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I am an old man now, and when I die and go to heaven there are two matters on 
which I hope for enlightenment. One is quantum electrodynamics, and the other 
is the turbulent motion of fluids. And about the former I am rather optimistic.
  

Horace Lamb (1932)



Figure 5.1: Isosurfaces of the the velocity gradient tensor used to visualize structures 
in computation of isotropic homogeneous 3D turbulence. The yellow surfaces rep-
resent flow regions with stable focus/stretching topology while the blue outlines of 
the isosurfaces show regions with unstable focus/contracting topology. 1283 simula-
tion with Taylor Reynolds number = 70.9. (Andrew Ooi, University of Melbourne, 
Australia, 2004, http://www.mame.mu.oz.au/fluids/). 
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Image courtesy of Andrew Ooi. Used with permission.Isosurfaces of the velocity gradient tensor

Isotropic Homogeneous Turbulence

simulation by Andrew Ooi



Turbulence in Wall-Bounded Shear Flow



• Turbulence manifests in the dynamics of individual realizations but a 
comprehensive theory of turbulence has analytical expression only in 
statistical state dynamics (SSD).

• Chaos in the trajectory of a realization of a turbulent state is a familiar 
concept but the dynamics of turbulence is fundamentally associated 
with chaos not of the realization trajectory but of the trajectory of the 
underlying statistical state.



• Identify the mechanism producing transition to the 
turbulent state (transient growth..). 

• Identify the state promoted to - that is identify the 
dynamical process producing a systematic transfer of 
energy from the forced shear flow to the turbulent 
perturbation field (SSP..). [Hamilton, Kim, Waleffe 95; Waleffe 97]

• Identify the mechanism regulating the SSP to produce 
the observed statistical steady turbulent state.

Fundamental Problems in Wall-Turbulence 



• Fast inflectional instabilities are not supported by wall-
turbulence because the velocity profile has one sign of 
vorticity.

• However, fast transient growth of the roll/streak 
structure is supported. 

• Evidence suggests that the turbulence is maintained by 
these optimally growing roll/streak structures.

• The maintenance question can be posed as identifying 
how the roll/streak structure is destabilized.



 kx=0 component  Lx= 4π, R=1000:

Simulations based on ‘channelflow’  code                                                              
[Peyret 2002, Gibson 2007]



• Given the large amplification available the Reynolds matrix 
can be destabilized by small feedbacks (Coriolis, centrifugal, 
Reynolds stresses).

• One example is destabilization by free stream turbulence.

• To understand the fundamental basis of this destabilization 
mechanism we will use a stochastic turbulence model which 
is the perturbation component of the RNL model.



The lift-up mechanism dynamics for shear S and dissipation rate � is:
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One idea is to destabilize the Reynolds matrix with feedback to v from u:
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= U+ u = (U, V,W ) + (u, v, w)

U: Streamwise mean velocity

u: Perturbation velocity

R = Uwδ
ν
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2� : channel height

±Uw : wall velocities

Navier-Stokes Equations in mean/perturbation form

@tU+U ·rU+rP� 1
R�U = � < u ·ru >

@tu+U ·ru+ u ·rU+rp� 1
R�u = �(u ·ru� < u ·ru >)

r ·U = 0, r · u = 0



Restricted Nonlinear (RNL) Equations
• RNL is a SSD model closed at second order.

• It retains the full streamwise mean dynamics (first cumulant) and obtains
the perturbation Reynolds stress from the perturbation covariance (second
cumulant) C:

Ut +U ·rU+rP� 1

R
�U = � < u ·ru >= L(C)

• The perturbation covariance may be approximated from a finite or infinite
ensemble of perturbation equations sharing the same mean flow.

• The third cumulant (perturbation-perturbation nonlinearity in the per-
turbation equation) is parameterized.

• This parameterization may set the perturbation-perturbation nonlinearity
to zero or use a temporally white but spatially correlated stochastic process
(e.g. Leith (1996)).

• Here we use an infinite ensemble so the covariance solves the time depen-
dent Lyapunov equation:

Ct = A(U)C+C(A(U))† +Q

In which A(U) is the matrix of the linearized perturbation dynamics and Q is
the spatial correlation of the stochastic process parameterizing the perturbation
nonlinearity.



Ut +U ·rU+rP� 1
R�U = L(C)

Ct = A(U)C+C(A(U))† +Q

• The RNL system is a SSD for the co-evolution of the state 
variables (U(t), C(t)).

• RNL system is deterministic,  autonomous and nonlinear.

