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Aim

Provide a set of basis functions, derived from equations,
that economically represent wall turbulence and can be used to
make predictions about it.
Fidelity is not required, but we would like graceful degradation.
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Are low order models possible?

▶ Navier-Stokes equations are infinite-dimensional
▶ but turbulence has ‘structure’
▶ exact solutions / coherent structures should also be

captured, if they continue into turbulent Re
▶ So turbulence should admit more formal (rather than

phenomenological) reduced order models that describe
structure
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Overview

▶ Model formulation
▶ Sparsity of frequencies in turbulent DNS
▶ Scaling of resolvent modes, triads
▶ Representation of TW solutions
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NSE in Fourier domain

Fourier modes for velocity in all (three) homogeneous
directions

u(r; x, θ, t) =
∑
k,n,ω

uk(r)ei(kx+θn−ωt)

uk(r) :=û(r; k, n, ω)

x, u

r, v

y, v′

θ, w

subtract out steady-state / u0 / mean / (k, n, ω) = (0, 0, 0)
and substitute for nonlinear term

f(r; x, θ, t) := − (u− u0(r)) · ∇ (u− u0(r))

f(r; x, θ, t) :=
∑
k,n,ω

fk(r)ei(kx+θn−ωt)
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Steady-state equation

The equation for (k, n, ω) = (0, 0, 0) gives the spatio-temporal
mean

0 = f0(r)

Re stress gradients supporting mean

− u0(r) · ∇u0(r) + Re−1∇2 u0(r)

time-space ave velocity

uk requires u0 requires uk… just assume u0
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Equation for fluctuations at (k, n, ω)

− iωuk(r) =− u0(r) · ∇uk(r)

− uk(r) · ∇u0(r)

+ Re−1∇2uk(r)−∇pk(r)

+ fk(r)

= Lk(u0)uk + fk(r)
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Equation for fluctuations at (k, n, ω)

uk(r) = Hk

linear resolvent

fk(r)

interaction between scales

The resolvent Hk = (iω − Lk)
−1 is the frequency-domain (so

travelling waves) transfer function from nonlinear interaction
between scales to velocity field
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NSE as a network of resolvents
u · ∇u

Mean equationFT(k, n, ω) IFT(k, n, ω)

uf

f0(r) uk0(r)

H7

H6

H5

H4

H3

H2

H1
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Hk
fk(r) uk(r) Resolvent

Hk =

 ik(u0 − c)− Re−1D −2inr−2Re−1 0
2inr−2Re−1 ik(u0 − c)− Re−1D 0
−∂ru0 0 ik(u0 − c)− Re−1(D+ r−2)

−1

D = ∂2
r + r−1∂r − r−2(n2 + 1) − k2, states are (ur, uθ, ux)

▶ loss of translational symmetry in r causes non-normality /
source of energy

▶ as c = ω/k → u0 and Re → ∞, ∥Hk∥ → ∞

▶ Energetic response at critical layer becomes very
important at high Re.

▶ response becomes more localised around critical layer

McKeon & Sharma JFM 2010



Some points on interpretation / FAQ

▶ Valid for large fluctuations
▶ Clear interpretation for linear operators formed using the

mean profile (not perturbation analysis around u̇ = 0)
▶ Eddy viscosity not needed (Re stress model ∼ fk)
▶ Haven’t used scale separation arguments as in RDT
▶ Focuses discussion on forcing model/interpretation (c.f.

earlier frequency-domain works by Jovanovic; Bamieh)
▶ Time (ω) on equal footing with homogeneous spatial

directions (k, n)
▶ Importance of critical layer is clear
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Hk
fk(r) uk(r) Approximating a single resolvent

SVD approximates an operator by directions of principal gain

Hk =

∞∑
m=1

ψmk(r)σmkϕ∗mk(r)

Each σm is a (real) gain,
σ1 is the maximum gain.
Velocity field response is
ψmk(r).

fk(r)
+(·, ϕ1k) σ1kψ1k

χ̃1k

(·, ϕ2k) σ2kψ2k
χ2k

(·, ϕ3k) σ3kψ3k
χ3k

(·, ϕ4k) σ4kψ4k
χ4k

(·, ϕ5k) σ5kψ5k
χ5k

(·, ϕ6k) σ6kψ6k
χ6k

uk(r)
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Hk
fk(r) uk(r) Approximation of Hk (by gain)

▶ Since often σ1 ≫ σ2, often reasonable to approximate uk

by leading ψlk(r)

▶ This gives radial form (or structure) of velocity field at k
▶ Reduces NSE solution to a weighted sum of response

modes

u(x, θ, r, t) ≈
∑
k,m

χmkσmkψmk(r)ei(kx+nθ−ωt)

▶ Using m = 1 or m < M is great simplification, but
remains to find coefficients χmk
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Finding coefficients

