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Control of Boundary Layer Turbulence

“passive” control active control with
sensor/actuator arrays

flow direction 

rigid base

flexible membrane
flow

corrugated skin compliant skin
Other “open loop” schemes:

I Oscillating walls
I Body force traveling waves

Caveat: Plant’s dynamics are not well understood

obstacles
{

not only device technology
also: dynamical modeling and control design
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Mathematical Modeling of Transition: Hydrodynamic Stability

The Navier-Stokes (NS) equations:

∂tu = −∇uu− grad p + 1
R∆u

0 = div u

x

y

z

u
v

w

Hydrodynamic Stability: view NS as a dynamical system

laminar flow ū := a stationary solution of the NS equations (an equilibrium)
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Hydrodynamic Stability: view NS as a dynamical system

laminar flow ū := a stationary solution of the NS equations (an equilibrium)

laminar flow ū stable ←→ i.c. u(0) 6= ū,

u(t) t→∞−→ ū

I typically done with dynamics linearized about ū

I various methods to track further “non-linear behavior”

u(0)u(t)

ū
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Mathematical Modeling of Transition: Hydrodynamic Stability

The Navier-Stokes (NS) equations:

∂tu = −∇uu− grad p + 1
R∆u

0 = div u

x

y

z

u
v

w

Hydrodynamic Stability: view NS as a dynamical system

A very successful (phenomenologically predictive) approach for many decades

However: it fails badly in the special (but important) case of streamlined flows
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Mathematical Modeling of Transition: Incorporating Uncertainty

Decompose the fields as u = ū + ũ
↑ ↑

laminar fluctuations

Add a time-varying exogenous disturbance field d (e.g. random body forces)

∂tũ = −∇ūũ −∇ũū − grad p̃ + 1
R∆ũ − ∇ũũ + d

0 = div ũ

LNS
ũ

rũũ

LNS
d ũ

rũũ

+ LNS
d ũ

Input-Output view of the Linearized NS Equations

Farrell, Ioannou, ’93 PoF

BB, Dahleh, ’01 PoF

Jovanovic, BB, ’05 JFM

IPAM, Nov 2014 4 / 24



Mathematical Modeling of Transition: Incorporating Uncertainty

Decompose the fields as u = ū + ũ
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rũũ
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Internal Modes vs. External Resonances
A Detour
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Internal Modes vs. External Resonances

x(t)

x

free 
response

x

2⇡/!̄
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Internal Modes vs. External Resonances

x(t)

x

free 
response

x

2⇡/!̄

f x

harmonic
excitation

f x

frequency response

!̄

k

x

parametric
excitation

k x

stability diagram

freq(k)

amplitude(k)

!̄/2 2!̄

Typically:
internal modes frequencies ←→ externally excited response frequencies
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Internal Modes vs. External Resonances

Does this correspondence hold for large-scale systems?
x

t

x(t)

!
power spectral density

f x

!Frequency Response
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Does this correspondence hold for large-scale systems?
x

t

x(t)

!
power spectral density

f x

!Frequency Response
typically:

internal modes←→ external resonances
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Internal Modes vs. External Resonances

Does this correspondence hold for large-scale systems?
x

t

x(t)

!
power spectral density

f x

!Frequency Response
However: this may not hold in general

even in linear systems!
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Modal vs. Input-Output Response

Typically: underdamped poles←→ frequency response peaks

cf. The “rubber sheet analogy”:

ODE (state space model) Transfer Function
ψ̇(t) = A ψ(t) + B d(t)
ũ(t) = C ψ(t)

H(s) = C (sI − A)−1 B

eigs(A) = poles(H(s))
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Modal vs. Input-Output Response

However: Pole Locations = Frequency Response Peaks

Theorem: Given any desired pole locations

z1, . . . , zn ∈ C− (LHP),

and any stable frequency response H(jω), arbitrarily close
approximation is achievable with∥∥∥∥∥∥H(s) −

 N1∑
i=1

α1,i

(s− z1)i
+ · · · +

Nn∑
i=1

αn,i

(s− zn)i

∥∥∥∥∥∥
H2

≤ ε

by choosing any of the Nk ’s large enough

jω

|H (jω)|

σ
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(s− z1)i
+ · · · +

Nn∑
i=1

αn,i

(s− zn)i

∥∥∥∥∥∥
H2

≤ ε

by choosing any of the Nk ’s large enough

jω

|H (jω)|

σ

Remarks:
No necessary relation between pole locations and system resonances

( ε→ 0⇒ Nk →∞), i.e. this is a large-scale systems phenomenon

Large-scale systems: IO behavior not always predictable from modal behavior
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Modal vs. Input-Output Response