• Trajectories of (U(t), C(t)) may converge to a fixed point, a limit 
cycle or a chaotic attractor.

• Bifurcations can be explored by linear perturbation analysis of 
the fixed points in this system.

• Chaos in RNL corresponds to chaos not of a realization of 
turbulence but rather to chaos of a statistical state trajectory.



RNL

DNS

Simulations based on ‘channelflow’  code                                                              
[Peyret 2002, Gibson 2007]

RNL supports turbulence similar to DNS

shown is kx=0 component  Lx= 4π, R=1000:



• Whereas DNS turbulence is complex and not well understood in 
contrast RNL turbulence is completely characterized.

• RNL turbulence is simple (rank1) while DNS turbulence is of high 
rank.

• This reduction in complexity is spontaneous and understood.

•  The spontaneous reduction in complexity of the turbulence is 
accompanied by a natural reduction in the number of streamwise 
modes supporting the turbulence.



Ut +U ·rU+rP� 1
R�U = L(C)

Ct = A(U)C+C(A(U))† +Q

• By itself the second of these equations constitutes a stochastic 
turbulence model (STM) for the perturbations.

• We can exploit this STM to understand a fundamental mechanism of 
wall-turbulence dynamics.

Restricted Nonlinear (RNL) Equations
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Figure 1.13 The rate of change of streamwise roll acceleration
induced by a streak perturbation to a Couette flow that is
maintained turbulent by stochastic forcing. Distortion of the
turbulence by the streak perturbation induces Reynolds stresses
that force roll circulations supporting the streak via the lift-up
mechanism. Shown are contours of the imposed streak
perturbations, �U = cos(⇡y/2) sin(2⇡z/L

z

), with �U > 0 in
z > 0, and vectors of the resulting rate of change of roll
acceleration, (V̇ , Ẇ ). The Reynolds number is R = 400,
L

x

= 1.75⇡ and L

z

= 1.2⇡.

bation equations (1.45), advection of perturbations by the
small V and W components of the streamwise mean veloc-
ity has been neglected4. Using nondivergence the mean flow
equation (1.43b) can be written as:

Ut = Uy z � Uz y � @yuv � @zuw +�1U/R ,

(1.46a)

�1 t = (@yy � @zz)( y z � vw)�

� @yz( 
2
y � 2

z + w2 � v2) +�1�1 /R .

(1.46b)

In (1.46b), �1 ⌘ @2yy + @2zz and V and W have been ex-
pressed in terms of the streamfunction,  , as V = � z and
W =  y.

We next Fourier expand the perturbation fields in x: v =

<
hP

k v̂k(y, z, t)e
ikx

i
, ⌘ = <

hP
k ⌘̂k(y, z, t)e

ikx
i
, and write

the equations for the evolution of the Fourier components
of (1.45) in the matrix form

d�k

dt
= Ak(U)�k +

p
✏FkdBtk , (1.47)

where the state of the system �k = [v̂k, ⌘̂k]
T comprises the

values of the v̂k and ⌘̂k on the N = NyNz grid points of the
(y, z) plane and

Ak(U) =

✓
LOS LC1

LC2
LSQ

◆
, (1.48)

4 The results presented are not a↵ected by neglecting the ad-
vection of the perturbation field by V and W velocities in the
perturbation equations, cf. Thomas et al. (2014).
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Figure 1.14 The most unstable streamwise roll and streak
eigenfunction of the S3T system linearized about the spanwise
uniform equilibrium at supercriticality ✏/✏

c

= 1.4. The growth
rate of this mode is �

r

= 0.014. Shown are velocity vectors
(�V, �W ) (left) and streamwise velocity �U (right). The ratio of
the maxima of (�U, �V, �W ) is (1, 0.06, 0.03). Other parameters
are as in Fig. 1.13.

Figure 1.15 The finite amplitude S3T equilibrium streamwise
roll and streak resulting from the equilibration of the eigenmode
shown in Fig. 1.14 at supercriticality ✏/✏

c

= 1.4. Shown are the
streamwise averaged streamwise flow, U(y, z), (contours) and
the streamwise averaged velocities, (V,W ) (vectors). The
maxima of the fields (U, V,W ) are (0.26, 0.02, 0.009).

with

LOS = ��1
h
�ikU�+ ik(Uyy � Uzz)� 2ikUz@z �

�2ik(Uz@
3
yyz + Uyz@

2
yz)�

�1
2 +��/R

i
, (1.49a)

