n; in fact, virtually all
studies truncate this expansion at either the second or the third order.
Given the potential, the Hamiltonian of the system can be constructed
from which the time-development of the system can be calculated from
Hamilton’s equations

Despite the evident appeal of applying molecular dynamics, there
are two impediments to the practical application this method. The first
concerns the choice of potential. The potential is determined by a com-
bination of semi-empirical fitting to observed behavior combined with
physically-motivated characteristics. For example, a two-body poten-
tial is appropriate for systems where the formation of chemical bonds
is not an important feature of the dynamics, such as the interaction of
He with a metal. However, for most systems, a three-body component
is also required to describe the interatomic interactions responsible for
bond-formation. Once the potential has been chosen, and the interac-
tion energy determined, the forces acting on each atom is calculated
and, at each time step, the atoms are moved in the direction of the
forces. This method can be used both to calculate the structure of a
collection of atoms by determining the minimum energy as a function
of the atomic positions and to determine the dynamics of a system,
such as the melting or freezing of a surface.

The commitment to a fixed form of interatomic potential has both
advantages and disadvantages. On the positive side, the description of



45

dynamic phenomena is enormously simplified in comparison with ab
initio methods, since the individual potentials need not be recalculated
as the atomic configuration is varied. For systems where hybridization
is not a strong function of the local environment, this is a good approx-
imation. On the other hand, the calculated behavior of systems which
do show strong effects of rehybridization, such as C and Si, different
potentials will produce different relative energies among different struc-
tures, which then can lead to different descriptions of the dynamics.

The second important feature of the molecular dynamics method is
the time step used between successive evaluations of the forces acting on
the atoms and the corresponding adjustments of the atomic positions.
In common with the quantum molecular dynamics method, classical
molecular dynamics still suffers from the “time gap” of the number of
incremental time steps needed to obtain macroscopic time scales. This
is especially problematic for infrequent events, such as surface diffusion,
though there has been progress recently in dealing with such situations
(Voter, 1997). Consequently, most implementations of molecular dy-
namics simulations of epitaxial growth have used unrealistically high
growth rates in order to deposit a significant amount of material dur-
ing the course of the simulation. Nevertheless, when used judiciously,
this method can also be used to identify and quantify important kinetic
processes.

3.2 Kinetic Monte Carlo Simulations

The Monte Carlo method is an additional level of abstraction over
the molecular dynamics method. The effect of fast dynamical events is
taken in account phenomenologically through transition rates for slower
events. For example, in describing the mobility of surface adatoms, the
diffusion can often be approximated as a nearest-neighbor hopping pro-
cess with a transition rate given by the product of an attempt rate,
which is typically of the order of the atomic vibrational frequency, and
the probability of success per attempt, which is represented as an ex-
ponential involving the energy barrier to the process. The term “Monte
Carlo” refers to the random sampling of numbers, in analogy with a
roulette wheel. A Monte Carlo simulation proceeds by calculating the
probability distribution of a physical event or series of events. A random
number is then generated from a uniform distribution in the interval
[0,1] and compared with the probability of the event occurring. If the
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random number is greater than or equal to the probability, the event
occurs, otherwise not. For example, the hopping of atoms is then de-
scribed by comparing the probability of the hopping, p, with random
number, n, chosen from the interval [0, 1]: the hopping occurs only if
n ≤ p. Other kinetic events are similarly treated.

While the details of the underlying mechanism for the hopping are
lost, the effect of the fast processes is correct on average. Thus, if the
large-scale features of the dynamics of a system are of interest, rather
than the details of the structure, the Monte Carlo method can offer
considerable advantages over the molecular dynamics method, both in
terms of the “real time” over which the simulation evolves, as well as
the number of atoms included in the simulation. It must be emphasized
that the construction of a model for a Monte Carlo simulations can often
be greatly simplified and justified by appealing to a related molecular
dynamics simulation. This includes the identification of the important
physical process, as well as the numerical values of the corresponding
kinetic barriers.

