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Variational methods revisit past measurements in light of new data.
Ensemble methods provide a low-rank approximation of covariance P.
This work shows how to put these methods together effectively.

Spatially-invariant feedback control convolution kernels
[Hogberg, B, Henningson, JFM 2003a]

Spatially-invariant feedback estimation convolution kernels
[Hoepffner, Chevalier, B, Henningson, JFM 2005]
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Spatially-invariant feedback control convolution kernels
[Hogberg, B, Henningson, JFM 2003a]
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Current: observation of hurricanes = @' New: Underactuated control @
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Methods for solution of large optimal control
problems that bypass open-loop model reduction




(Background: 1/4)
Adjoint analysis for gradient-based optimization

State equation:

Eq=N(q.f,0,y) on 0<r<T
q=q at =0

with: q = state, f= externalforce, ¢ = control, = disturbance.
Perturbation equation:

small perturbations ' to disturbance y

{Lq/ _ B¢¢/ . B\N’ on 0<t< T} Small perturbations ¢’ to control ¢ &
=
cause small perturbation q’ to state q.

q=0 at 1=0

Lq' & (E% —A) q' is the linearization of the state eqn about the trajectory q(¢,V).

Cost function (minimize w.rt. ¢ and maximize w.r.t. y):

&

(Background: 2/4)
]

Statement of adjoint identity. Define inner product (r,q’) = JJ r*q’dr. Then:

‘ (r,£q"y = (L*r,q') +b ‘

with: r = adjoint, L*r:(—E*i—A*)r, b=r‘E " —r*E " .
y d —r -0

Definition of adjoint equation. Adjoint field easy to compute, though A = A(q).

L'r=0q on 0<t<T —E*f=A"r+Qq on 0<t<T
<
r=0 at =T r=0 at t=T

Extraction of gradients. Combining equations, we have:
T T
(r,By0' +Byy') = (Qq.q") = /0 q*Qq’dt:/O Byt + By dt.

[l oo ot (0 (5) ]

T T
_ L “0q + 20 0—Puv)di| = /:/ *0g! -+ 020* 0/ Py ) dr. Z 7Y
’ 2Jo (4°Qq ¥o-TvY) J 0 (@°0q *e Yzw V) As ¢’ and ' are arbitrary, |the gradient is: % :B:{,r+£2¢$ % = B\*I,r—yzw.
(Background: 3/4) % (Background: 4/4) %
Riccati analysis for coordinated feedback control N Riccati equation. Inserting solution ansatz into the combined matrix it

Characterization of saddle point. The control ¢ which minimizes 7
and the disturbance y which maximizes 7 are given by
27 29 1 . |-
?](I): s w:ﬂ = ¢:—£—23¢r, w:y—szr.

Combined matrix form. Combining the perturbation and adjoint egns
at the saddle point determined above, assuming E = I, gives:

control and disturbance at saddle point
—_—

y 1 1 *
Perturbation equation — {q/} _ A 7[23¢B$+~TZB yBy {q/]
Adjoint equation — r -0 —A* r

Solution Ansatz. Relate perturbation ¢’ = ¢/(¢) and adjoint r = r(¢):

7 where X =X ().

form to eliminate r and combining rows to eliminate ¢’ gives:
. /
[—x —A*X +XA+X (Y%BWBW— £L23¢B$)X+Q} q.

As this equation is valid for all ¢/, it follows that:

fX:A*X+XA+X(y%BWB§,f [%B¢B$)X+Q 4

Due to the terminal conditions on r, we must have (X =0 at t=T|.

Note solutions of this matrix equation satisfy X* = X.
Note also that, by the characterization of the saddle point, we have

1 1
w:y—zBl‘l,r and |0 =Kq' where Kzfé—zB:{]X.

This is the finite-horizon #. control solution, and may be solved for
linear time-varying (LTV) systems or marched to steady state.




Solving the Riccati equation. Recall 2N x 2N Hamiltonian problem
dv/dt = Zv. The steady-state solution X > 0 (of the “CARE") is given by
taking the ordered Schur decomposition of Z:
0 | | g
z:wv”,v:{ }:v'#.”w*, W:Ly
R x | I
T is enumerated with its N LHP eigenvalues appearing first. Defining
y= v=1ly, we have dy/dt = Ty; stable solutions of y are spanned by
first n columns of T'. Since v = Vy, stable solutions of v are spanned by
first n columns of V. To achieve stability of v via r = X q for each of these
directions v/, we have r' = Xq/ fori = 1...n. Thus:
| R=XQ,

|
el 2 o =X|q ¢® ... ¢ = .
[ | I | X=RO"

Chandrasekhar’s method (Kailath 1973). Consider evolution equations
for a low-rank factor F () of (dX /dt) and K(t).