However: Pole Locations = Frequency Response Peaks

MIMO case: H(s) = (sI − A)−1

If A is normal (has orthogonal eigenvectors), then

σmax

(
(jωI − A)−1

)
=

1
distance (jω, nearest pole)

If A is non-normal : no clear relation between
singular value plot = eigs(A)
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Back to Fluids
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Mathematical Modeling of Transition: Incorporating Uncertainty

Decompose the fields as u = ū + ũ
↑ ↑

laminar fluctuations

Add a time-varying exogenous disturbance field d (e.g. random body forces)

∂tũ = −∇ūũ −∇ũū − grad p̃ + 1
R∆ũ − ∇ũũ + d

0 = div ũ

Neglect the feedback ∇ũũ

LNS
d ũ

IPAM, Nov 2014 10 / 24



Input-Output Analysis of the Linearized NS Equations

∂t

[
∆ṽ
ω̃

]
=

[
U′′∂x − U∆∂x + 1

R ∆2 0
−U′∂z −U∂x + 1

R ∆

] [
ṽ
ω̃

]
+

[
−∂xy ∂2

x + ∂2
z −∂zy

∂z 0 −∂x

][ dx
dy
dz

]
 ũ

ṽ
w̃

 =
(
∂2

x + ∂2
z

)−1
[

∂xy −∂z
∂2

x + ∂2
z 0

∂zy ∂x

][
ṽ
ω̃

]

x

y

z

u
v

w LNS
d ũ

∂tΨ = A Ψ + B d
ũ = C Ψ
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][
ṽ
ω̃

]

x

y

z

u
v

w LNS
d ũ

∂tΨ = A Ψ + B d
ũ = C Ψ

eigs (A): determine stability
(standard technique in Linear Hydrodynamic Stability)

Transfer Function d −→ ũ: determines response to disturbances(
an “open system”

)
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Input-Output Analysis of the Linearized NS Equations
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∆ṽ
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∂tΨ = A Ψ + B d
ũ = C Ψ

Surprises:
Even when A is stable the gain d −→ ũ can be very large

( (H2 norm)2 scales with R3)

Input-output resonances very different from least-damped modes of A
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Spatio-temporal Impulse and Frequency Responses

Translation invariance in x & z implies

x

y

z

u
v

wImpulse Response (Green’s Function)

ũ(t, x, y, z) =

∫
G(t − τ, x− ξ, y,y’ , z− ζ) d(τ, ξ, y′, ζ) dτdξdy′dζ

ũ(t, x, ., z) =

∫
G(t − τ, x− ξ, z− ζ) d(τ, ξ, ., ζ) dτdξdζ

G(t, x, z) : Operator-valued impulse response

Frequency Response

ũ(ω, kx, kz) = G(ω, kx, kz) d(ω, kx, kz)

G(ω, kx, kz) : Operator-valued frequency response (Packs lots of information!)

Spectrum of A:

σ(A) =
⋃

kx,kz

σ
(
Â(kx, kz)

)
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Modal vs. Input-Output Analysis

x

y

z

u
v

w LNS
d ũ

∂tΨ = A Ψ + B d
ũ = C Ψ

IR: G(t, x, z)

FR: G(ω, kx, kz)
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Modal vs. Input-Output Analysis

x

y

z

u
v

w LNS
d ũ

∂tΨ = A Ψ + B d
ũ = C Ψ

IR: G(t, x, z)

FR: G(ω, kx, kz)

Modal Analysis: Look for unstable eigs of A
(⋃

kx,kz
σ
(
Â(kx, kz)

))

Flow type Classical linear theory Rc Experimental Rc

Channel Flow 5772 ≈ 1,000-2,000
Plane Couette ∞ ≈ 350
Pipe Flow ∞ ≈ 2,200-100,000
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Modal vs. Input-Output Analysis

x

y

z

u
v

w LNS
d ũ

∂tΨ = A Ψ + B d
ũ = C Ψ

IR: G(t, x, z)

FR: G(ω, kx, kz)

Modal Analysis: Look for unstable eigs of A
(⋃

kx,kz
σ
(
Â(kx, kz)

))
Channel Flow @ R = 2000, kx = 1, (kz = vertical dimension):

top view
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Modal vs. Input-Output Analysis

x

y

z

u
v

w LNS
d ũ

∂tΨ = A Ψ + B d
ũ = C Ψ

IR: G(t, x, z)

FR: G(ω, kx, kz)

Modal Analysis: Look for unstable eigs of A
(⋃

kx,kz
σ
(
Â(kx, kz)

))

Channel Flow @ R = 6000, kx = 1, kz = 0:

Flow structure of corresponding eigenfunction:
Tollmein-Schlichting (TS) waves

IPAM, Nov 2014 13 / 24



Modal vs. Input-Output Analysis

x

y

z

u
v

w LNS
d ũ

∂tΨ = A Ψ + B d
ũ = C Ψ

IR: G(t, x, y,−1, z)

