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Overview

The Koopman operator is an infinite-dimensional linear operator
that captures everything about a nonlinear dynamical system.
Its eigenfunctions define a (nonlinear) change of coordinates in
which the system becomes linear.
Dynamic Mode Decomposition (DMD) is an algorithm that
determines these eigenvalues and eigenfunctions directly from data.
Sometimes. . .

Applications to turbulence:
Finding coherent structures based on their dynamics (e.g., relevant
timescales)
Quantify transport/mixing in turbulent flows
“Fuse” data from different sensors
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Dynamic Mode Decomposition: original definition

Dynamic Mode Decomposition (DMD) was originally defined by an
algorithm1:

Collect snapshots of data x0, x1, x2, . . . , xm, equally spaced in time.
Assume the data are linearly related:

xk+1 = Axk

Use an Arnoldi-like algorithm to approximate eigenvalues and
eigenvectors of A (without ever determining A explicitly).

Hitch: Typically the dynamics are nonlinear, and the linear assumption
does not hold.

1P.J. Schmid, APS 2008, JFM 2010
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Dynamic Mode Decomposition: an alternative definition

Definition (DMD)

Suppose we have a discrete-time dynamical system z 7→ F(z) and two
sets of data:

X =
[
x1 x2 · · · xm

]
Y =

[
y1 y2 · · · ym

]
with yj = F(xj). The DMD modes are eigenvectors of

A = YX+,

where + denotes the Moore-Penrose pseudoinverse.

For a sequential time series z0, z1, . . . , zm, one takes xj+1 = yj = zj .

Under mild assumptions on the data (e.g., the columns of X are
linearly independent), the data satisfy yj = Axj .
Thus, there still seems to be the assumption that the dynamics are
linear (more later. . . )
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Alternative definition: picky points

The nonzero eigenvalues of A are precisely the same as the
eigenvalues determined by the original DMD algorithm.
The modes defined above are actually what we call “Exact DMD
modes”, and are not precisely identical to the DMD modes given by
the original algorithm. The original algorithm gives “Projected DMD
modes”, which are the projection of these onto the range of X . In
practice, these are nearly identical, so the distinction is unimportant.
There are efficient algorithms for constructing DMD modes
according to this definition, without literally computing the matrix
A.2

2J.H. Tu, C.W. Rowley, D.M. Luchtenburg, S.L. Brunton, and J.N. Kutz, J.
Computational Dynamics, in press.
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Example: jet in crossflow

Linearize a jet in crossflow about an unstable equilibrium.3

(Reδ∗0 = 165, Vjet/U∞ = 3, δ∗0 /D = 1/3)

Instantaneous snapshot Mean Unstable equilibrium

Compute eigenvalues and compare with observed frequencies:

Observed Linear theory
Shear layer St = 0.141 St = 0.169
Near wall St = 0.0174 St = 0.043

Frequency mismatch for near-wall structures: failure of linear theory.
3Bagheri, Schlatter, Schmid, Henningson, JFM 2009
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DMD modes for jet in crossflow

DMD modes capture relevant structures and frequencies

High-frequency mode captures
structures in the shear layer.

St = 0.141

Low-frequency mode captures
near-wall structures associated with
horseshoe vortex.

St = 0.017
But this is a nonlinear flow, and we’re assuming the dynamics are linear!
How should we interpret these results?
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Koopman operator

Definition (Koopman, PNAS 1931)

For a discrete-time dynamical system

z 7→ F(z),

where z ∈M, the Koopman operator K acts on scalar functions
g : M→ C, as

Kg(z) , g(F(z)).

Note that K acts on functions on M, and is thus an
infinite-dimensional operator. K is clearly linear.
In order to relate Koopman to DMD, consider a set of observables
ψj : M→ C, j = 1, . . . , n, and let ψ denote the vector of
observables. Consider a set of initial states {z1, . . . , zm}, and let

xk = ψ(zk), yk = ψ(F(zk)).