Much of the simulation work carried out in connection with crys-
tal growth has been based upon the solid-on-solid (SOS) model. This
model was explored widely for its applicability to crystal growth near
equilibrium by Weeks and Gilmer (1979) in the 1970s [2]. The distin-
guishing feature among the various implementations of the SOS model,
some examples of which are described in the following subsections, is
in the number and type of processes that are considered explicitly. An
Arrhenius expression (1) is associated with each process, which requires
assigning values to the attempt frequency and to the barrier. If it was
possible to isolate the effects of an individual process, then these pa-
rameters could be determined directly from experiment and used in
the simulation. However, since these models always include only the
processes that are expected to be the most important, a direct mea-
surement of K0 and E is not possible, so values must be assigned either
based upon physical arguments, or fitted by comparing some result from
the simulation with experiment. It is important to emphasize, the that
omission of fast processes that are not rate-determining means that the
attempt frequency and the barrier are to be regarded as effective param-
eters, since the neglected processes could influence the values of these
parameters without affecting the qualitative features of the model.

In the SOS model, growth is initiated by the random deposition of
atoms onto the substrate. The subsequent migration of surface adatoms
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is taken as a nearest-neighbor hopping process whose rate is

k(T ) = k0 exp(−ED/kT ) (3.2)

Here, the k0 corresponds to an adatom vibrational frequency and ED is
the hopping barrier. The prefactor is usually taken either as k0 = 2kT/h
or sometimes simply assigned the constant value 1013s−1. The hopping
barrier comprised of two terms, a term, ES, due to the substrate, and a
contribution, EN , from each nearest neighbor along the substrate. Thus,
the barrier to hopping of an n-fold coordinated atom (n = 0, . . . , 4) is
given by ED = ES + nEN . The barrier is assumed to depend only on
the initial environment of the migrating atom. The quantities ES and
EN are the only free parameters of the model.

A test of this model was carried out by Shitara et al. (1992) and
Šmilauer and Vvedensky (1993). Reflection high-energy electron-diffraction
measurements were carried out on vicinal surfaces with misorientations
of 2◦ and 3◦ for a range of temperatures near the temperature Tc where
growth became dominated by step advancement. The As/Ga ratio was
maintained at approximately 2.5 to avoid variations in the effect of the
As on the growth kinetics as a function of each Ga flux. Comparisons
between the measured and simulated values of Tc for the two misorien-
tations and several Ga fluxes produced the following optimized energy
barriers:

ES = 1.58eV ± 0.02eV, EN/ES ≈ 0.15eV (3.3)

It must again be stressed that these values are effective migration bar-
riers and include all of the effects not included explicitly; in particular,
there is an implicit As dependence, so these are the appropriate barriers
only for the specified As/Ga flux ratio.

In fact the correspondence between the RHEED measurements and
the simulations go much deeper than simply the determination of Tc.
In Fig. 2 is shown a comparison between the measured RHEED spec-
ular intensity and simulations of the step density on a vicinal surface
with a misorientation of 2◦ and for the indicated Ga flux. The incident
azimuthal angle of the electron beam such that the beam direction is
perpendicular to the staircase of terraces and steps, and the polar was
chosen to insure that the maxima of the RHEED intensity corresponds
to the deposition of increments of a monolayer of material.

The simulated step density is seen to reproduce several features of
the measured RHEED specular intensities, including the decay of the
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Figure 3.1: Comparison of measured RHEED specular intensities and step
densities from simulated surfaces during growth on vicinal GaAs(001) with
a misorientation of 2◦ for the indicated growth conditions (Shitara et al.,
1992). The scale of the step densities increases downward and the data for
successively higher temperatures are shifted for ease of comparison.

oscillations at lower temperatures, the gradual decrease in the number
of oscillations with increasing temperature and in the difference be-
tween the pre-growth and post-growth amplitudes, a slight shift of the
first maximum with increasing temperature. In addition, there is even
a degree of quantitative agreement between the two sets of data in that
the relative changes of the amplitudes of the two quantities with tem-
perature are the same. This provides strong support for the suggestion
that the basic processes of diffraction are the same for a surface before
growth and during, but that the disorder simply reduces the efficiency
of these processes.
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Chapter 4

Analytic Theories of
Morphological Evolution

The use of analytic methods is complementary to computer simulations
in that they do not incorporate the detail of simulations but instead
attempt to include the essential features to describe a particular aspect
of growth kinetics. The best known examples of this approach are the
Burton, Cabrera, and Frank (BCF) theory, homogeneous rate equa-
tions, and stochastic equations of motion for the profile of the growing
surface. Each of these addresses either a specific regime of growth or is
concerned with a description on particular length and time scales. All of
these approaches are largely phenomenological in that the precise con-
nection with atomistic processes is not always apparent, so comparisons
with atomistic simulations are seldom unequivocal. In this chapter, we
describe the main types of analytic approaches and indicate the type
of information that can be provided by these studies, and their regime
of applicability.