FR: G(ω, kx, kz)

Impulse Response Analysis: Channel Flow @ R = 2000

cf. “turbulent spots”

Jovanovic, BB, ’01 ACC,
more movies and pics at http://engineering.ucsb.edu/~bamieh/pics/impulse_page.html
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Modal vs. Input-Output Analysis

x

y

z

u
v

w LNS
d ũ

∂tΨ = A Ψ + B d
ũ = C Ψ

IR: G(t, x, y,−1, z)

FR: G(ω, kx, kz)

Impulse Response Analysis: Channel Flow @ R = 2000

streamwise velocity streamwise vorticity
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Modal vs. Input-Output Analysis

x

y

z

u
v

w LNS
d ũ

∂tΨ = Ψ + B d
ũ = C Ψ

IR:
FR: G(ω, kx, kz)

Impulse Response Analysis: Channel Flow @ R = 2000

u in a horizontal plane u in a vertical plane
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Spatio-temporal Frequency Response
G(ω, kx, kz) is a LARGE object! (very “data rich”! )

one visualization method: supω σmax

(
G(ω, kx, kz)

)

Jovanovic, BB, ’05 JFM

What do the corresponding flow structures look like?
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Spatio-temporal Frequency Response
G(ω, kx, kz) is a LARGE object! (very “data rich”! )

one visualization method: supω σmax

(
G(ω, kx, kz)

)

What do the corresponding flow structures look like?

Figure 1: Singular values of Ĥ at {kx = 0.01, kz = 1.67, ω = −0.0066}, and {kx = 0.1, kz = 2.12, ω =
−0.066}, in Poiseuille flow with R = 2000.

Figure 2: Streamwise velocity perturbation development for largest singular value (left) and second largest
singular value (right) of operator Ĥ at {kx = 0.01, kz = 1.67, ω = −0.0066}, in Poiseuille flow with R = 2000.
High speed streaks are represented by red color, and low speed streaks are represented by green color.
Isosurfaces are taken at ±0.5.

Figure 3: Streamwise velocity perturbation development for largest singular value (first row) and second
largest singular value (second row) of operator Ĥ at {kx = 0.1, kz = 2.12, ω = −0.066}, in Poiseuille flow
with R = 2000. High speed streaks are represented by red color, and low speed streaks are represented by
green color. Isosurfaces are taken at ±0.5.

3

23

streamwise velocity isosurfaces
Figure 8: Streamwise vorticity perturbation development for largest singular value of operator Ĥ at {kx =
0.1, kz = 2.12, ω = −0.066}, in Poiseuille flow with R = 2000. High vorticity regions are represented by
yellow color, and low vorticity regions are represented by blue color. Isosurfaces are taken at ±0.4.

Figure 9: Streamwise vorticity perturbation development for second largest singular value of operator Ĥ at
{kx = 0.1, kz = 2.12, ω = −0.066}, in Poiseuille flow with R = 2000. High vorticity regions are represented
by yellow color, and low vorticity regions are represented by blue color. Isosurfaces are taken at ±0.8.

6

24

streamwise vorticity isosurfaces
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Subcritical vs. Supercritical Frequency Response

Using “exponentially discounted” signal norms, e.g

∫ ∞

0

〈
e−αtũ(t), e−αtũ(t)

〉
E dt

a proxy for finite-time-horizon energy integrals

Amounts to:
Frequency response is the Transfer Function on a shifted imaginary axis (α+ jω)
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Subcritical vs. Supercritical Frequency Response

Using “exponentially discounted” signal norms, e.g

∫ ∞

0

〈
e−αtũ(t), e−αtũ(t)

〉
E dt

a proxy for finite-time-horizon energy integrals

R=5700
α = 0

R=10000
α = .004

‖.‖∞ := supω(.) ‖.‖2
2 :=

∫
(.)2dω

a worst case measure an average measure, variances
IPAM, Nov 2014 15 / 24



Spatio-temporal Frequency Response

How to view G(ω, kx, kz) ?

LNS
d ũ

rũũ

+

how to better visualize it so that
the role of the ∇ũũ feedback is clarified?
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Spatio-temporal Frequency Response

How to view G(ω, kx, kz) ?

LNS
d ũ

rũũ

+

The Linearized Navier-Stokes equations are still not fully explored!
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Implications for Turbulence

For large-scale systems: IO behavior not predictable from modal behavior

x

y

z

u
v

w LNS
d ũ

∂tΨ = A Ψ + B d
ũ = C Ψ

IR: G(t, x, z)

FR: G(ω, kx, kz)

“modal behavior”: Stability due to initial condition uncertainty
“IO behavior”: behavior in the presence of ambient uncertainty

I forcing terms from wall roughness and/or vibrations
I Free-stream disturbances in boundary layers
I Thermal (Langevin) forces
I uncertain dynamics
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Reexamining Stability Theory

If starting “near” equilibrium, does system come back to it??