▶ Coefficients are fixed by fk in a quadratic equation

χj =
∑
ab

σjNjabχaχb, where Njab = (−ψa · ∇ψb, ϕj)

▶ Natural truncation where σjNjab < ε (low-order / sparsity)
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Ways to proceed

1. assume forcing model over k — spectra

2. symmetries of ϕi, ψi; {χi}; Njab — scaling

3. pick representative combinations of χk — structure

4. solve truncated χj =
∑

ab σjNjabχaχb

— “approximate exact” solutions
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Localisation of response at critical layer

c

y+

u0

log(Re−2
τ Euu(y, c)); normalised at each y+; Reτ = 2003

Moarref et al JFM 2013
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Turbulence as sheets of coefficients
m = 1

k

ω

k

ω

k

ω

k

ω

k

ω

k

ω

k

ω

n1/T

1/dt

Ucl

5uτ

m = 2

k

ω

k

ω

k

ω

k

ω

k

ω

k

ω

k

ω

n1/T

1/dt

Ucl

5uτ

▶ energy quite localised around critical layer
▶ large areas over-resolved in k or ω resulting in stiffness of

equations
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Turbulence as sheets of coefficients

m = 1

k

c

k

c

k

c

k

c

k

c

k

c

k

c

n5uτ

Ucl

m = 2

k

c

k

c

k

c

k

c

k

c

k

c

k

c

n5uτ

Ucl

▶ Truncate outside 5uτ < c < Ucl; above high k, n, ω; m ≲ 2

▶ need for 4D data (DNS / experiment)
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R+ = 314
sparsity in ω introduced by finite-length pipe

maxk(σk,n,ω,1)

1D resolvent (upper); 2D resolvent (lower)
Gomez et al PoF 2014
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DNS R+ = 314 projection,
mode amplitudes fixed by nonlinearity

maxk(σk,n,ω,1)
F. Gómez, H. M. Blackburn, M. Rudman, A. S. Sharma and B. J. McKeon

0.0406 0.25 0.5 0.75
0

1

2

ω/2π

D M D  R itz  vecto r no rms (× 5e−2)
amplitude  |a

5,ω,1
| (× 4e+2)

amplifica tion σ
5,ω,1

(× 5e−3)

nonlinea r fo rcing χ
5,ω,1

(× 1e+7)

Fig. 1 Distribution of amplitude a5,ω ,1, amplif cation σ5,ω ,1 and nonlinear forcing χ5,ω ,1 in fre-
quency of the f rst singular value m= 1 corresponding to the azimuthal wavenumber n = 5. Bars
indicate most energetic frequencies computed via DMD of DNS data.

▶ 2D resolvent;
sparsity in ω of fk,
σ, uk;

▶ amplitude peaks not
exactly at σ peaks
(need to understand
fk)

Gomez et al iTi 2014
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Comparison with DMD structure in DNS

Comparisons between resolvent modes (left) and DMDmodes (right) at same frequenciesω/2π =0.1826 (top)ω/2π
= 0.3652 (middle)ω/2π = 0.5479 (bottom) at n= 2. Colored isosurfaces indicate±1/3 of maximum streamwise f uctuating
velocity.

Gomez et al PoF 2014
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Spectra: direct from resolvent gains
Euu for unit white noise forcing on first two modes only at

y+ = 15 vs DNS

λ+z

λ+x
(in a channel) Moarref & al JFM 2013

DNS (lines): Hoyas & Jimenez PoF 2006
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Scaling of modes from symmetries in the resolvent

▶ mean profile scaling regions induce symmetries in
resolvent

▶ reveals scalings of response modes
Moarref & al JFM 2013
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Re-scaling of u, λx streamwise energy spectra

Euu(y; kx) =

∫ U+=16

0
Euu(y; kx, c)dc

inner

+

∫ UCL−6

U+=16
Euu(y; kx, c)dc

self-similar (analytical)

+

∫ UCL

UCL−6
Euu(y; kx, c)dc

outer

Euu/Re
2
τ

λ
+ x

y+

λ
x

√
yy+

λ
x/

Re
τ

y

Reτ = 3333, 10000, 30000
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Re-scaling of u, λx streamwise energy spectra

Euu(y; kx) =

∫ U+=16

0
Euu(y; kx, c)dc

inner

+

∫ UCL−6

U+=16
Euu(y; kx, c)dc

self-similar (analytical)

+

∫ UCL

UCL−6
Euu(y; kx, c)dc

outer

Euu/Re
2
τ

Reτ = 3333

λ
+ x

y+
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Re-scaling of u, λx streamwise energy spectra

Euu(y; kx) =

∫ U+=16

0
Euu(y; kx, c)dc

inner

+

∫ UCL−6

U+=16
Euu(y; kx, c)dc

self-similar (analytical)