4.1 Theory of Burton, Cabrera and Frank

A common starting point for modeling epitaxial growth is based on the
work of Burton, Cabrera and Frank (BCF) (Burton et al., 1951). The
BCF theory describes growth on a monatomic vicinal surface (Fig. 4.1)
by the deposition of single atoms. The central quantity in this theory is
the adatom concentration c(x, t) at position x and time t. This quan-
tity varies with time because of atomic surface diffusion (with diffusion
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Figure 4.1: Schematic diagram of an ideal stepped surface showing a regular
array of terraces (indicated by shading) and straight steps.

constant D) and the deposition of atoms by the molecular beam (with
flux J). We will assume that the desorption of the atoms from the sur-
face can be neglected, but this can be readily included in the theory
if required. In the simplest form of the BCF theory, the equation de-
termining c(x, t) is a one-dimensional diffusion equation with a source
term:

∂c

∂t
= D

∂2c

∂x2
+ J (4.1)

This equation is supplemented by boundary conditions at the ends of
a terrace, e.g.,

c(0, t) = 0, c(L, t) = 0 (4.2)

where L is the terrace length and the range of x is 0 ≤ x ≤ L. These
boundary conditions, which are called ‘absorbing’ boundary conditions,
stipulate that adatoms are absorbed at a step edge and immediately
incorporated into the growing crystal with no possibility of subsequent
detachment. Other boundary conditions can also be chosen, as dis-
cussed by Ghez and Iyer (1988).

We will focus here on the steady-state (time-independent) solution
of equation (4.1). By setting the right-hand side of this equation equal
to zero and invoking the boundary conditions in (4.2), we obtain

c(x) =
J

2D
x(L− x) (4.3)

This expression is a parabola that attains its maximum at the cen-
ter of the terrace and vanishes at the terrace edges, as required by
the absorbing boundary conditions. This solution shows that as J/D
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increases, which corresponds to decreasing temperature (through D)
and/or increasing J , the concentration of atoms builds up on the ter-
races. Since the BCF theory neglects interactions between atoms, the
growth conditions must be chosen to insure that the adatom concentra-
tion is maintained low enough to render their interactions unimportant.
Thus, the BCF theory is appropriate only for small values of J/D, where
growth is expected to occur by step flow.

Since the dimensions of D and J are

[D] =
length2

time
, [J ] =

1

length2 × time
(4.4)

we can use these quantities to form a characteristic length:

` = (D/J)1/4 (4.5)

Suppose that on a vicinal surface the mean terrace width is ha, where a
is the nearest-neighbor distance. If we now write the diffusion constant
in the Arrhenius form,

D = a2k0 exp(−ED/kT ) (4.6)

where k0 is the attempt frequency for the diffusion process, ED is the
energy barrier to diffusion, and k is Boltzmann’s constant, then setting
` = ha yields

kTc = ED

[
ln
(

k0

a2h4J

)]−1

(4.7)

This expression gives a surprisingly account of the temperature at which
growth becomes dominated by step advancement as a function of mis-
orientation h and flux J , as measured by the disappearance of RHEED
oscillations.

4.2 Homogeneous Rate Equations

The BCF theory describes a surface growing by the advancement of
steps. As the temperature is lowered or the deposition flux raised,
growth by the formation, accretion and coalescence of clusters on the
terraces becomes more likely and the BCF picture is no longer appro-
priate. One way of providing a theoretical description of this growth
mode within an analytic framework is with rate equations (Venables et
al., 1984).
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Rate equations have provided a conceptual and computational frame-
work for examining many aspects of coagulation and aggregation phe-
nomena since the early parts of this century (Smoluchowski, 1916). But
it has been the advent of the scanning tunneling microscope that has
led to the recent resurgence in the application and refinement of rate
equations for describing island kinetics and island morphologies dur-
ing epitaxial growth. By allowing as-grown island morphologies to be
imaged directly in real space with atomic resolution, the mechanisms
of particular atomistic processes can often be identified and their rates
estimated from comparisons between experimentally measured quanti-
ties and those obtained from rate equations and simulations. This has
spawned a huge experimental and theoretical effort aimed at charac-
terizing islands in the submonolayer regime of epitaxial growth prior to
significant coalescence, where the statistical properties of islands can
be isolated, analyzed, and interpreted in terms of atomistic diffusion,
nucleation, and growth kinetics.

