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Control of Boundary Layer Turbulence

active control with
sensor/actuator arrays

“passive” control

flexible membrane |

rigid base

corrugated skin compliant skin
@ Other “open loop” schemes:
» Oscillating walls
» Body force traveling waves

Caveat: Plant’s dynamics are not well understood
obstacles not only device technology
also: dynamical modeling and control design




Mathematical Modeling of Transition: Hydrodynamic Stability

The Navier-Stokes (NS) equations: v
ou = —Vyu-—gradp+ I%Au
0 = divu
@ Hydrodynamic Stability: view NS as a dynamical system
@ Jaminar flow u := a stationary solution of the NS equations (an equilibrium)



Mathematical Modeling of Transition: Hydrodynamic Stability
The Navier-Stokes (NS) equations:

ou = —Vyu-—gradp+ I%Au
0 = divu
@ Hydrodynamic Stability: view NS as a dynamical system
@ /aminar flow u := a stationary solution of the NS equations (an equilibrium)
. _ i.c. u(0 u,
laminar flow u stable  +— E_)mf _
u(r) — u

typically done with dynamics linearized about u

various methods to track further “non-linear behavior”




Mathematical Modeling of Transition: Hydrodynamic Stability
The Navier-Stokes (NS) equations:

ou = —Vyu-—gradp+ I%Au
0 = divu
@ Hydrodynamic Stability: view NS as a dynamical system

@ A very successful (phenomenologically predictive) approach for many decades

@ However: it fails badly in the special (but important) case of streamlined flows



Mathematical Modeling of Transition: Incorporating Uncertainty

@ Decompose the fields as u = u + u
) )
laminar fluctuations

@ Add a time-varying exogenous disturbance field d (e.g. random body forces)

du = —Vgu —Vga — gradp + xAu— Vi + d
0 = divu

LNS >

Vat
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@ Decompose the fields as u = u + u
) )
laminar fluctuations

@ Add a time-varying exogenous disturbance field d (e.g. random body forces)

du = —Vgu —Vga — gradp + xAu— Vi + d
0 = diva
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Mathematical Modeling of Transition: Incorporating Uncertainty

@ Decompose the fields as u = u + u
) )
laminar fluctuations

@ Add a time-varying exogenous disturbance field d (e.g. random body forces)

du = —Vgu —Vga — gradp + xAu— Vi + d
0 = divu
LNS g g d—> LNS —;

Input-Output view of the Linearized NS Equations
Farrell, loannou, '93 PoF

BB, Dahleh, ’01 PoF

Jovanovic, BB, 05 JFM

D 4 44 IPAM, Nov 2014 4/ 24



Internal Modes vs. External Resonances
A Detour
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Internal Modes vs. External Resonances

A @
ﬁ— k parametric
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@ Typically:

internal modes frequencies — externally excited response frequencies



Internal Modes vs. External Resonances

Does this correspondence hold for large-scale systems?
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Internal Modes vs. External Resonances

Does this correspondence hold for large-scale systems?

;1 ; & ] power spectral den5|ty WMMM\
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Frequency Response
typically:

internal modes <— external resonances




Internal Modes vs. External Resonances

Does this correspondence hold for large-scale systems?

A A
power spectral denslty
| T T T
w

Frequency Response
However: this may not hold in general
even in linear systems!




Modal vs. Input-Output Response

Typically: underdamped poles «— frequency response peaks
cf. The “rubber sheet analogy”:

ODE (state space model) Transfer Function
Y(1) = AY(t) + Bd(1) _ _A)!
i) = Cop) H(s) = C(sI—A)" B

@ eigs(A) = poles(H(s))



Modal vs. Input-Output Response

However: Pole Locations <=

Theorem: Given any desired pole locations

Ay ooy 2w € C— (LHP),

and any stable frequency response H(jw), arbitrarily close
approximation is achievable with

Ny @il Nn Qi
e = (Z ey Tt NGt )

i=1 = G —a)

H2

by choosing any of the N;'s large enough

Frequency Response Peaks

|H(jw)|
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Modal vs. Input-Output Response

However: Pole Locations <=

Frequency Response Peaks
Theorem: Given any desired pole locations

2y ey 2w € C_ (LHP),

|H(jw)|

and any stable frequency response H(jw), arbitrarily close
approximation is achievable with