H
Sl =rnwr0-nod0 - (g %) ()

Differentiating DRE w.r.t. time and inserting dX /dt = FHFH we have
dK(1))dt = —R™'BHF(1)HFH (1),
dF(t)/dt = —[A+BK(0)7F (1),
with terminal conditions
K(T)=-RrR"'B"0r,
F(TYHFH(T) = dx(r)/dt|,_;,

where dX /dt|;—r is determined from the original DRE evaluated at t =

T, and F(T) by its factorization.

&




Pole assignment. Consider the ordered Eigen decomposition Z = VAV~!
Define A with the N desired eigenvalues A, of A + BK on the diagonal.

The stable components of the eigen decomposition of Z may be written

_pp—lpH
[A BR B }VC:ZVC:VCAC where VL-:[X].

-0 -Af P

We know both A, and Z; we just need to compute V... Then, as before,

u=Kkx with K=—-R'Bw, w=px~!
where AX —BR™'BPP=XA, and —0X —Afp=PpA,.

Solving for X and substituting gives

AQ N AP+ PA)+ BRT'BIP =0 N (AHP L PAOA: (1)
0X = — (AP 1 PA,).

Note that (1) is linear in P. Once P is found, calculation of X is trivial.

&

Straightforward simplification of this problem, written in a modal repre-

sentation of just the unstable system dynamics, leads to the following:

Theorem 1 (Lauga & B, Proc Roy Soc 2003). Consider a stabilizable sys-
tem dx/dt = Ax+ Bu where A has no pure imaginary eigenvalues. De-
termine the unstable eigenvalues and corresponding left eigenvectors of
A such that YLf{A = AL,YMH (i.e., determine the unstable eigenvalues and
corresponding right eigenvectors of AH such that APy, = Y,,A{;I ). Define
By =YHB and C = B,R~'BY, and compute a matrix X with elements
xij=cij/(Ai+ 7»;). The minimal-energy stabilizing feedback controller is

then given by u = Kx, where K = —R~'Bi X~y
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Figure 4. Locus of the first 20 eigenvalues of the CGL operator with supercriticality 6 = 3 before
(pluses) and after (circles) optimal control is applied (with £ = 10* and zf = 47). Note that,
in this minimal-energy optimal control setting, the stable eigenmodes of the system matrix are
unchanged, and the unstable eigenvalues of the system matrix are reflected across the imaginary
axis.

Lauga & B, Proc Roy Soc 2003




For any x(, adjoint optimization of u for minimization of J(u) proceeds as
before; when converged, DJ/Du=0and u = —R~'Bfp on 1 € [0,T].
The input is X; focus for now on the output u at time ¢ = 0, denoted uy.

If X =X,,x1 and u = u,;, | and we solve this problem n times, then
o w3 ] =Ko[xh % ] m
Solving for K determines the feedback gain matrix K at time r = 0,
u(0) = Kox(0).

This approach requires n optimizations to set up (1), which may be solved
to compute the m x n matrix K. If n > m, it is more efficient to consider
the adjoint of this problem, thus leading to an algorithm requiring only m

optimizations to compute Kj.

Taking Q > 0 and R > 0, define @

p BR'BH  d/dr—A
= L= .
v M and Ld/dt -a" -0

The converged solution of the “forward TPBVP” may now be written

_ ) x(0) =xo.
Ly =0 with {p(T) _o.

Defining (a,b) = fOT af’bdt, we may express the adjoint identity
(5,Ly) = (L'3.y) +b where §= m :
Using integration by parts, it follows that L* = L (L is “self-adjoint”), and

<H

b= (p"x—&p),_r — (p"x—xHp), 0.

Now use L* to define an appropriate “adjoint TPBVP”

L§=0 with {’:‘(0) =%o,

B(T) =0,
Note that this TPBVP is exactly the same as that given previously, it is just
written with different variables and has a different interpretation given to
the “input” X(0) and the “output” p(0). Thus, this “adjoint TPBVP” may

also be solved using the same machinery as before.

Substituting into the adjoint identity leads to [p(0)]"x(0) = [%(0)]7p(0).
Recall also that u(0) = [K(I)'I]HX(O) = [-BR™"]Hp(0). Thus, setting %(0)
to the first column of [7BR‘1] and solving the adjoint TPBVP (iterating
all the way to convergence!), the resulting value of p(0) is simply the first
column of K(’;{, etc. That is, after solving the adjoint TPBVP just m times
(note: not n times!), the entire K{) is constructed directly.