In the rate equation approach to epitaxial growth, the dynamical
variables are the densities of adatoms and islands on the surface. These
densities are taken to be spatially homogeneous, so their governing
equations are referred to as homogeneous rate equations. Such rate
equations are constructed on the basis of a phenomenological iden-
tification of the processes that cause adatom and island densities to
change. In this section, we will first consider the simplest rate equation
description of growth, for which the formation of islands and their sub-
sequent growth proceeds by the irreversible capture of atoms, i.e. atoms
which attach to islands cannot subsequently detach. We then examine
the information which can be obtained from island-size distributions
and discuss the origin of the scaling for of these distribution functions.

4.2.1 Irreversible Aggregation Kinetics

We will signify the density of surface atoms by n1(t) and the density of
s-atom islands by ns(t), where s > 1. The rate equation for n1 is

dn1

dt
= J − 2Dσ1n

2
1 −Dn1

∞∑
s=2

σsns (4.8)

The left-hand side of this equation is the total rate of change of the
adatom density and on the right-hand side are the rates of individual
processes which either increase or decrease this quantity. The first term
on the right-hand side is the deposition of atoms onto the substrate,
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which increases the adatom density, and so has a positive sign. The
next term is the formation of a two-atom island by the irreversible
attachment of two migrating atoms. This term decreases the number
of adatoms and thus has a negative sign. The rate for this process is
proportional to the square of the adatom density because two adatoms
are required to form a two-atom island and to D, the adatom diffusion
constant. The third term is the rate of depletion of adatoms by their
capture by islands. This term is proportional to the product of the
adatom and total island densities and must also have a negative sign.
The quantities σi in (4.8), called ‘capture numbers,’ account for the dif-
fusional flow of atoms into the islands (Venables et al., 1984; Bales and
Chzan, 1994; Bartelt and Evans, 1996). We will discuss these quantities
below.

The rate equations for the density of an s-atom island ns(t) is

dns
dt

= Dn1σs−1ns−1 −Dn1σsns (4.9)

The first term on the right-hand side of this equation is the rate of
increase of ns by the attachment of adatoms to (s − 1)-atom islands.
Similarly, the second term is the rate of decrease of ns by the attachment
of adatoms to s-atom islands to form a (s + 1)-atom islands.

To illustrate the calculus of rate equations, we set all of the capture
numbers equal to unity. The hierarchy of coupled equations in (4.9)
can then be contracted into a single equation by introducing the total
island density, N =

∑
s>1 ns. Then, by using this definition in (4.8) and

summing the equations in (4.9) over s, we obtain a closed set of two
equations for n1 and N alone:

dn1

dθ
= 1− 2Rn2

1 −Rn1N (4.10)

dN

dθ
= Rn2

1 (4.11)

where R = D/J and we have used the relation between the coverage
and the flux in the absence of desorption, θ = Jt, to replace the time
t by the coverage θ as the independent variable. This replacement is
made because the coverage is the important quantity and it can be
measured directly from an STM image.

These equations are straightforward to integrate numerically and
the results are shown in Fig. 4.2. There are several important features
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Figure 4.2: The solution of the rate equations (4.10) and (4.11) for the
dimensionless quantities n1 = (D/J)1/2n1 and N = (D/J)1/2N as a function
of t = (DJ)1/2t.

to note. The concentration n1 increases more steeply than N initially,
by N continues to increase, while n1 approaches an almost stationary
value. We can obtain analytic solutions of (4.10) and (4.11) in these
limiting regimes with relatively little effort. The solution at short times
(θ ¿ 1) of these equations is easily determined:

n1 ∼ θ, N ∼ θ3 (4.12)