Ny @il Nn Qi
HE) - (Z<s_l’£1)f T )‘

=i = (=)

72

by choosing any of the Ny 's large enough

Remarks:

@ No necessary relation between pole locations and system resonances
@ (e~ 0= N — ),

i.e. this is a large-scale systems phenomenon
@ Large-scale systems:

10 behavior not always predictable from modal behavior

IPAM, Nov 2014 8/24




Modal vs. Input-Output Response

However: Pole Locations <«  Frequency Response Peaks
MIMO case: H(s) = (sl —A)~" \
@ IfA is normal (has orthogonal eigenvectors), then

1

distance (]'w, nearest pole)

ez ((]'wl —A)_l) =

@ IfA is non-normal : no clear relation between \
singular value plot o+ eigs(A) \




Back to Fluids



Mathematical Modeling of Transition: Incorporating Uncertainty

@ Decompose the fields as u = u + u
) )
laminar fluctuations

@ Add a time-varying exogenous disturbance field d (e.g. random body forces)
om = —Vgu —Vga — gradp + xAa— Vi + d
0 = diva
@ Neglect the feedback V;u




Input-Output Analysis of the Linearized NS Equations
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Input-Output Analysis of the Linearized NS Equations

o Aj’ _ U" 0 — UAD, + %AZ 0 S/ n —0Oy 2+ 812 —0yy g’f
@ -U'o; —Ub + A | [© .0 =& |4
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@ eigs (\A): determine stability
(standard technique in Linear Hydrodynamic Stability)

@ Transfer Function d — u: determines response to disturbances
(' an “open system” )



Input-Output Analysis of the Linearized NS Equations
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Surprises:

@ Even when A is stable the gain d — u can be very large

( (H? norm)? scales with R®)

@ Input-output resonances very different from least-damped modes of A



Spatio-temporal Impulse and Frequency Responses

Translation invariance in x & z implies

o /mpU/Se Fr’esponse (Green’s Function) A/'VL‘ i:%:%;f:‘:;s—;w Y
ﬁ(ta XY, Z) = /G(t — T, X = ga ysy’ < — C) d(Tv Evyla C) degdy,dC

u(t,x,.,z) /Qt—rx &,z—C)d(r,§,.,C) drdéd¢
g (t, x,z7) Operator-valued impulse response
@ Frequency Response
u(w, ke, k;) = G(w,ky, k) d(w, ky, k7)
G(w, ke, k) :  Operator-valued frequency response (Packs lots of information!)

@ Spectrum of A:

o(A) = | o (Alkek)



Modal vs. Input-Output Analysis

_ oV = AU + Bd
Ll INS s ® i = cu
@ IR:G(t,x,2)
@ FR: G(w,ky, k;)




Modal vs. Input-Output Analysis

) v = AV + Bd
zyl,i: —, 1, —» NS |—> i =CvVv

@ IR:G(t,x,2)

@ FR: G(w,ky, k;)

Modal Analysis: Look for unstable eigs of .A (ka’kz o (A(kx,kz)))

[| Flow type | Classical linear theory R. | Experimental R. ||
Channel Flow 5772 ~ 1,000-2,000
Plane Couette () ~ 350
Pipe Flow 00 ~ 2,200-100,000




Modal vs. Input-Output Analysis

B _ oY = AV + Bd
=——=, . oINS s ° 0 = CU

@ IR: G(t,x,2)

@ FR: G(w,ky, k;)

Modal Analysis: Look for unstable eigs of .A (ka’kz o (A(kx,kz)))

@ Channel Flow @ R = 2000, k, = 1, (k, = vertical dimension)i

top view

IPAM, Nov 2014 13/24




Modal vs. Input-Output Analysis

_ oV — AV + Bd
I ?::?W,L Ll INS s ° i =CU

@ IR: G(t,x,2)
@ FR: G(w,ky, k;)

Modal Analysis: Look for unstable eigs of A (Uk ;. a( (ke, k )))

@ Channel Flow @ R = 6000, k, = 1, k, = 0:

