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Evolu)on	  of	  small	  disturbance	  to	  state	  (le7)	  and	  es)mate	  (right)

t = 0t = 20

PosiAve	  (light)	  and	  negaAve	  (dark)	  iso-‐surfaces	  of	  the	  streamwise	  component	  of	  velocity.	  
Iso-‐values	  at	  ±	  10%	  of	  the	  maximum	  streamwise	  velocity	  of	  the	  flow	  during	  interval	  shown.	  

t = 60

[Hoepffner,	  Chevalier,	  B,	  Henningson,	  JFM	  2005]
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Optimization with “incomplete” function evaluations
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Current: observation of hurricanes 
via fly-overs by aircraft and dropsondes

New: Underactuated control 
of sensor balloon distribution in hurricanes
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(Background: 1/4)

Adjoint analysis for gradient-based optimization

State equation:

Eq̇ = N(q, f,φ,ψ) on 0 < t < T

q = q0 at t = 0

with: q = state, f = external force, φ = control, ψ = disturbance.

Perturbation equation:

{

Lq′ = Bφφ′+Bψψ′ on 0 < t < T

q′ = 0 at t = 0

}

⇒
Small perturbations φ′ to control φ &
small perturbations ψ′ to disturbance ψ
cause small perturbation q′ to state q.

Lq′ !
(

E d
dt −A

)

q′ is the linearization of the state eqn about the trajectory q(φ,ψ).

Cost function (minimize w.r.t. φ and maximize w.r.t. ψ):

J =
1

2

∫ T

0
(q∗Qq+ ℓ2φ∗φ−γ2ψ∗ψ)dt ⇒ J ′ =

∫ T

0
(q∗Qq′+ ℓ2φ∗φ′−γ2ψ∗ψ′)dt.

(Background: 2/4)

Statement of adjoint identity. Define inner product ⟨r,q′⟩=
∫ T

0 r∗q′dt. Then:

⟨r,Lq′⟩= ⟨L∗r,q′⟩+b

with: r = adjoint, L∗r =
(

−E∗ d
dt
−A∗

)

r, b = r∗Eq′
∣
∣
∣
t=T
− r∗Eq′

∣
∣
∣
t=0

.

Definition of adjoint equation. Adjoint field easy to compute, though A = A(q).
{

L∗r = Qq on 0 < t < T

r = 0 at t = T

}

⇔
−E∗ṙ = A∗r+Qq on 0 < t < T

r = 0 at t = T

Extraction of gradients. Combining equations, we have:

⟨r,Bφφ′+Bψψ′⟩= ⟨Qq,q′⟩ ⇒
∫ T

0
q∗Qq′dt =

∫ T

0
r∗(Bφφ′+Bψψ′)dt.

J ′ =
∫ T

0

[(

B∗φr+ ℓ2φ
)∗

φ′+
(

B∗ψr− γ2ψ
)∗

ψ′
]

dt !

∫ T

0

[(
DJ

Dφ

)∗

φ′+

(
DJ

Dψ

)∗

ψ′
]

dt

As φ′ and ψ′ are arbitrary, the gradient is:
DJ

Dφ
= B∗φr+ ℓ2φ,

DJ

Dψ
= B∗ψr− γ2ψ .

(Background: 3/4)

Riccati analysis for coordinated feedback control

Characterization of saddle point. The control φ which minimizes J
and the disturbance ψ which maximizes J are given by

DJ

Dφ
= 0,

DJ

Dψ
= 0 ⇒ φ =−

1

ℓ2
B∗φr, ψ =

1

γ2
B∗ψr.

Combined matrix form. Combining the perturbation and adjoint eqns
at the saddle point determined above, assuming E = I, gives:

˙[

q′

r

]

=

[

A − 1
ℓ2BφB∗φ+

1
γ2BψB∗ψ

−Q −A∗

]
[

q′

r

]

control and disturbance at saddle point
︷ ︸︸ ︷

Perturbation equation→

Adjoint equation→

Solution Ansatz. Relate perturbation q′ = q′(t) and adjoint r = r(t):

r = Xq′ , where X = X(t).