The density of atoms initially shows a linear increase with coverage
(or time), which is due entirely to the deposition flux. The islands are
somewhat slower in their early development, showing a cubic depen-
dence on the time because the low surface atom density is not sufficient
for appreciable island formation. Equation (4.11) shows that N contin-
ues to increase for all later times, but equation (4.10) indicates that
although n1 increases initially, when the right-hand side becomes neg-
ative (as it must, since N always increases), it starts to decrease. This
decrease continues as N increases until we reach a steady-state regime
where n1 ¿ N and dn1/dθ ¿ 1. In this regime, we obtain the scaling
laws for the adatom and island densities:

n1 ∼ θ−1/3(D/J)−2/3, N ∼ θ1/3(D/J)−1/3 (4.13)

Notice that, just as in equation (4.3), the ratio D/J is a controlling
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parameter for a quantity that characterizes the growing surface. The
equation for N indicates that increasing the temperature (i.e. increasing
D) and/or decreasing the flux J causes the island density to decrease.
This results in a surface with fewer but larger islands.

The results in equation (4.13), which were obtained by setting all
of the captures equal to unity, display the correct scaling of N with
D/J , but not with θ, nor does this approximation produce the correct
distribution of island sizes. This can be traced to the assumption of
constant capture numbers, which treats the islands as though they have
no lateral extent, i.e. as ‘point islands’ (Bartelt and Evans, 1996). The
next level of approximation is to include the spatial extent of the islands
in an average way by assuming that the local environment of each island
is independent of its size and shape (Bales and Chzan, 1994). This
produces the correct scaling of N with both D/J and θ, but still not
the correct island size distribution. To obtain a complete description of
the island morphology, it is necessary to proceed one step further by
including spatial information in the capture numbers which accounts
for the correlations between neighboring nucleation centers and the
differences in the local environment of individual islands (Bartelt and
Evans, 1996).

4.2.2 The Distribution of Island Sizes

The morphology of a surface in the submonolayer regime, where islands
have formed but have not yet begun to coalesce, is rich in information
about the atomistics processes that are responsible for the formation
and growth of these islands. The submonolayer island morphology also
provides important signatures about processes that are operative in the
multilayer regime. Apart from processes that are intrinsic to a clean
homoepitaxial system, there is the effect of various surface impurities
that are introduced either deliberately (“surfactants”) or are unavoid-
ably present because of the polyatomic molecules used to deliver the
atoms of the growing material. Strain can also affect the morpholo-
gies of heteroepitaxial islands by causing island-size- and island-shape-
dependent changes to both attachment and detachment barriers at is-
land edges. An important practical application of these ideas is the
growth of three-dimensional islands during Stranski-Krastanov growth,
which have promising properties for applications as quantum dots.

The ability to image and acquire statistics about submonolayer is-
lands with the STM has made this a very active area of research. One
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of the most far-reaching result of this work (Bartelt and Evans, 1992) is
that the density n(θ, s) of s-atom islands at a coverage θ can be written
as

ns =
θ

s2
av

f(s/sav) (4.14)

where sav is the average island size and f is a scaling function. This
function is ‘universal’ in the sense that its dependence on the cover-
age, deposition rate, and substrate temperature is contained entirely in
sav, which acts as the characteristic size for this problem. The scaling
form (4.14) was suggested originally on the basis of a dynamical scaling
ansatz (Viscek and Family, 1984) and was supported by extensive KMC
simulations (Bartelt and Evans, 1992). Scanning tunneling microscopy
measurements on metal (Stroscio and Pierce, 1994; Müller et al. 1996)
and semiconductor (Bressler–Hill et al. 1995; Avery et al. 1997) sur-
faces, together with theoretical and simulational studies, are consis-
tent with equation (4.14) and have shown how f is affected by various
processes, such as adatom attachment and detachment (Ratsch et al.,
1994, 1995; Bartelt et al., 1995), magic island sizes (Schroeder and Wolf,
1995), and adatom exchange (Chambliss and Johnson, 1994; Zangwill
and Kaxiras, 1995).

4.3 Kinetic Roughening

In our discussion of the solution of the BCF equation in (4.3), we fo-
cussed on the roles of D and J in determining if the growth of a vicinal
proceeds by step flow. However, there is another quantity that is equally
important in determining the growth mode: the terrace length L. Sup-
pose we fix the temperature (i.e. D) and J . Then if L is small enough,
the adatom density will be corresponding small, and growth proceeds
by step flow. But for surfaces with larger terraces, the adatom concen-
tration on the terrace increases until at some terrace width L∗, adatom
interactions are no longer negligible, and the growth of islands becomes
appreciable. This simple observation is the basis of understanding mul-
tilayer growth on singular surfaces.

