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1. Introduction 
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Two major approaches for active control of 

turbulence 

• Feedback control 

– Sensors, actuators, 
controller 

– Potentially effective 

– Big hurdle for hardware 
development (especially if 
the QSVs are targeted at) 

 

• Predetermined control 
without sensors 

– Less difficult to make 
hardware? 

– Suitable input is less clear 
(e.g. for friction drag 
reduction) 

Flow 

Flow 

Controller Sensors Actuators 

Actuators 
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Feedback system for turbulence control ・・・ 6% drag reduction 

Feedback control (wind tunnel experiment) 
 (Yoshino et al., J. Fluid Sci. Technol., 2009;  

also introduced in Kasagi et al., Annu. Rev. Fluid Mech., 2009)   
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Big issue toward practical application: 

Physical length- and time-scales of QSV 

 

(Kasagi, Suzuki, and Fukagata, Annu. Rev. Fluid Mech., 2009) 



2. Integral relationship between the skin 

friction drag and the turbulent statistics 
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Fundamental question in fluids 

engineering 

• Question: Take a straight pipe, for instance… 

– Pressure gradient (or friction drag) given  Flow rate? 

– Flow rate given  Pressure gradient (or friction drag) ? 
 

• Answer: 

– Laminar flow: Analytical solution (Hagen-Poiseuille) 

 

 
 

– Turbulent flow 

• Rely on experiments, simulations, and (semi-)empirical formula 

• What is the relationship between turbulent statistics and drag? 

• How does it become when a control is applied? 
 

*The same arguments hold for heat transfer problems 
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Integral relationship between turbulent 

statistics and drag (1) 
 (Fukagata, Iwamoto, and Kasagi, Phys. Fluids, 2002) 

• Fully-developed channel flow (the simplest case) 

 

 

 

 

 

– Starting point: Reynolds-Averaged Navier-Stokes eq.  
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Integral relationship between turbulent 

statistics and drag (2) 
 (Fukagata, Iwamoto, and Kasagi, Phys. Fluids, 2002) 

• Triple integration of Reynolds-Averaged N-S eq. 

– 1st integration  Stress balance 

 

 
 

 

– 2nd integration  Mean velocity profile 

 

 
 

 

– 3rd integration  Bulk-mean velocity 
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• Convert double integral to single integral 

By integration by parts    Or, by iterated integral (Yoshizawa,   
     priv. commun., 2008） 

 

 

 

 

 

 
 

 

• Relationship for a fully-developed channel flow 

 

 
 

  

Integral relationship between turbulent 

statistics and drag (3) 
 (Fukagata, Iwamoto, and Kasagi, Phys. Fluids, 2002) 
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*Essentially the same relationship has been derived also by Bewley and Aamo (JFM 2004) 
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Contributions of different effects 

• More general form (for channel flow) 
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I. Laminar drag 

 

II. Turbulent contribution 

 = Weighted integral of the Reynolds shear stress 

 

III. Contribution of spatio-temproral development 

IV. Contribution of body force, additional stress (e.g., polymer) 

V. Contribution from wall boundary (e.g., uniform blowing/suction) 
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Relationships in other geometries 
 (Fukagata, Iwamoto, and Kasagi, Phys. Fluids, 2002) 

• Pipe flow 

 

 

 

 

• ZPG boundary layer 
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Example 1: Opposition-controlled pipe flow 
 (Fukagata, Iwamoto, and Kasagi, Phys. Fluids, 2002) 

• Decomposition of contributions 
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drag reduction 

  

C
f


16

Re
b

 16 2r u
r

/u
z

/ r
0

1

 dr

Weighted Reynolds shear stress 

I  II 

I (Laminar 

drag) 

II (Turb. 

Contrib.) 
Sum (Cf) 

No control 3.0  10-3 6.3  10-3 9.3  10-3 

Controlled 3.0  10-3 4.0  10-3 7.0  10-3 

Wall unit of uncontrolled flow 
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Example 2: Spatially-developing ZPG turbulent 

boundary layer with uniform blowing/suction 
 (Kametani & Fukagata, J. Fluid Mech., 2011) 

• With uniform blowing: Turbulence 

is enhanced, but drag is reduced! 