Define matrices X and Y as before, and A = YX+.
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DMD eigenvalues are Koopman eigenvalues (sometimes)

Theorem (Koopman and DMD)

Let ϕ be an eigenfunction of K with eigenvalue λ, and suppose
ϕ ∈ span{ψj}, so that

ϕ(z) = w1ψ1(z) + w2ψ2(z) + · · ·+ wnψn(z)

for some w = (w1, . . . ,wn) ∈ Cn. If w ∈ R(X ), then w is a left
eigenvector of A with eigenvalue λ: w∗A = λw∗.

So Koopman eigenvalues are DMD eigenvalues, provided:
1 the set of observables is sufficiently large (ϕ ∈ span{ψj})
2 the data is sufficiently rich (w ∈ R(X )).

Furthermore, we can calculate the Koopman eigenfunctions from the left
eigenvectors of the DMD matrix A, as ϕ(z) = w∗ψ(z).

Note: for a linear system, K has linear eigenfunctions, so the full-state
observable ψ(z) = z is sufficient to capture these; for nonlinear systems,
however, linear observables are typically not sufficient.
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Example: 2d ODE

Consider the map [
z1
z2

]
7→
[

λz1
µz2 + (λ2 − µ)cz2

1

]
.

This system has a stable equilibrium at the origin, and invariant
manifolds given by z1 = 0 and z2 = cz2

1 :

z1

z2

z2 = cz2
1

Koopman eigenvalues are λ, µ with
eigenfunctions

ϕλ(z) = z1

ϕµ(z) = z2 − cz2
1 .

In addition, ϕk
λ is an eigenfunction with eigenvalue λk , the product ϕλϕµ

is an eigenfunction with eigenvalue λµ, etc.
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DMD for ODE example

Apply DMD to this example, with initial states z given by
(1, 1), (5, 5), (−1, 1), (−5, 5), with λ = 0.9, µ = 0.5.

Case 1: observable ψ(z) = (z1, z2). If c = 0, so that the problem is
linear, then DMD eigenvalues are 0.9 and 0.5: good!
If c = 1, however, then the DMD eigenvalues are 0.9 and 2.002.
These do not correspond to Koopman eigenvalues, and one might
even presume the equilibrium is unstable!
Case 2: observable ψ(z) = (z1, z2, z

2
1 ). Now, the DMD eigenvalues

are 0.9, 0.5, and 0.81 = 0.92, which agree with Koopman
eigenvalues.
Case 3: observable ψ(z) = (z1, z2, z

2
2 ). Now, the DMD eigenvalues

are 0.9, 0.822, and 4.767. There is still a linear relationship between
the snapshots (yj = Axj), but the eigenvalues do not correspond to
Koopman eigenvalues because the Koopman eigenfunction ϕµ is not
in the span of the observables.
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Koopman modes

The DMD modes are right eigenvectors of A, but the Koopman
eigenfunction are related to the left eigenvectors of A. How are the DMD
modes related to Koopman?

Assume A has a full set of right eigenvectors vj , with eigenvalues λj , and
corresponding left eigenvectors wj , normalized so that w∗

i vj = δij . Then
any vector q may be expanded as

q =
n∑

j=1

(w∗
j q)vj .

In particular, the vector of observables ψ(z) may be expanded this way.
Defining ϕj , w∗

j ψ, we then have

ψ(z) =
n∑

j=1

ϕj(z)vj .
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Koopman modes (continued)

Summary: for ϕj , w∗
j ψ, we have

ψ(z) =
n∑

j=1

ϕj(z)vj .

If all of the ϕj in this sum correspond to Koopman eigenfunctions (i.e., if
the conditions of the theorem are satisfied), then

ψ(F(z)) =
n∑

j=1

λjϕj(z)vj .

The terms vj in this sum are called Koopman modes. (Note that the
Koopman modes depend on the observables ψ.)
These vj are just the DMD modes, so this gives meaning to DMD modes
for a nonlinear system, provided the conditions of the theorem are
satisfied.
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Approximating the Koopman operator

We can use spectral methods to approximate the Koopman operator.
For the discrete-time dynamical system x 7→ F(x),

(Kϕ)(x) = ϕ(F(x)) = (ϕ ◦ F) (x).