LC1
= 2k2��1 (Uz@y + Uyz)�

�1
2 , (1.49b)

LC2
= Uz@y � Uy@z � Uyz + Uzz@

2
yz�

�1
2 , (1.49c)

LSQ = �ikU�+ ikUzz�
�1
2 +�/R , (1.49d)

being the conventionally designated Orr-Somerfeld, cou-
pling, and Squire operators respectively. In equations (1.49),
��1 and ��1

2 are the inverses of the matrix Laplacians, �
and �2 = @2xx + @2zz , which are rendered invertible by en-
forcing the boundary conditions. The boundary conditions
satisfied by the Fourier amplitudes of the perturbation fields
are: periodicity in x and z and v̂k = @y v̂k = ⌘̂k = 0 at
y = ±1 .

Consider perturbing a stochastically maintained turbulence in Couette flow with 
a small streak and solving the STM for the forcing of the roll (V,W) that results.

 Reynolds stresses are organized by the imposed streak to produce lift up 
configured to amplify the imposed streak.

R=600



• Can linearize the RNL system about the Couette flow 
equilibrium and find the unstable eigenfunctions which are 
roll/streak structures that grow exponentially in free stream 
turbulence.  These are intrinsically SSD instabilities.

• However, the interesting result for our purposes is not these 
eigenfunctions but rather the existence of a universal fast 
mechanism supporting the roll/streak structure. 
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Figure 1.17 Comparison of the spanwise and time averaged
streamwise flow, [U ](y), for the self-sustaining state (solid) with
the mean flow obtained from a 128⇥ 65⇥ 128 direct numerical
simulation (DNS) of Couette turbulence at R = 1000 in a
doubly periodic channel in x and z of length 4⇡ in each
direction. The S3T self sustaining turbulent state produces on
average a friction velocity based Reynolds number of R

⌧

= 64.9
while the DNS simulation has R

⌧

= 66.2. This Reynolds number
indicates the turbulent production and dissipation and is
defined as R

⌧

= u

⌧

�/⌫ with � the channel half-width and

u

⌧

=
q

⌫ d[U ]/dy|
y=1 the friction velocity. This figure

demonstrates that the S3T self-sustaining state produces a
streamwise averaged flow profile consistent with simulations of
Couette flow turbulence. (Courtesy of V. Thomas)

support fast inflectional laminar flow instability as a mech-
anism for robustly transferring energy from the mean flow
to the perturbation field as is required in order to maintain
the turbulent state. While most streak perturbations orga-
nize turbulent Reynolds stresses that do not exactly amplify
the streak that produced them, as is clear in the case of the
streak perturbation in Fig. 1.13, if a streak were to organize
precisely the perturbation field required for its amplification
then exponential modal growth of this streak and its asso-
ciated streamwise roll and perturbation fields would result.

We determine now the S3T stability of the spanwise homo-
geneous equilibrium as a function of excitation amplitude,
✏, at a fixed Reynolds number, R, and show that exponen-
tially unstable streamwise roll and streak modes arise in a
spanwise independent field of forced turbulence if the per-
turbation forcing amplitude exceeds a threshold. The span-
wise independent equilibrium is stable for ✏ < ✏c. At ✏c
it becomes structurally unstable, while remaining hydrody-
namically stable. The most unstable eigenfunction, which
is shown in Fig. 1.14, consists of a roll circulation with a
perfectly collocated streak. When this eigenfunction is intro-
duced into the S3T system with small amplitude, it grows at
first exponentially at the rate predicted by its eigenvalue and
then asymptotically equilibrates at finite amplitude. This
equilibrium solution, shown in Fig. 1.15, is a steady, finite
amplitude streamwise roll and streak. The bifurcation dia-
gram of the S3T equilibria is shown in Fig. 1.16 as a function
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Figure 1.18 Streamwise roll forcing by perturbation Reynolds
stresses in the self-sustaining state with ✏ = 0. Top left: Vectors
of instantaneous cross-stream/spanwise velocity acceleration,
(V̇ , Ẇ ), at time t=980. Top right: Streamwise roll and streak
structure at the same time. Lengths are measured in wall units,
y

+ = R

⌧

y and z

+ = R

⌧

z. Bottom: Time series of streamwise
roll forcing as indicated by the rate of change of the average
square streamwise vorticity. It is remarkable that the
perturbations, in this highly time-dependent state, act to
maintain the roll circulation produce, not only on average, but
also at nearly every instant.

of bifurcation parameter ✏. The finite amplitude streamwise
roll and streak equilibria are S3T stable for ✏c  ✏  ✏u.