Test case: Re = 55, control is turned on at t =0
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Prototype subspace iteration algorithm. A basic power method may

be visualized as an EE march to convergence
dvjdi=Av = VU= (14 AWK = vF 4 hAVE,

A basic block power method may be written V <— V 4+ hAV with Gram-
Schmidt applied at each step. The emerging eigenvalues may be esti-
mated with the Rayleigh quotient (¢ = vl A v), which for multiple vectors

may be written £ = V7 AV Schur decomposition of ¥ then gives

2=UTU=vHAV = T=WO)HAWVD),
and thus
V<« (VU) and T« T

keeps X triangular (and the columns of V orthogonal) as the iterations
proceed.

As a further refinement, we may apply a small shift of —(hVX) to the

march for V:
V<« V+h(AV-VI).

This shifted form has the same essential effect as before (that is, prefer-
ential focusing of the columns of V in the direction of the leading Schur
vectors of A), with the added benefit of ensuring that the update to V it-
self approaches zero as V approaches a basis of a set of Schur vectors,

and thus (AV — VX) approaches zero.




We now extend such methods to find the central eigenmodes of a large
Hamiltonian matrix Z. We seek the least-stable LHP Schur vectors V,
and partition them into their state and adjoint components:
A —BRBH X
[t )
We will approximate the resulting feedback gain matrix K using the Moore-

Penrose pseudoinverse K = —R~1BH (PX ).

The working hypothesis is that the neglected (well-damped) closed-loop
Schur vectors of Z likely play a reduced role in the full computation of K

[idea motivated by Amodei & Buchot (2010, 2011)].

* 4 25p +
i 2|
1 st
+ + + +
+ + = +
+ i 1 +
¥ 1 o5 +
+ Pt + ¥ 1 0 N + mE * . 4
1 os5p
+ + N
2 1 L L 4 L L el L
-0 0 10 2 30 40 -40 -30 20 -10 0 10 a4

All current subspace iteration methods converge to extremal eigenvalues.
Convergence to the central eigenvalues of Z, using existing algorithms,
requires computation of Z~!x, which is expensive. We seek a method to

find the central Schur vectors of Z without access to Z~ 1.

In the MCE case, one of the off-diagonal terms of Z is zero, and the
subspace iteration algorithm described above gives (a) the least-stable
eigenvalues of A, and (b) the least-stable eigenvalues of —AH For the
control of a system with a few unstable eigenvalues and many stable
eigenvalues extending off into the LHP, we need (a), which are the eigen-
values of A near the imaginary axis. Rather than (b), however, we need
to the most-stable eigenvalues of —AH These may be found simply by

changing the sign of the related march!

The eigenvalues of Z vary continuously as its elements are varied. |If
both Q and BR~ !B are nonzero but the norm of their product is small
(that is, a modest generalization from the MCE limit), application of a
slightly modified subspace iteration algorithm, with the adjoint component
marching the opposite direction in time, returns those eigenvalues of Z
near the least stable eigenvalues of A together with those eigenvalues of

Z near the most stable eigenvalues of —AH




0SSl via an EE discretization. The idea described above is straightfor-
ward to implement. The update to X and P is split into two parts, with a
positive sign in the shift of X, and a negative sign in the shift of P:
X« X+hX|, P« P—hP|

where, leveraging the structure of Z,

X, =AX — (BR™'Bf)P, P =—0x —AFP
As before, to accelerate convergence, we may instead apply shifts via

X < X+h(X,—XY), P« P—h(P|—PY).

The resulting algorithm is referred to as opposite shifting.
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Fig. 2. Convergence of (dashed) the explicit form given in Algorithm 4,
and (solid) the implicit form given in Algorithm 5, of the subspace iteration
algorithm for the leading Schur vectors of the Hamiltonian matrix Z. The
dotted lines indicate the convergence of individual modes.
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A randomly-generated LQR problem with A, Q > 0,
R=1and B=BR'B" > 0 was defined via

Ay =randn(n,n); A= —AIA)]L’Jrrandn(n,n);
Q) =randn(n,n); Q=00 04:

By =randn(n,m); B= BB]E{{,
The system matrix so created has real and com-

plex conjugate pairs of eigenvalues extending off

into the LHP, and a few unstable eigenvalues.

Results at left are typical, with parameters:
n=10,m=4,0=0.1,and f = 0.01.

<

Leading eigenvalues:

-0.128396-435.659i
-0.128396+435.659i
0.128396+-435.659i
0.128396-435.659i
-19.4557

G 19.4557
-248.216-680.951i
-248.216+680.951i

The iteration converges!
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