Then we expand a function ϕ (and Kϕ) in terms of basis functions ψj :

ϕ(x) =
N∑
j=1

ajψj(x), Kϕ(x) =
N∑
j=1

bjψj(x)

This approximation takes the form of a matrix that maps from a to b.

Using a weighted residual method, b = ΨX
+ΨY a, with

ΨX =

[
〈W1, ψ1〉 · · ·

〈
W1, ψN

〉
.
.
.

.

.

.〈
WM , ψ1

〉
· · ·

〈
WM , ψN

〉
]
, ΨY =

[
〈W1, ψ1 ◦ F〉 · · ·

〈
W1, ψN ◦ F

〉
.
.
.

.

.

.〈
WM , ψ1 ◦ F

〉
· · ·

〈
WM , ψN ◦ F

〉
]

where 〈Wi , ·〉 denotes the inner product with the ith weight function.
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A collocation method

Given only data, {xj , yj}, with yj = F(xj), computing inner products is
difficult. However, if we pick Wi (x) = δ(x− xi ), this gives

ΨX =


ψ1(x1) ψ2(x1) · · · ψN(x1)
ψ1(x2) ψ2(x2) · · · ψN(x2)

...
...

ψ1(xM) ψ2(xM) · · · ψN(xM)

 , ΨY =


ψ1(y1) ψ2(y1) · · · ψN(y1)
ψ1(y2) ψ2(y2) · · · ψN(y2)

...
...

ψ1(yM) ψ2(yM) · · · ψN(yM)



The approximation of the Koopman operator is:

K , ΨX
+ΨY .

This choice is a pragmatic one
This choice of test functions, Wi , though not optimal, allows the
inner products to be computed
The computationally obtained Koopman modes are the DMD modes
if ψi (x) = eTi x, where ei is the i-th unit vector.
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Computing Koopman eigenfunctions: a linear example

~xn+1 =

[
0.8 −0.05
0 0.7

]
~xn, with

λ = 0.8 and 0.7.
The data are a single time
series consisting of 11 snapshots
Basis functions are:
ψij(x , y) = x iy j with
i , j ∈ [0, 3].

The Data
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The true eigenfunctions:
ϕij(x , y) ≈ (.894x − .447y)iy j

for i , j ∈ N
λij = (0.8)i (0.7)j

Excellent agreement between
the true and computed
eigenvalues
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Computing Koopman eigenfunctions: a linear example

EDMD Eigenfunctions Exact Eigenfunctions
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Computing isochrons with EDMD

Isochrons match points in state space to points on a periodic orbit. As
it turns out, they are also the level sets of the “phase” of a particular
Koopman eigenfunction4.
Using EDMD, we compute these isochrons for the van der Pol oscillator,
which exhibits relaxation oscillations as the parameter ε becomes large.

ε = 0.1

0 20 40 60 80 100
t

−40
−30
−20
−10

0
10
20
30

x
,y

ε = 10

0 20 40 60 80 100
t

−5
−4
−3
−2
−1
0
1
2
3

x
,y

We apply EDMD with:
250 uniformly distributed trajectories with 10 snapshots each
Basis functions of the form ψij = r i cos(jθ) or ψij = r i sin(jθ) for
i = −3, . . . , 5 and j = 0, . . . , 32. Here, r , θ are the standard polar
coordinates

4M. Budisic, R. Mohr, & I. Mezic, “Applied Koopmanism,” Chaos 22 2012.
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The numerically computed Koopman eigenfunctions

To determine the isochrons, we take ∠ϕω for the eigenfunction whose
frequency matches that of the limit cycle:

ε = 0.1 ε = 1.0 ε = 10

The prediction of “phase” is ε dependent
Errors are clearly evident near the origin (due to a singularity there)
and near the edges (due to lack of data)
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Predicting the phase at long times

To demonstrate the efficacy of the EDMD, we take the original set of
data, color it by ∠ϕω, and evolve each particle for 100 times longer than
the sampling interval