 ̄  ̄

stable equilibrium unstable equilibrium

An unstable equilibrium is not really an “equilibrium”
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Reexamining Stability Theory

Lyapunov Stability deals with uncertainty in initial conditions

 ̄

 (0)

Naive thought:
If Ψ(0) is known to be precisely Ψ̄, then Ψ(t) = Ψ̄, t ≥ 0

We introduce the concept of Lyapunov stability because we can never be
infinitely certain about the initial condition

Shortcomings of Lyapunov stability
Perturbs only initial conditions
Cares mostly about asymptotic behavior
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Analysis of Uncertain Systems

 Lyapunov Stability

- uncertain i.c.  
 
- investigate

 ̇ = F ( )

 (0)

lim
t!1

 (t)
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Analysis of Uncertain Systems

 Lyapunov Stability

- uncertain i.c.  
 
- investigate

 ̇ = F ( )

 (0)

lim
t!1

 (t)

investigate transients
sup
t�0
k (t)k

• introduce a norm (k.k) on the state

• account for behavior at all times
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Analysis of Uncertain Systems

 Lyapunov Stability

- uncertain i.c.  
 
- investigate

 ̇ = F ( )

 (0)

lim
t!1

 (t)

investigate transients
sup
t�0
k (t)k

exogenous disturbances

 ̇(t) = F
⇣
 (t) , d (t)

⌘

exogenous, spatio-temporally varying
forcing fields, e.g.

• random body forces

• free-stream turbulence
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Analysis of Uncertain Systems

 Lyapunov Stability

- uncertain i.c.  
 
- investigate

 ̇ = F ( )

 (0)

lim
t!1

 (t)

investigate transients
sup
t�0
k (t)k

dynamical uncertainty

 ̇ = F ( )+�( )

exogenous disturbances

 ̇(t) = F
⇣
 (t) , d (t)

⌘

“unmodeled dynamics”

• e↵ects not modeled by NS equations

• unmodeled, dynamical wall-flow interactions

• etc.
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Analysis of Uncertain Systems

increasing uncertainty

combinations

 Lyapunov Stability

- uncertain i.c.  
 
- investigate

 ̇ = F ( )

 (0)

lim
t!1

 (t)

investigate transients
sup
t�0
k (t)k

dynamical uncertainty

 ̇ = F ( )+�( )

exogenous disturbances

 ̇(t) = F
⇣
 (t) , d (t)

⌘  ̇(t) = F
⇣
 (t) , d (t)

⌘
+

�
⇣
 (t), d (t)

⌘
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+

�
⇣
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⌘

lin
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 v
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sio
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 Eigenvalue Stability

- uncertain i.c.  
 
- investigate

 (0)

lim
t!1

 (t)

non-normal transient growth
sup
t�0
k (t)k

pseudo-spectrum

input-output analysis

 ̇(t) = A (t) + Bd(t)

 ̇ = (A + �) 

 ̇ = A 
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Analysis of Uncertain Systems
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combinations

 Eigenvalue Stability

- uncertain i.c.  
 
- investigate

 (0)

lim
t!1

 (t)

non-normal transient growth
sup
t�0
k (t)k

pseudo-spectrum

input-output analysis

Ro
bu

st
 C
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* yet the perception that:
  it’s main utility is to help better understand 
  the nonlinear stability problem
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The Nature of Turbulence

Fluid flows are described by deterministic equations
OLD QUESTION: why do fluid flows “look random” at high R?
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The Nature of Turbulence

A common view of turbulence
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unstable
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dynamics

Intuitive reasoning:
Complex, “statistical looking” behavior ←→ chaotic dynamics

“self-sustaining” cycle
Assumes NS eqs. with perfect BC, no disturbances or uncertainty

(i.e. a a closed system)
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The Nature of Turbulence
An Alternate Possibility

A driven (open) system

Dynamics of the 
NS Equations

Noise
Surface Roughness
Thermal Forces
Free Stream disturbances

Fluctuating
Flow Field

(looks statistical)

The NS equations act as an amplifier of ambient uncertainty at high R

Qualitatively similar to

Dynamics of the 
Linearized

NS Equations

Noise
Surface Roughness
Thermal Forces
Free Stream disturbances

Fluctuating
Flow Field

(looks statistical)
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The Nature of Turbulence (a mixed picture)
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more typical in more typical in
bluff body flows highly streamlined flows
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There’s probably a mixture of both mechanisms in most flows
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