At ✏u there is a second bifurcation in which the equilib-
rium becomes S3T unstable, while remaining hydrodynam-
ically stable, and the SSD fails to equilibrate, instead tran-
sitioning directly to a time-dependent state. Remarkably,
the time-dependent S3T state that emerges for ✏ > ✏u self-
sustains even when ✏ is set to 0. This S3T self-sustaining
time-dependent state produces realistic turbulence with
mean turbulent profile [U ] shown in Fig. 1.17. Moreover,
comparison with direct numerical simulations (DNS) ver-
ifies that this S3T turbulence is similar to Navier-Stokes
turbulence despite the greatly simplified S3T dynamics un-
derlying it (Farrell et al., 2012; Constantinou et al., 2014b;
Thomas et al., 2014).

Remarkably, the S3T self-sustaining state naturally sim-
plifies further by evolving to a minimal turbulent system
in which the dynamics is supported by the interaction of
the roll-streak structures with a perturbation field compris-
ing a small number of streamwise harmonics (as few as 1).
This minimal self-sustaining turbulent system, which pro-
ceeds naturally from the S3T dynamics, reveals an underly-
ing self-sustaining process (SSP) which can be understood
with clarity. The basic ingredient of this SSP is the robust
tendency for streaks to organize the perturbation field so
as to produce Reynolds stresses supporting the streak, via
the lift-up mechanism as illustrated in Fig. 1.13. Although
the streak is strongly fluctuating in the self-sustaining state,
the tendency of the streak to organize the perturbation field
is retained as illustrated in Fig. 1.18 in which a snapshot

Forcing of the streak by its organization of perturbation Reynolds stresses occurs 
on the advective time scale and underlies maintenance of the roll/streak structure 
in turbulent flows.



Review of Parametric Instability

The undamped harmonic oscillator in energy coordinates with restoring force
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0
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Just as in the NS equations for turbulent flow the instantaneous growth rates

and directions are eigenvalues and eigenvectors of the linearized dynamics

A+A0

2

which in this case are ±!0

2 and (�1, 1); (1, 1) respectively.

As the solution vector rotates it grows when aligned along (-1,1) and decays

when aligned along (1,1) averaging to zero net growth.

If the restoring force perturbation is applied as the solution vector passes (-1,

1) and removed as it passes (1, 1) the solution vector does not lose passing (1,1)

its gain on passing (-1,1) and will be exponentially destabilized by this time

dependent restoring force despite being stable at each instant.

Conceptually this is the mechanism maintaining turbulence (and the reason

turbulence is necessarily time-dependent).



• This is the familiar mechanism of the Mathieu 
equation by which the time dependent harmonic 
oscillator is destabilized.

• This mechanism requires resonant forcing and it is 
not the mechanism producing parametric growth in 
turbulent boundary layers.

• The parametric growth mechanism in wall-turbulence 
is that of Oseledets (1968): it is the stochastic 
parametric mechanism that produces the unstable 
Lyapunov spectrum in random matrix dynamics.

• This mechanism depends on the convexity of the 
exponential propagator and can be understood by 
considering the stretching of a material line in a 
turbulent nondivergent fluid.



The stochastic parametric mechanism destabilizes (almost) any time-dependent

dynamics. To see this consider the growth of a line segment in a nondivergent

fluid with an imposed stochastically time-dependent velocity of hyperbolic form

 = �↵xy (locally at an instant of time)

Line segments stretch along the x-axis and contract along the y-axis:

�x(t) = �x(0)e

↵t
= (1 + ↵t+ ..)

�y(t) = �y(0)e

�↵t
= (1� ↵t+ ..)

If the fluid velocity is delta correlated in time there is no growth but with finite

correlation time the growth is exponential.



• The compelling similarity of RNL and NS turbulence and the great 
simplicity of RNL dynamics motivates closer study of the 
mechanisms underlying RNL turbulence.

• The method we adopt is to synchronize two RNL systems so that 
the perturbation dynamics can be studied in isolation.



Consider an RNL turbulence self-sustaining without 
stochastic forcing (Q=0):

Now impose the streak alone from this turbulence on 
the perturbations dynamics of a second RNL system 
initialized with a random full rank covariance:

@tCb = A(Ua)Cb +Cb(A(Ua))†

@tUa +Ua ·rUa +rPa � 1
R�Ua = L(Ca)

@tCa = A(Ua)Ca +Ca(A(Ua))†



• Examination of the perturbation dynamics reveals a linear 
essentially stochastic time-dependent system so the asymptotic 
structure of the perturbation field is the first Lyapunov vector.