(Background: 4/4)

Riccati equation. Inserting solution ansatz into the combined matrix
form to eliminate r and combining rows to eliminate q̇′ gives:

[

−Ẋ = A∗X +XA+X
(

1

γ2 BψB∗ψ−
1

ℓ2
BφB∗φ

)

X +Q
]

q′.

As this equation is valid for all q′, it follows that:

−Ẋ = A∗X +XA+X
(

1
γ2 BψB∗ψ−

1
ℓ2

BφB∗φ

)

X +Q .

Due to the terminal conditions on r, we must have X = 0 at t = T .

Note solutions of this matrix equation satisfy X∗ = X .

Note also that, by the characterization of the saddle point, we have

ψ =
1

γ2
B∗ψr and φ = Kq′ where K =−

1

ℓ2
B∗φX .

This is the finite-horizon H∞ control solution, and may be solved for
linear time-varying (LTV) systems or marched to steady state.



Solving the Riccati equation. Recall 2N × 2N Hamiltonian problem

dv/dt = Zv. The steady-state solution X > 0 (of the “CARE”) is given by

taking the ordered Schur decomposition of Z:

Z =V TV−1, V =

[

Q ∗
R ∗

]

=

⎡

⎣

| | |
v1 v2 . . . vn ∗
| | |

⎤

⎦ , vi =

[

qi

ri

]

;

T is enumerated with its N LHP eigenvalues appearing first. Defining

y = V−1v, we have dy/dt = T y; stable solutions of y are spanned by

first n columns of T . Since v =Vy, stable solutions of v are spanned by

first n columns of V . To achieve stability of v via r = Xq for each of these

directions vi, we have ri = Xqi for i = 1 . . .n. Thus:
⎡

⎣

| | |
r1 r2 . . . rn

| | |

⎤

⎦= X

⎡

⎣

| | |
q1 q2 . . . qn

| | |

⎤

⎦ ⇒
R = XQ,

X = RQ−1.

A bit of provocative philosophical pondering

Typically, to control high-dimensional discretizations of fluid systems, 
people first reduce the model in an open loop fashion via an eigenvalue 
problem (usually a POD, which is just an SVD).  Such “open-loop” model 
reduction methods neglect the control objective, even if they account for 
B and C in some sort of “balanced” fashion.

Then the control problem is solved, which involves a second eigenvalue 
problem (i.e., the Schur decomposition of a 2N x 2N Hamiltonian matrix).

Q: Why TWO eigenvalue problems??   By splitting the problem into two 
parts, the model is reduced in a manner ignorant of the control problem 
being considered.   That is reckless!   We consider here 4 alternatives.

Chandrasekhar’s method

MCE: MINIMUM  CONTROL  ENERGY STABILIZATION

ADA: THE  ADJOINT OF THE  DIRECT-ADJOINT

OSSI: OPPOSITELY-SHIFTED  SUBSPACE  ITERATION

Four approaches to solve large Riccati problems
that bypass open-loop model reduction

Chandrasekhar’s method (Kailath 1973). Consider evolution equations

for a low-rank factor F(t) of (dX/dt) and K(t).

dX(t)

dt
= F1(t)FH

1 (t)−F2(t)FH
2 (t) =

(

F1 F2

)
(

I 0
0 −I

)(

FH
1

FH
2

)

Differentiating DRE w.r.t. time and inserting dX/dt = FHFH , we have

dK(t)/dt =−R−1BH F(t)H FH(t),

dF(t)/dt =−[A+BK(t)]HF(t),

with terminal conditions

K(T ) =−R−1BHQT ,

F(T )H FH(T ) = dX(t)/dt
∣
∣
t=T

,

where dX/dt|t=T is determined from the original DRE evaluated at t =

T , and F(T ) by its factorization.
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MCE: MINIMUM  CONTROL  ENERGY STABILIZATION

ADA: THE  ADJOINT OF THE  DIRECT-ADJOINT

OSSI: OPPOSITELY-SHIFTED  SUBSPACE  ITERATION

Four approaches to solve large Riccati problems
that bypass open-loop model reduction

Pole assignment. Consider the ordered Eigen decomposition Z =VΛV−1

Define Λc with the N desired eigenvalues λc of A+BK on the diagonal.

The stable components of the eigen decomposition of Z may be written
[

A −BR−1BH

−Q −AH

]

Vc = ZVc =VcΛc where Vc =

[

X

P

]

.