Consider a singular surface (or a surface with a very small misorien-
tation angle). Then we are in a regime where L∗ ¿ L, so the probability
of atoms encountering one another on a terrace is large and the pres-
ence of the steps does not significantly affect the growth of the crystal.
The growth of the first surface layer is initiated by the formation of
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small 2D clusters, which grow laterally by capturing migrating atoms.
Thus, to an electron beam the surface appears rough, which causes the
specular intensity of the beam to decrease. This roughness continues to
increase until the clusters begin to coalesce, at which point the surface
appears to smoothen, causing the specular intensity to increase. Once
the new layer is formed this process is repeated, resulting in intensity
oscillations of the RHEED specular beam.

What is the origin of the decaying envelope seen in the RHEED os-
cillations shown in Fig. 1.3? The layer-by-layer process just described
is not perfect. Once the lateral size of an island becomes large enough,
atoms deposited on top of this island can collide and initiate the growth
of the next layer. This is easy to understand given our earlier observa-
tions. If we regard the top of an island as a terrace of length L(t), then
at early times, when the island is small, we have L∗ À L(t). Thus, the
growth of the island proceeds by ‘step flow’ in the sense that atoms
which are deposited on top of the island migrate to the edge of the
island, where they are incorporated into the lower layer. As the island
grows laterally, however, the condition L∗ ¿ L(t) is eventually reached.
In this case, atoms deposited on top of the island are more likely to en-
counter one another to form a new island before migrating to the edge
of the island. Thus, the next layer begins to form before the current
layer is complete and the surface undergoes a gradual and progressive
roughening—called kinetic roughening—whereby an increasing number
of incomplete layers is exposed. The decay of the RHEED oscillations is
indicative of this roughening. Kinetic roughening is an intrinsic aspect
of the epitaxial growth process and is due to the randomness of the
deposition process. Comprehensive discussions of the theory of kinetic
roughening and its experimental characterization may be found in the
books by Yang et al., (1993) and Barabási and Stanley (1995). A brief
discussion will be given in the next section.

4.4 Continuum Equations of Motion

The dynamics of surfaces during epitaxial growth in the multilayer
growth regime can often be described by relatively simple evolution
equations. These evolution equations typically take the form of partial
differential equations for the height of the surface with stochastic noise
that accounts for the randomness in the deposition and other processes.
The deterministic terms in such equations represent the relaxation of



60

the surface to thermal equilibrium, while the stochastic terms repre-
sent fluctuations, especially in the deposition flux, which drive the sur-
face away from equilibrium and are responsible for kinetic roughening.
Thus, kinetic roughening is an intrinsically nonequilibrium effect which
is caused by the system being driven by the flux from the molecular
beam.

4.4.1 Roughening by Random Deposition

Although the stochastic partial differential differential equations that
are used to describe kinetic roughening are usually nonlinear, there are
circumstances when the nonlinearities are so weak that a linear model
may adequately describe the dynamics of the surface. We consider a
simple example. Suppose the dynamics of a growing surface can be
described only by deposition of atoms onto the surface, i.e. there no
relaxation processes at all. The deposition is described by an average
flux J and a stochastic component η(x, t), which accounts for the fact
that the deposition is not completely uniform—there are fluctuations in
both space and time. In other words, although the deposition is macro-
scopically uniform, there are fluctuations on short space and time scales.
These fluctuations are specified in terms of the statistical properties of
a fluctuating quantity η. If J is the total average deposition flux, then
the fluctuations about this quantity must average to zero:

〈η(x, t)〉 = 0 (4.15)

We now suppose that the deposition is totally random, i.e. the deposi-
tion of atoms is an uncorrelated process. Such a process is characterized
in terms of products if the η:

〈η(x, t)η(x′, t′)〉 = Jδ(x− x′)δ(t− t′) (4.16)

This expression says that the average of two deposition events vanishes
unless these events are the same, i.e. there is a total absence of any
correlations in the deposition. Averages of higher products of the η are
taken to vanish. Fluctuations described only by (4.15) and (4.16) are
called Gaussian white-noise. The continuum equation of motion for a
surface which evolves only by such random deposition is