Decomposition of contributions 

Contribution 

of mean  

wall-normal flux 

Spatial 

development 

Turbulent 

contribution 

Total 

White: Vortex cores 

Color: Wall shear stress 
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Example 3: Drag reduction by surfactant addition 
 (Yu, Li, and Kawaguchi, Int. J. Heat Fluid Flow, 2004) 

• Integral relationship for Giesekus fluid (channel flow) 

 

 

 

 

 

 

 

 

 

 

– A similar analysis can be made also for polymer addition 

 (White & Mungal, Annu. Rev. Fluid Mech., 2008) 
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Some other extensions 

• Arbitrary-shaped straight duct (const. pres. grad.) 
      (Subragaglia & Sugiyama, Physcia D, 2007) 

 

 

 

• Compressible flow (Gomez, Flutet, and Sagaut, Phys. Rev. E, 2009) 

Stokes flow Volume 

average 

Contribution from 

variable viscosity 

Contribution from viscosity fluctuations (small) 

Corresponding to (1  y) weight 
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Some other extensions (cont’d) 

• Relationship between wall heat flux and turbulent 

statistics (Kasagi, Hasegawa, Fukagata, and Iwamoto, J. Heat Transfer, 2012) 

– Constant temperature difference condition 

 

 
 

 

 

– Constant heat flux condition 
 

 

 

 

 

 

 

– Uniform heat generation condition (omitted here) 

Stanton 

number Prandtl 

number 

Dimensionless  

temperature 

Partial flow rate 

Partial flow rate deviation from laminar flow 



3. Application to drag reduction control 
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To start with predetermined control… 

• For a fully-developed incompressible channel flow 

(review) (Fukagata et al., Phys. Fluids, 2002)  

 

 

 

 

• Even if we do not know anything about vortices, if we 

can reduce the RSS, then we can reduce drag!  

– Feedback body force （Fukagata et al., Proc. SMART-6, 2005） 

– Upstream traveling wave-like blowing/suction                
（Min et al., J. Fluid Mech., 2006） 

   Drag lower than laminar flow (sub-laminar drag*) 

   * Although re-laminarization is the best in terms of energy saving 

 (Bewley, J.  Fluid Mech., 2009;  Fukagata et al., Physica D, 2009) 
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Traveling wave-like blowing/suction 
(Min, Kang, Speyer, and Kim, J. Fluid Mech., 2006) 
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“Negative” Reynolds shear stress（RSS） 

--- linear analysis 

• Away from the wall：u’ and v’ are orthogonal (same as inviscid) 

• Near the wall: phase shift in u’ due to viscosity 

v’ 

u’ 

 u’v’ 

(Mamori, Fukagata, and Hœpffner, Phys. Rev. E, 2010) 

(Min et al., J. Fluid Mech., 2006; Mamori et al., Phys. Rev. E, 2010) 

Negative RSS slightly exceeds! 

Viscous phase shift 
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Primary drag reduction mechanism by traveling 

wave-like blowing/suction 

• Wave of blowing/suction traveling in the upstream 

direction 

     “Negative” Reynolds shear stress 

     Net flow in the downstream direction 

= “Pumping effect”  (in the direction opposite to the 

wave) 

 

    External pressure gradient  

    required to keep the flow 

    rate (constant) is reduced 

     = “Drag reduction” 

 

(+ Turbulence modification) (Animation: Mamori, MEng Thesis, 2008) 
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But, traveling wave-like blowing/suction device 

is difficult to make in practice 

• Last sentence in Min et al (2006)’s paper 

   However, a moving surface with wavy motion would 

produce a similar effect, since wavy walls with small 

amplitudes can be approximated by surface blowing 

and suction. 
 

• Question: Can it simply be substituted by wall 

deformation? 
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Blowing/suction vs wall deformation 
(without external pressure gradient) 

(Hœpffner & Fukagata, J. Fluid Mech., 2009) 

Wall deformation Blowing/suction 

Black point: Fluid particle (marker) 

Color: Pressure 
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Blowing/suction vs wall deformation 
(without external pressure gradient) 

(Hœpffner & Fukagata, J. Fluid Mech., 2009) 

Wall deformation Blowing/suction 

Net Flow Net Flow 

Direction of wave 
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• Question: Is the drag really reduced by a downstream traveling 

wave-like wall deformation? 

Blowing/suction Wall deformation 

Pumping effect 
(Hœpffner & Fukagata, 

JFM 2009) 

Direction opposite to the 

wave 

Direction same as the 

wave 

Stability 
(Lee et al., PoF 2008; 

Moarref & Jovanovic, 

JFM 2010) 

Flow is stabilized by downstream wave of wall-

normal velocity on the wall 

Drag reduction 

1. Upstream wave             
(Min et al., JFM 2006)     

--- unstable? 

2. Downstream wave 
(Mamori et al., PoF 2014)  

--- stable 

Downstream wave? 