Flow structure of corresponding eigenfunction:
Tollmein-Schlichting (TS) waves




Modal vs. Input-Output Analysis

LNS

oY = AV + Bd

u = Cv
@ IR:G(t,x,y,—1,z)
@ FR: G(w, ks, k;)

Impulse Response Analysis: Channel Flow @ R = 2000

cf. “turbulent spots”

Jovanovic, BB, 01 ACC,
more movies and pics at http://engineering.ucsb.edu/~bamieh/pics/impulse_page.html

IPAM, Nov 2014
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Modal vs. Input-Output Analysis

_ U — AU + Bd
S s LNS |—s ° i - cvu

@ IR: G(t,x,y,—1,2)
@ FR: G(w,ky, k;)

Impulse Response Analysis: Channel Flow @ R = 2000
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Modal vs. Input-Output Analysis

= d F Y at\:[f - \I’_‘_Bd

] == = ~—%| LNS |—» u = CvVU
C e IR:

@ FR: G(w, ky, k;)

Impulse Response Analysis: Channel Flow @ R = 2000
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Spatio-temporal Frequency Response
G(w, kv, k) is @ LARGE object!  (very “data rich”! )

one visualization method: sup , omax

G(w, ke, k7)
dy —r u
1 lllll l . ‘
.
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Jovanovic, BB, '05 JFM
IPAM, Nov 2014 14/24




Spatio-temporal Frequency Response
G(w, kv, k) is @ LARGE object!  (very “data rich”! )

one visualization method: sup,, omax (Q(w, kx, kz))
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Subcritical vs. Supercritical Frequency Response

o0
Using “exponentially discounted” signal norms, e.g / <e_wl~l(t), e "u(r) >E dt
0

a proxy for finite-time-horizon energy integrals

Amounts to:
Frequency response is the Transfer Function on a shifted imaginary axis (a + jw)



Subcritical vs. Supercritical Frequency Response

o0
Using “exponentially discounted” signal norms, e.g / <e_wl~l(t), e "u(r) >E dt
0

a proxy for finite-time-horizon energy integrals

R=5700
a=0

R=10000
a = .004

[HHHm](kikz)

[”H”Z](kx'kz)

sh

<
< 10°
i
Ea 10°
= 10"
ST

k. \\/m/i/// m"k‘
[ -lloo := supy, () 117 = f(.)*dw
a worst case measure an average measure, variances

IPAM, Nov 2014 15/24



Spatio-temporal Frequency Response

How to view G(w, ky, k) ?

d

V:.

—
how to better visualize it so that
the role of the Vi feedback is clarified?

?I I ‘I ‘I
o F B
‘I r |j'~: III,],,, ‘ :

k=

IPAM, Nov 2014
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Spatio-temporal Frequency Response

d—»T—» LNS
(o e

Vat

How to view G(w, ky, k) ?

\

The Linearized Navier-Stokes equations are still not fully explored!



Implications for Turbulence

For large-scale systems: 10 behavior not predictable from modal behavior

~ oY = AU + Bd
S wl INS | e a = CVU

@ IR: G(t,x,2)

@ FR: G(w, ky, k;)




Implications for Turbulence

For large-scale systems: 10 behavior not predictable from modal behavior

F v = AV + Bd
LSEE«’:—?‘;W Lol INS  —a u = CvVU

@ IR:G(t,x,2)
@ FR: G(w,ky, k;)

@ “modal behavior”: Stability due to initial condition uncertainty
@ “IO behavior”: behavior in the presence of ambient uncertainty
» forcing terms from wall roughness and/or vibrations
» Free-stream disturbances in boundary layers
» Thermal (Langevin) forces
» uncertain dynamics



Reexamining Stability Theory

If starting “near” equilibrium, does system come back to it??

stable equilibrium unstable equilibrium

@ An unstable equilibrium is not really an “equilibrium”



Reexamining Stability Theory

Lyapunov Stability deals with uncertainty in initial conditions

@ Naive thought: B B
If ¥(0) is known to be precisely ¥, then ¥(r) =W, 1t >0

@ We introduce the concept of Lyapunov stability because we can never be
infinitely certain about the initial condition



Reexamining Stability Theory

Lyapunov Stability deals with uncertainty in initial conditions

@ Naive thought: B B
If ¥(0) is known to be precisely ¥, then U(r) =, + >0
@ We introduce the concept of Lyapunov stability because we can never be
infinitely certain about the initial condition