We know both Λc and Z; we just need to compute Vc. Then, as before,

u = Kx with K =−R−1BHW, W = PX−1

where AX −BR−1BHP = XΛc and −QX−AHP = PΛc.

Solving for X and substituting gives

AQ−1(AHP+PΛc)+BR−1BHP = Q−1(AHP+PΛc)Λc (1)

QX =−(AHP+PΛc). (2)

Note that (1) is linear in P. Once P is found, calculation of X is trivial.

Straightforward simplification of this problem, written in a modal repre-

sentation of just the unstable system dynamics, leads to the following:

Theorem 1 (Lauga & B, Proc Roy Soc 2003). Consider a stabilizable sys-

tem dx/dt = Ax+Bu where A has no pure imaginary eigenvalues. De-

termine the unstable eigenvalues and corresponding left eigenvectors of

A such that Y H
u A = ΛuY H

u (i.e., determine the unstable eigenvalues and

corresponding right eigenvectors of AH such that AHYu =YuΛH
u ). Define

B̄u = Y H
u B and C = B̄uR−1B̄H

u , and compute a matrix X with elements

xi j = ci j/(λi+λ∗j). The minimal-energy stabilizing feedback controller is

then given by u = Kx, where K =−R−1B̄H
u X−1Y H

u .

Lauga & B, Proc Roy Soc 2003 
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Four approaches to solve large Riccati problems
that bypass open-loop model reduction

For any x0, adjoint optimization of u for minimization of J(u) proceeds as

before; when converged, DJ/Du = 0 and u =−R−1BHp on t ∈ [0,T ].

The input is x0; focus for now on the output u at time t = 0, denoted u0.

If x = xn×1 and u = um×1 and we solve this problem n times, then

[

u1
0 u2

0 . . . un
0

]

= K0

[

x1
0 x2

0 . . . xn
0

]

. (1)

Solving for K0 determines the feedback gain matrix K at time t = 0,

u(0) = K0x(0).

This approach requires n optimizations to set up (1), which may be solved

to compute the m×n matrix K0. If n≫ m, it is more efficient to consider

the adjoint of this problem, thus leading to an algorithm requiring only m

optimizations to compute K0.

Taking Q≥ 0 and R > 0, define

y =

[

p
x

]

and L =

[

BR−1BH d/dt−A

−d/dt−AH −Q

]

.

The converged solution of the “forward TPBVP” may now be written

Ly = 0 with

{

x(0) = x0,

p(T ) = 0.

Defining ⟨a,b⟩=
∫ T

0 aHbdt, we may express the adjoint identity

⟨ỹ,Ly⟩= ⟨L∗ỹ,y⟩+b where ỹ =

[

p̃
x̃

]

.

Using integration by parts, it follows that L∗ = L (L is “self-adjoint”), and

b = (p̃Hx− x̃Hp)t=T − (p̃Hx− x̃Hp)t=0.

Now use L∗ to define an appropriate “adjoint TPBVP”

L∗ỹ = 0 with

{

x̃(0) = x̃0,

p̃(T ) = 0,
.

Note that this TPBVP is exactly the same as that given previously, it is just

written with different variables and has a different interpretation given to

the “input” x̃(0) and the “output” p̃(0). Thus, this “adjoint TPBVP” may

also be solved using the same machinery as before.

Substituting into the adjoint identity leads to [p̃(0)]Hx(0) = [x̃(0)]Hp(0).

Recall also that u(0) = [KH
0 ]Hx(0) = [−BR−1]Hp(0). Thus, setting x̃(0)

to the first column of [−BR−1] and solving the adjoint TPBVP (iterating

all the way to convergence!), the resulting value of p̃(0) is simply the first

column of KH
0 , etc. That is, after solving the adjoint TPBVP just m times

(note: not n times!), the entire K0 is constructed directly.
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Prototype subspace iteration algorithm. A basic power method may

be visualized as an EE march to convergence

dv/dt = Av ⇒ vk+1 = (I +hA)vk = vk+hAvk.