• Given that the Lyapunov vector is a component of the state 
trajectory the associated Lyapunov exponent is necessarily 
zero.



Synchronized system perturbation field converges to the first 
Lyapunov vector of the primary system.

The channel has length Lx = 1.75, width Lz = 1.2 and  R = 600; the single 
streamwise wavenumber k=2 pi/Lx is retained by the dynamics of LV1
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Synchronized system perturbation field converges to the first 
Lyapunov vector of the primary system which supports only 
a single streamwise mode greatly reducing the complexity.

The channel has length Lx = 1.75, width Lz = 1.2 and  R = 600; the single 
streamwise wavenumber k=2 pi/Lx is retained by the dynamics.
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Stochastic forcing of the synchronized dynamics reveals the 
existence of both the trajectory Lyapunov vector (active subspace) 
as well as the other Lyapunov vectors with negative exponents 
(passive subspace).

FIG. 7: Evolution of the energy of the first 5 Lyapunov vectors of the perturbation
covariance dynamics which has been synchronized with the mean flow of the turbulent
RNL1 system and initialized white in energy. The streamwise wavenumber of all the
Lyapunov vectors is k

x

= 2⇡/L
x

so the individual members of the orthogonal set of
Lyapunov vectors di↵er only in their y � z structure. The MLE associated with the first
Lyapunov vector is zero consistent with it constituting a component of the statistical

steady state. Except for this first Lyapunov vector, the remaining vectors decay at the rate
of their negative Lyapunov exponents. However, the second Lyapunov vector has a small

negative Lyapunov exponent and exhibits large excursions associated with the time
dependence of the dynamical operator. The channel has L

x

= 1.75⇡, l
z

= 1.2⇡ and
R = 600.

VI. STRUCTURE AND DYNAMICS OF THE PERTURBATION FIELD

IN RNL1 TURBULENCE

Consider next the dynamical mechanism maintaining the perturbations and the structure

of the perturbations. In a similar problem at R

e

= 400? this dynamical mechanism was

found to be the non-normal parametric growth process that is a general attribute of time-

dependent dynamical systems? ? . Moreover, it was also shown that the growth process is

unrelated to episodic occurrence of notional modal instability in this time-dependent system.

In order to further study the dynamical mechanism maintaining turbulence in the present

context, the following experiment is performed: at each instant the normalized perturbation

state is projected on the ellipsoid the principal axes of which are in the directions of the

eigenvectors of the symmetric matrix A + A0. By singular value decomposition USU0 =

A+A0 with U the matrix composed of the instantaneous eigenvectors of A+A0 arranged in

columns and S is the diagonal matrix of the corresponding eigenvalues. The instantaneous

growth rate of perturbation energy is g(t) = u0USU0u/u0u. Similarly, we can calculate

13



• Inserting the stochastic parameterization for the perturbation-perturbation 
nonlinearity reveals the entire set of Lyapunov vectors of the passive 
subspace.

• These structures are maintained parametrically by their interaction with 
the fluctuating mean flow.
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Projection on the Lyapunov vectors of the Q=0 flow shows strong 
support of the perturbation variance by the LV’s
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• We wish to examine the mechanism by which LV1 is 
maintained and regulated.

• Method is to diagnose the synchronized system dynamics.



• Instantaneous growth rate possible for a perturbation (t=[0,5000]).
• Note instability boundary.

FIG. 8: The PDF of the eigenvalues of perturbation operators A+A0 and of twice the
real part of the eigenvalues of A for all the mean states that occur in the RNL turbulence
over a time period ⌧ = 5000. The mean growth rate for both cases is �1.14, the standard
deviation of �(A+A0) is 1.6 and the range in the specific simulations is [�18.2, 16.2],

while the standard deviation of 2�
r

(A) is 0.5 and the range is [�2.9, 0.4]. The eigenvalues
of A+A0 correspond to growth rates of all principal axes of the growth ellipsoid that

occur in the flow. The extrema of these possible growth rates exceed that of the
instantaneous eigenfunction growth rates as expected for a non-normal system.

Remarkably, only very small positive modal growth rates occur suggesting that the system
is constrained to limit the extent of instability.
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Instantaneous growth rate achieved by Lyapunov state 
vectors (t=[0,5000]).