--- stable? 

Summary of existing knowledge and prediction 
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u , d： Displacements of walls (varicose mode) 

a : Velocity amplitude (0.05 … 0.3) 

c : Phase speed (－3 … 3) 

k : Wavenumber (1 … 4) 

• Constant flow rate at  

 Reb = 2Ubh/ = 5600 

• Initial field: Fully developed     

turbulent flow in plane channel 

DNS with traveling wave-like wall deformation 
 (Nakanishi, Mamori, and Fukagata, Int. J. Heat Fluid Flow, 2012) 

• Boundary conditions 

Deformation velocity 

a cos(k(x1－ct)) 

All nondimensionalized by  

Twice bulk-mean velocity 2Ub
*  

and channel half width  * 
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DNS in a bit detail 
 (Nakanishi et al., Int. J. Heat Fluid Flow, 2012) 

• Continuity eq. 

 

 

• Navier-Stokes eq. 

 
 

 

 

• DNS Code: Based on the FDM code for a plane channel flow   
(Fukagata et al., Phys. Fluids, 2006)  
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 Coordinate transform (Kang & Choi, Phys. Fluids, 2000) 

(u , d: displacements of upper and lower walls) 
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DNS with traveling wave-like wall deformation 
 (Nakanishi et al., Int. J. Heat Fluid Flow, 2012) 

Animation: Uchino & Fukagata, CFD Symp, Japan, 2013  

Relaminarization  About 70% drag reduction, 65% reduction in net power 
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P
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No deformation 

a = 0.2, c = 1, k = 2 

a = 0.1, c = 1, k = 4 

a = 0.2, c = 1, k = 4 

Time trace of mean pressure gradient (=drag) 
(Nakanishi et al., Int. J. Heat Fluid Flow, 2012) 

• Upstream wave (c < 0): drag increase, or no change 

• Downstream wave (c > 0): drag reduction 

a = 0.1, c = －1, k = 2 

Laminar drag 

t 
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Drag reduction effects under different sets of  

parameters 
(Nakanishi et al., Int. J. Heat Fluid Flow, 2012) 

no control

no control

100%D

dP dP

dx dx
R

dP

dx
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0

( )
100%

p a

P

W W W
R

W

 
 

W0 : Pumping power for      

       plane channel flow 

Wp : Pumping power 

Wa : Actuation power 

Label : (RD, RP) 

Relaminalization (unstable) 

Relaminarization 

Drag increase 

Drag reduction 

Drag reduction: 69% 

Power saving: 65% 
Deformation period 

Deformation 

amplitude 

Drag reduction rate Power saving rate 
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: Plane channel 

: Laminar 

: Instantaneous phase average 

Flow field (a = 0.2, c = 1, k = 2) 
(Nakanishi et al., Int. J. Heat Fluid Flow, 2012) 

No control 

Relaminarized case 

RSS Streamwise velocity 

6, 30, 560a c   
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Drag reduction mechanism by downstream 

traveling wave-like wall-deformation 
(Nakanishi et al., Int. J. Heat Fluid Flow, 2012) 

• Negative RSS 

     “Pumping” in the same direction as  

          the wave 

 

 

     External pressure gradient  required to  

     keep the flow rate (constant) is reduced   

     = “Drag reduction” 

 

 

• Stabilization  Relaminraization 

 or 

• Destabilization (inflectional instability) 

at larger deformation amplitude 

      Periodic oscillation 

+ 



4. Integral relationships on dissipation 

(or power balance) 



35/50 

Power balance in internal flows 
(Fukagata, Sugiyama, and Kasagi, Physica D, 2009) 

• Periodic duct with arbitrary shape 

 

 

 

 

 

 

• Derivation of power balance 

– Starting point: streamwise momentum equation 

• Zero-net-flux blowing/suction 

• Zero-net body force  

– Multiplication by streamwise velocity 

– Integration in volume + vector/tensor operations 
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Integral relationship on dissipation 
(Fukagata, Sugiyama, and Kasagi, Physica D, 2009) 

• Wp: Pumping power 
 

• Wa: Actuation power 
 

• (I): Dissipation from the velocity profile of the Stokes flow at the 
 same flow rate 

• (II): Dissipation due to the mean deviation from the Stokes 
 profile (non-negative) 

• (III): Dissipation due to the fluctuating velocities (non-negative) 

• (IV): Additional term for variable-curvature ducts (zero for 
 constant-curvature ducts) 
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Lower bound of net power 
(Fukagata, Sugiyama, and Kasagi, Physica D, 2009) 

• For straight channel, straight pipe, channel/pipe with 

constant curvature 

 

 

 

 

 

“Lowest net power achievable in a controlled duct flow  

is  the pumping power of the Stokes flow at the same 

flow rate” (not always the same as “laminar flow” !)  