+

∫ UCL

UCL−6
Euu(y; kx, c)dc

outer

Euu/Re
2
τ

Reτ = 10000

λ
+ x

y+
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Re-scaling of u, λx streamwise energy spectra

Euu(y; kx) =

∫ U+=16

0
Euu(y; kx, c)dc

inner

+

∫ UCL−6

U+=16
Euu(y; kx, c)dc

self-similar (analytical)

+

∫ UCL

UCL−6
Euu(y; kx, c)dc

outer

Euu/Re
2
τ

Reτ = 30000

λ
+ x

y+
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Fitting the {χi}

Introducing W(c) fitted at Reτ = 2300, using mode scalings,
and assuming scalings for W(c), generate SW energy intensity
for high Reτ , Note logarithmic scaling in overlap region1

Reτ = 934 (DNS) Reτ = 2, 300 (DNS) Reτ = 3, 333 Reτ = 10, 000 Reτ = 30, 000

Moarref et al JFM 2013; 1 Marusic et al 2013
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Fitting the {χi}

▶ Can fix {χi} by projection on DNS
▶ Norm choice is biased towards Euu at these Re

▶ You can do better (Euv etc) with more modes∗
∗Moarref et al, PoF 26 2014
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Geometric self-similarity; hierarchies of modes
Under assumptions:
1. modes local in y

2. critical layer term scales
geometrically U(y)− c = g(y/yc)

3. ikx(U(y)− c) term balances with
Re−1

τ Δ term
log region is necessary to obtain
invariant Hk (and mode scalings).
 ux

uy
uz

 =

 y+c ycH11 (y+c )2ycH12 (y+c )2ycH13
ycH21 y+c ycH22 y+c ycH23
ycH31 y+c ycH32 y+c ycH33

 fx
fy
fz


Moarref & al JFM 2013

Similar arguments derive classical inner and outer Re scalings
for resolvent modes
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Scaling of the interaction coefficient tensor
▶ Forcing is given by ∇ · (uu) of triadically-consistent

modes, σjNjab in model.
▶ Scalings for self-similar modes (log region) have been

found. For a given triad, decays exponentially with cu − c.
▶ We get hierarchies of triads; an interacting triad at one yc

determines triads at all y in a region.

Moarref et al, in review; triad from Sharma&McKeon JFM 2013 26 / 38



Self-exciting processes in the model

Notice that for a mode combination to self-excite, we just
require resulting nonlinear forcing terms not to be orthogonal
to the resolvent forcing modes.
This is true for the example plotted.
We have still not yet solved for χ …we need a toy problem.
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The exact travelling wave solutions

▶ These provide a nice testbed, since single c

▶ In high Re turbulence, if model modes represent structure
well, and if exact solutions also do, then modes pick out
regions of state space more densely crossed due to nearby
solutions with only low unstable dimension

▶ So, in neighbourhood of a solution, the modes should
compactly describe that solution
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Projection of solutions onto model modes

▶ 15 pipe solutions provided by A Willis of Sheffield,
generated by continuation to ReB = 5300

▶ Also channel solutions provided by M Graham of
Wisonsin-Madison (presented at APS)

▶ S and N solutions presented, upper and lower branch∗

▶ modes generated using u0 of solution
original solutions from Pringle et al, Phil. Trans. R. Soc. A, 2009
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S1 solution 3403.0007

close to laminar; well represented with one mode per k

actual solution m = 1 . . . 5 m = 1
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fraction of solution energy, keeping m singular values per Fourier mode
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N3L solution 6507.1000

lower branch; close to laminar; well represented

actual solution m = 1 . . . 5 m = 1
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N2U solution 6502.0050

more ‘turbulent’; less well represented

actual solution m = 1 . . . 5 m = 1
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N4U solution 6512.1000
more ‘turbulent’; less well represented; not visited in turbulent
DNS

actual solution m = 1 . . . 5 m = 1
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N2U solution 6502.0001

more ‘turbulent’; but well represented ?!

actual solution m = 1 . . . 5 m = 1
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What is missing in the model?

▶ Modes capture S-type and N-type (lower branch)
extremely well

▶ Some upper branch solutions captured, others not; don’t
know why

▶ First step to demonstrating χ solution for exact solutions
▶ Methods may extend to finding new exact solutions

(using modes as ‘seeds’)
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Conclusions

▶ Derived a gain-optimal basis from NSE; sparse
▶ Captures turbulent structure and TW solns quite nicely
▶ Self-exciting mode combinations exist (amplitude

dependent)
▶ Scalings of modes (Re; geometric); interaction coeffs &

triads (log region) now known
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For the future

▶ Investigating solutions for coefficients using TW solutions
▶ Use approximate solutions in χ-space to ‘seed’ exact

solution solvers
▶ Truncated models may lead to reduced/toy DNS
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Pipe mode code available at
http://github.com/mluhar/resolvent

Feel free to play.
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