FIG. 11: The probability distribution of the instantaneous growth rates of LV1, LV2, LV3,
LV10. LV2 is only slightly decaying and has a narrowly confined distribution similar to
that of LV1 while the LV3 and LV10 decay strongly and sample a wider range of growth

rates.
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Partition of the instantaneous growth rate of the LV1 into 
modal and non-modal sources.

FIG. 14: Time series of the energy growth rate of the synchronized perturbation field
(blue). This growth rate is equal to the projection of the normalized state on A+ A

† and
its mean value is 0 consistent with its being the perturbation component of the state
trajectory. Energy growth rate that would occur if the state were projected on the
eigenvectors of instantaneous operator A and each advanced at the rate of the

corresponding real part of the eigenvalue of A is also shown (red). The mean value of this
equivalent normal growth rate is �0.7. We conclude that while the instantaneous mean
states are often modally unstable (cf. Figure 12) the perturbation state does not project

su�ciently on the instabilities to account for its growth. This result demonstrates that the
perturbation field is sustained by the parametric non-normal growth process rather than

by modal instability.
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Spectra of the instantaneous growth rate of the perturbation state 
vector (LV1) and the mean streak reveal identical red noise processes.

FIG. 15: Spectral density of the growth rate of the first Lyapunov vector (LV) and of the
maximum streak velocity time series. and their fit to the Lorentzian 625⌧�2

/((!⌧)2 + 1)
and 100U

max

⌧

2
/((!⌧)2 + 1) with ⌧ = 5.0, respectively. This graph shows that the

instantaneous growth rate of the perturbations are a red noise process and that the streak
fluctuations follow the same red noise process.
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Turn now to the question of how the system is regulated to 
maintain a statistical steady turbulent state.



• Instantaneous growth rate possible for a perturbation (t=[5000]).
• Note instability boundary.

FIG. 8: The PDF of the eigenvalues of perturbation operators A+A0 and of twice the
real part of the eigenvalues of A for all the mean states that occur in the RNL turbulence
over a time period ⌧ = 5000. The mean growth rate for both cases is �1.14, the standard
deviation of �(A+A0) is 1.6 and the range in the specific simulations is [�18.2, 16.2],

while the standard deviation of 2�
r

(A) is 0.5 and the range is [�2.9, 0.4]. The eigenvalues
of A+A0 correspond to growth rates of all principal axes of the growth ellipsoid that

occur in the flow. The extrema of these possible growth rates exceed that of the
instantaneous eigenfunction growth rates as expected for a non-normal system.

Remarkably, only very small positive modal growth rates occur suggesting that the system
is constrained to limit the extent of instability.
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Auto and cross-correlation of streak amplitude and Reynolds stress 
damping reveals a time scale far shorter than that of the instability  
-> regulation of the streak occurs on the advective time scale.

FIG. 20: Autocorrelation of the streak energy ✏

s

, and the perturbation Reynolds stress
divergence term in the streak energy equation, ✏̇

F

. Shown also is the cross correlation of
these quantities < ✏̇(t+ ⌧)✏

s

(t) >. The cross correlation between ✏

s

and ✏̇

F

reveals that
these quantities are closely correlated with only a ⌧ = 1.8 lead of the streak energy over

the Reynolds stress term.

FIG. 21: Time series of the time rate of change in streak energy ✏̇

s

in an RNL simulation
(curve 1). Indicated contributions are mean advection (curve 2 with primary contribution

from the lift up term �
R
U

s

V @

y

Udydz), perturbation Reynolds stress (curve 3 with
primary contribution from the spanwise component of the Reynolds stress divergence

�
R
U

s

@

z

(uw)dydz) and from the dissipation (curve 4).
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streak growth rate (1), lift-up (2),  Reynolds stress (3), damping (4) 

FIG. 20: Autocorrelation of the streak energy ✏
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The statistical state is regulated by a rapid perturbation Reynolds stress 
mediated feedback associated with streak inflection which is in balance 
with roll-induced lift-up.  The mechanism of this regulation is adjoint mode 
growth which occurs on the advective time scale.



• SSD provides a powerful tool for studying the dynamics 
of turbulence.

• RNL model is a second order SSD model that maintains 
highly realistic turbulence.

• The dynamics of the RNL system are directly connected 
to NS dynamics.

• The RNL dynamics are naturally minimal.

• The RNL dynamics are completely characterized 
analytically.

• RNL turbulence is maintained by the stochastic 
parametric growth mechanism which is a universal 
property of time-dependent dynamical systems.

• RNL turbulence is regulated by adjoint mode growth on 
the advective time scale.

Conclusions