ε = 0.1
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EDMD produces an effective
approximation of the needed
Koopman eigenfunctions
EDMD will be inaccurate in
regions with few data points

ε = 10
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Example: mixing in the double gyre

We can also use the Koopman operator to study mixing.
The adjoint of Koopman is called the Perron-Frobenius operator; it
describes how densities (measures) evolve.
Can use its eigenfunctions to compute almost invariant sets. 5

Second eigenfunction
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5Froyland & Dellnitz, SIAM J. Sci. Comp., 2003; Froyland, Physica D, 2005.
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Example: double gyre

With a small amount of data (400 uniformly placed points), EDMD
extracts a usable approximation of the almost invariant sets:

Second Eigenfunction
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Three sets identified:

Use up to 3rd order Legendre
polynomials in x and y

Roughly approximate almost
invariant sets

Evolution of Particles
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Example: double gyre (continued)

With larger amounts of data (6400 points), EDMD extracts a better
approximation:

Second Eigenfunction
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Three sets identified:

Use basis of 16 spectral elements
(cubic Legendre)

Fewer “leaked” particles than the
previous case

Not a match with the output of
GAIO, but EDMD still creates
effective almost invariant sets

Evolution of Particles



DMD and Koopman Extended DMD Kernel DMD DMD for data fusion

Outline

1 Dynamic Mode Decomposition and the Koopman operator
Definitions
When does DMD approximate Koopman?
ODE example

2 Extended DMD
Collocation method to approximate Koopman
Example: transport in the double gyre

3 High-dimensional systems: Kernel DMD
The kernel trick
Example: Fitzhugh-Nagumo PDE

4 DMD for data fusion
The method
Example: Fitzhugh-Nagumo



DMD and Koopman Extended DMD Kernel DMD DMD for data fusion

Large state spaces and the “curse of dimensionality”

We would like to apply Extended DMD to high-dimensional systems
(e.g., PDEs such as Navier-Stokes).
With N = 400 states (e.g., gridpoints), if we choose the basis to be
all monomials on R400 up to degree 10, this requires K ≈ 1019

functions; too large for easy computation.
First trick: we can obtain the same set of EDMD
eigenvalues/vectors from the matrix

K̂ , G+A,

where with M snapshot pairs, K̂ ,G ,A ∈ CM×M , with

Gij =
K∑

k=1

ψk(xi )ψ̄k(xj), Aij =
K∑

k=1

ψk(yi )ψ̄k(xj).

This results in M2O(K ) computations. (Better than K 2

computations of O(M), but still too big.)
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The kernel trick

Second trick: the “kernel trick,” common in machine learning:

Write
Gij =

〈
ψ(xi ),ψ(xj)

〉
, Aij =

〈
ψ(yi ),ψ(xj)

〉
.

Instead of defining the ψj explicitly, define a kernel function
f : M×M→ C, and let

Gij = f (xi , xj), Aij = f (yi , xj),

which implicitly determines the ψk .
We use a polynomial kernel f (x, y) = (1 + y∗x)α with α = 10, which
results in M2O(N) computations. This is much better than
M2O(K ) computations when N = 400, K = 1019!
In fact, the cost is identical to regular DMD.
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The kernel trick

Why this polynomial kernel f (x, y) = (1 + y∗x)α?

Let f (x, y) = (1 + y∗x)2, with x, y ∈ R2.

f (x, y) = (1 + x1y1 + x2y2)2

= 1 + 2x1y1 + 2x2y2 + x1x2y1y2 + x2
1 y

2
1 + x2

2 y
2
2

= ψ(x) ·ψ(y)

with ψ(x) = (1,
√
2x1,
√
2x2, x1x2, x

2
1 , x

2
2 ).