∂h

∂t
= J + η(x, t) (4.17)
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where h(x, t) is the height of the surface at the position x at time t.
The roughness of a surface is usually characterized by the surface

width W (t), which is defined by the standard deviation of the height
across the surface:

W (t) =
[
〈h2(x, t)〉 − 〈h(x, t)〉2

]1/2
(4.18)

Thus, W can be calculated from the equation of motion for the dynam-
ics of a surface. For the model in (4.17) this is an especially easy task,
since the equation is linear, so we can integrate it directly:

h(x, t) = h(x, 0) + Jt +
∫ t

0
η(x, s) ds (4.19)

where h(x, 0) is the initial condition. For example, for a flat initial
surface all the heights are taken to vanish: h(x, 0) = 0. Thus, by taking
the average of this solution and using (4.15), we obtain

〈h(x, t)〉 = h(x, 0) + Jt (4.20)

that is, the average height at the position x at time t is just the sum of
the initial height at x and the average accumulated material, Jt. Thus,
the mean evolution of the surface is just the initial profile translated by
Jt. In particular, the only roughness of the surface is that which was
present initially.

The calculation of 〈h2(x, t)〉 proceeds similarly. By using (4.3), (4.15)
and (4.16), we obtain

〈h2(x, t)〉= [h(x, 0) + Jt]2 +
∫ t

0

∫ t

0
〈η(x, s)η(x, s′)〉 ds ds′

= [h(x, 0) + Jt]2 + Jt (4.21)

Substituting (4.20) and (4.21) into (4.18), we find that

W (t) ∝ t1/2 (4.22)

i.e. the width of the surface is seen to increase as the square root of the
deposition time. In other words, the surface roughens. We would expect
that if we added any terms that describe relaxation mechanisms to the
right-hand side of (4.17) that the surface would not roughen as rapidly.
A more comprehensive of models for surface roughening may be found
in the book by Barabási and Stanley (1995).
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4.4.2 The Villain Equation

While this discussion provides a useful background to stochastic equa-
tions of motion, there is still the question of how to represent real epi-
taxial processes within this framework. A useful discussion of this point
has been given by Villain (1991), who suggests that the long time and
long wavelength morphological evolution of a growing epitaxial film is
best described by the following nonlinear stochastic partial differential
equation:

∂h

∂t
= ν∇2h + λ(∇h)2 + K∇2(∇2h) + σ∇2(∇h)2 + F + η. (4.23)

Here, F is net average deposition flux (average deposition flux mi-
nus average desorption flux) and η(x, t) is a Gaussian random variable
with zero mean and shot-noise-type covariance. This formula contains
the Edwards-Wilkinson (λ = K = σ=0) and the Kardar-Parisi-Zhang
equations (K = σ = 0) as special cases. One expects that the presence
or absence of the various terms in Eq. (4.23) depends on the presence
or absence of various physical processes. For example, there is broad
agreement that, during growth, the terms proportional to ν and λ are
present whenever thermal desorption is operative and that the terms
proportional to K and σ can arise from surface diffusion.

On the other hand, in the absence of desorption, it is fair to say
that the status of the coefficient ν remains an unsettled issue. Villain
(1991) argues that ν 6= 0 if asymmetric energy barriers are present in
the vicinity of step edges. In that case, one generates the Laplacian
term in (4.23) with a coefficient proportional to the flux F . On the
basis of simulation studies that employ Metropolis-type kinetics, it has
been claimed (Yan, 1992; Kessler et al., 1992) that similar behavior is
found for ν even for pure surface diffusion without special step edge
barriers. Evans and Kang (1991, 1992) suggest that this term arises
whenever there is ‘lateral coupling due to realistic adsorption site ge-
ometries and deposition dynamics’. As an example of the latter, they
cite so-called knock-out processes that involve the replacement of an
existing step edge atom by a freshly deposited atom and thus have the
effect of local downward relaxation. The resolution of this point is of
some theoretical interest because the asymptotic scaling behavior of the
surface roughness will be dominated by this term (and λ) if present.
On the other hand, experiments likely will be dominated by crossover
effects (Tang and Nattermann, 1991: Das Sarma et al. 1992) so that
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there is a need to at least estimate the sign and relative magnitude of
the various coefficients that enter (4.23).
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