 

– For a fully-developed plane channel flow, this is exactly the same as 

Bewley (JFM 2009)’s argument because “laminar” = “Stokes” in that 

case 

 

Stokes dissipation Deviation from Stokes Fluctuations 

Pumping 

power 

Actuation 

power 
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Example 1: Flow in a straight channel with  

Min et al. (2006)’s traveling-wave-like blowing/suction 

• Light gray: Region not 

allowed by “Bewley’s 

conjecture” 

       (Bewley, Prog. Aerosp. Sci., 2001) 
 

• Dark gray: Region not 

allowed by the correct 

theorem 

      (Fukagata et al., Physica D,  2009;      

        Bewley, J. Fluid Mech., 2009) 

 

 

• Star: Turbulent (DNS, Min 

et al. (2006)’s condition) 

• Circle: Laminar (2D-DNS) 

(Hœpffner & Fukagata, J. Fluid Mech., 2009) 

The line of 

constant 

total power 
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Example 2: Sublaminar drag in uncontrolled flow in a 

pipe with a constant curvature 
(Noorani & Schlatter, submitted for publication) 

 

> eStokes ≈ 0.005 
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For variable curvature ducts: Possibility of 

“Lower-than-Stokes” net power? 

• Possible situation of  

 

 

 

 

 

 

 

 

• Gives a hint to clarify the theoretical limitation of 

bluff body control, which seems also unclear    

(Choi et al., Annu. Rev. Fluid Mech., 2008) ?  
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Integral relationship on dissipation in an external flow  
(Naito & Fukagata, Phys. Rev. E, 2014) 

• For a flow around a circular cylinder 

 

 

where 

Dissipation 

Pressure drag 

Friction drag 

Additional drag Ideal actuation power 

Deviation from 

freestream velocity  
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Suboptimal control minimizing dissipation 
(Naito & Fukagata, Phys. Rev. E, 2014) 

• Cost function J : Dissipation expressed by the surface 

quantities only (neglecting the time derivative) 

 

 

 

• Control input (blowing/suction) to minimize the cost 
function J : Obtained using the suboptimal procedure 

      (Lee et al., J. Fluid Mech., 1998; Min & Choi, J. Fluid Mech., 1999) 

 

• DNS of a flow around a cylinder: 

    Validated in our previous work 
       (Naito & Fukagata, Phys. Fluids, 2012) 

 

neglect 



Thanks, John!  
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Suboptimal control minimizing dissipation (cont’d) 
(Naito & Fukagata, Phys. Rev. E, 2014) 

• Resultant mean blowing/suction profile, as compared 

to J1 control (= minimizing the pressure drag: Min & Choi, JFM 1999) 

Narrower 

blowing in 

the rear half 

Weaker 

suction in 

the front half 

Angle from the front stagnation point 

Radial velocity 

on the cylinder 

surface 
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Suboptimal control minimizing dissipation (cont’d) 
(Naito & Fukagata, Phys. Rev. E, 2014) 

 

No control 

J1 control 

Present 

control 
A bit more 

parallel due to 

narrower blowing 



5. Some other useful relationships for 

turbulence control 
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●, DNS at Re  650,      

                   yd 
+  60 

Prediction of drag reduction rate in channel 

flow by ideal damping of near-wall fluctuations 
(Iwamoto, Fukagata, Kasagi, and Suzuki, Phys. Fluids, 2005) 

• Constant flow rate; ideal damping in 0 < y < yd  

      Implicit formula among Re0, RD, and  yd / 
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Prediction of drag reduction rate of flow in a 

channel with superhydrophobic surfaces 
(Fukagata, Kasagi, and Koumouotsakos, Phys. Fluids, 2006) 

• Implicit formula among lx, lz, Re0, and RD 
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or an improved model 
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6. Summary 
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Summary 

• Integral relationships 

– “Formal” solutions to the fundamental questions in 

fluids engineering 

• Connection between drag and turbulent statistics 

• Connection among pumping power, actuation power, and 

dissipation 

– Convenient tools for turbulence control studies 

• Analysis of control effect 

– Quantification of major contributor(s) 

• Proposal of new control methods 

– Method to reduce RSS, such as traveling waves 

– Good affinity with (sub-)optimal control theory  

• Future directions 

– Connection to “dynamics” 
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