Note that ψ(x) contains all linear and quadratic monomials in
components of x.
In general, f (x, y) = (1 + y∗x)d corresponds to the inner product
ψ(x) ·ψ(y), where ψ is a vector of all monomials up to degree d .
Thus, f lets us compute inner products in feature space (dimension
K = O(Nd)) with the computational cost of an inner product in
state space (dimension N).
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Example: the Fitzhugh-Nagumo PDE

The Fitzhugh-Nagumo model is a reaction-diffusion PDE in one spatial
dimension:

∂tv = ∂xxv + v − w − v3

∂tw = δ∂xxw + ε(v − c1w − c0),

where v is the activation field, w is the inhibition field.
Parameters chosen so that the model has a spatio-temporal limit
cycle: c0 = −0.03, c1 = 2.0, δ = 4.0, ε = 0.017, with x ∈ [0, 20],
and Neumann boundary conditions.
200 gridpoints for each field, so N = 400 states.
Consider different datasets, with varying “amounts of nonlinearity”.
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Example: the Fitzhugh-Nagumo PDE

The Data Sets (in R400)
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Nonlinear state reconstruction and data fusion

The Goal: Given two different sets of measurements of the same
physical phenomenon, identify a mapping from one set of measurements
to the other that requires a minimal number of “joint” measurements.

Other Algorithms: This is a common task, which could be
accomplished using:

Linear (and quadratic) stochastic estimation
Kalman filters

However, they require many joint measurements to determine a mapping

Our Approach requires (in principle) a single joint measurement, and
relies on three properties of the Koopman eigenvalues and eigenfunctions:

1 The Koopman eigenvalues are invariant to invertible transformations
of the dynamical system

2 The value of a Koopman eigenfunction is “invariant” to different
representations of the state (i.e., equivalent states produce the same
values)

3 The Koopman eigenfunctions parameterize state space
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DMD for data fusion

Our data fusion procedure requires:
1 Two sets of different measurement data that must capture the same

underlying dynamics, but could be obtained independently
2 A small set of registration data that contains two different

measurements of the same underlying state

For example, one set of measurements could be PIV measurements;
another could be an array of pressure sensors along the wall.
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Fitzhugh-Nagumo PDE

We generated this data using the FitzHugh-Nagumo PDE:

4× 104 total data points generated by perturbing the unstable fixed
point, and recording the approach to the limit cycle
This procedure results in 40 randomly initialized trajectories of 103

points
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Gathering the datasets

To obtain the data:
1 PCA was performed on the first 20 trajectories, and the coefficients

recorded.
2 The values of v and w at x = 10 were recorded for the second 20

trajectories.
3 One randomly selected point was used as the registration set.

PCA Data
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Koopman eigenfunctions

Compute the Koopman eigenfunctions and eigenvalues using the
first two data sets and EDMD:

Note: these eigenfunctions are “matched” using their eigenvalues
Use the third data set to determine the missing constant αk , which
is required because eigenfunctions are defined only up to a constant.
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Good agreement until
ϕ1 ≈ 0.02, and everywhere for
ϕ2

Intuition: EDMD will do well
near the limit cycle
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State reconstruction

The final step: mapping from the eigenfunctions to states
Because we have a large amount of data for a single set of
measurements, we use simple interpolation

Note: the Koopman modes offer an alternative means of state
reconstruction, but will require more than two eigenfunctions to be
approximated

Therefore, the procedure for a new point is:
1 Compute the values of ϕ̂1(xnew) and ϕ̂2(xnew) using the EDMD

approximation of the Koopman eigenfunctions
2 Multiply by α1 and α2 to approximate ϕ̃1 and ϕ̃2
3 Interpolate to obtain a1, a2, and a3
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Conclusions

DMD can be used for nonlinear systems (via Koopman), but only
when used correctly: one needs to choose a sufficiently rich “set of
observables” to span the Koopman eigenspace you are trying to
capture.
Extended DMD explicitly approximates Koopman: one chooses a
basis for a subspace of function space, and determines a
finite-dimensional approximation of Koopman with respect to that
basis. The approximation can be determined directly from data
(snapshots).
Kernel DMD makes this practical for high-dimensional systems: one
uses a potentially enormous basis, with the same computational cost
as regular DMD. This gives vast improvement for problems with
nonlinearity.
Applications

identifying coherent structures based on dynamics
quantifying transport/mixing
“fusing” data from different sensors
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