A basic block power method may be written V ← V + hAV with Gram-

Schmidt applied at each step. The emerging eigenvalues may be esti-

mated with the Rayleigh quotient (σ = vH Av), which for multiple vectors

may be written Σ =V H AV . Schur decomposition of Σ then gives

Σ =U T U
H =V H AV ⇒ T = (VU)H A(VU),

and thus

V ← (VU) and Σ← T

keeps Σ triangular (and the columns of V orthogonal) as the iterations

proceed.

As a further refinement, we may apply a small shift of −(hV Σ) to the

march for V :

V ←V +h(AV −VΣ). (1)

This shifted form has the same essential effect as before (that is, prefer-

ential focusing of the columns of V in the direction of the leading Schur

vectors of A), with the added benefit of ensuring that the update to V it-

self approaches zero as V approaches a basis of a set of Schur vectors,

and thus (AV −V Σ) approaches zero.



We now extend such methods to find the central eigenmodes of a large

Hamiltonian matrix Z. We seek the least-stable LHP Schur vectors V ,

and partition them into their state and adjoint components:

Z =

[

A −BR−1BH

−Q −AH

]

, V =

[

X

P

]

. (1)

We will approximate the resulting feedback gain matrix K using the Moore-

Penrose pseudoinverse K =−R−1BH(PX+).

The working hypothesis is that the neglected (well-damped) closed-loop

Schur vectors of Z likely play a reduced role in the full computation of K

[idea motivated by Amodei & Buchot (2010, 2011)]. Standard subspace iteration
  -> leading (least-damped) eigenvalues

Oppositely-shifted subspace iteration (OSSI)
-> central eigenvalues of Hamiltonian matrix

All current subspace iteration methods converge to extremal eigenvalues.

Convergence to the central eigenvalues of Z, using existing algorithms,

requires computation of Z−1x, which is expensive. We seek a method to

find the central Schur vectors of Z without access to Z−1.

In the MCE case, one of the off-diagonal terms of Z is zero, and the

subspace iteration algorithm described above gives (a) the least-stable

eigenvalues of A, and (b) the least-stable eigenvalues of −AH . For the

control of a system with a few unstable eigenvalues and many stable

eigenvalues extending off into the LHP, we need (a), which are the eigen-

values of A near the imaginary axis. Rather than (b), however, we need

to the most-stable eigenvalues of −AH . These may be found simply by

changing the sign of the related march!

The eigenvalues of Z vary continuously as its elements are varied. If

both Q and BR−1BH are nonzero but the norm of their product is small

(that is, a modest generalization from the MCE limit), application of a

slightly modified subspace iteration algorithm, with the adjoint component

marching the opposite direction in time, returns those eigenvalues of Z

near the least stable eigenvalues of A together with those eigenvalues of

Z near the most stable eigenvalues of −AH .



OSSI via an EE discretization. The idea described above is straightfor-

ward to implement. The update to X and P is split into two parts, with a

positive sign in the shift of X , and a negative sign in the shift of P:

X ← X+++hX1, P← P−−−hP1 (1)

where, leveraging the structure of Z,

X1 = AX− (BR−1BH)P, P1 =−QX−AHP. (2)

As before, to accelerate convergence, we may instead apply shifts via

X ← X+++h(X1−XΣ), P← P−−−h(P1−PΣ). (3)

The resulting algorithm is referred to as opposite shifting.

A randomly-generated LQR problem with A, Q > 0,

R = I and B̄ = BR−1BH ≥ 0 was defined via

A1 = randn(n,n); A =−A1 AH
1 + randn(n,n);

Q1 = randn(n,n); Q = αQ1 QH
1 ;

B̄1 = randn(n,m); B̄ = β B̄1 B̄H
1 ,

The system matrix so created has real and com-

plex conjugate pairs of eigenvalues extending off

into the LHP, and a few unstable eigenvalues.

Results at left are typical, with parameters:

n = 10, m = 4, α = 0.1, and β = 0.01.

Driven cavity

Chandrasekhar’s method

MCE: MINIMUM  CONTROL  ENERGY STABILIZATION

ADA: THE  ADJOINT OF THE  DIRECT-ADJOINT

OSSI: OPPOSITELY-SHIFTED  SUBSPACE  ITERATION

Four approaches to solve large Riccati problems
that bypass open-loop model reduction

Provocative bottom line message:  These alternatives work.
There is no need to risk throwing out the baby with the bathwater

via open-loop model reduction.  
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