Shortcomings of Lyapunov stability
@ Perturbs only initial conditions
@ Cares mostly about asymptotic behavior



Analysis of Uncertain Systems

Lyapunov Stability

¥ = F(3)
- uncertain i.c.
o ¥(0)
- investigate
e

IPAM, Nov 2014
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Analysis of Uncertain Systems

investigate transients

Lyapunov Stability sup |4 (2)|l

. t>0

Y = F(¥)
- uncertain i.c. - e introduce a norm (||.||) on the state
- investigat i
investigale lim (o) e account for behavior at all times



Analysis of Uncertain Systems

investigate transients

Lyapunov Stability sup |[[¢(t)]|
. t>0
v = F(¢)
exogenous disturbances
- uncertain i.c. () = F (v (t),d(t)
o (0) ( )
- investigate
Jm 1 (2)

exogenous, spatio-temporally varying
forcing fields, e.g.

e random body forces

e free-stream turbulence

20/24



Analysis of Uncertain Systems

investigate transients

Lyapunov Stability sup H’P(t)H
. t>0
v = F(¥)
exogenous disturbances
- uncertain i.c. 7/)(t) =F (¢ t),d (t))
- $(0)
- investigate
lim )(t) dynamical uncertainty
t—o0

¥ = F()+A®)

“unmodeled dynamics”
o effects not modeled by NS equations
e unmodeled, dynamical wall-flow interactions

e etc.

20/24



Analysis of Uncertain Systems

investigate transients

Lyapunov Stability sup H’P(t)H
. t>0
v = F(¥)
exogenous disturbances
- uncertain i.c. 7/)(t) =F (¢ t),d (t))
- $(0)
- investigate
lim )(t) dynamical uncertainty
t—o0

¥ = F()+A®)

combinations

by =F (v(®),d0) +
A (v.a(

increasing uncertainty

IPAM, Nov 2014

20/24



Analysis of Uncertain Systems

linearized versions

investigate transients

Lyapunov Stability sup H’P(t)H
t>0
’l/'J = F(iﬂ) combinations
exogenous disturbances .
- uncertain i.c. W(t) = F <¢ #),d (t)) Y(E) =F (7/’ (t),d (t)) +
0
- investigate v0) A (d’(t)’d(t)
rlim (L) dynamical uncertainty

¥ = F()+A®)

increasing uncertainty )

Eigenvalue Stability

Y = Ay
- uncertain i.c.
o $(0)
- investigate
.90

IPAM, Nov 2014
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Analysis of Uncertain Systems

linearized versions

investigate transients

Lyapunov Stability sup [|%(t)]|
t>0
’l/'J = F(iﬂ) combinations
exogenous disturbances X
- uncertain i.c. W(t) = F <¢ #),d (t)) Y(E) =F (7/’ (®) ,d(t)) +
0
- investigate v0) A (d’(t)’d(t)
rlim (L) dynamical uncertainty

¥ = F()+A®)

N

increasing uncertainty . /
non-normal transient growth
Eigenvalue Stability sup [[(t)]|
. t>0
Y = Ay
input-output analysis
- uncertain i.c. w(t) — Aw(t) + Bd(t)
o $(0)
- investigate
lim () pseudo-spectrum
t—o0 .
v = (A+A)y

20/24



Analysis of Uncertain Systems

linearized versions

investigate transients

Lyapunov Stability sup |[[9(t)]|
>0

Y = F(¥)
exogenous disturbances
- uncertain i.c. h(t) = F t),d(t
oot - W(t) =F (v (®),d)
- investigate
lim )(t) dynamical uncertainty
t—o00

¥ = F()+A®)

combinations

by =F (v(®),d0) +
A (v.a(

I N
increasing uncertainty /\
non-normal transient growth
Eigenvalue Stability sup |[¢(t)]|
. t>0 s
,(/} — Aw combinations

input-output analysis

¥(t) = Ap(t) + Bd(t)

- uncertain i.c.

o $(0)
- investigate
lim ()

t—ro0

pseudo-spectrum

b= (A+a)y

B(t) = (A+ BAC) %(t) +
(F+GAH)d(t)

IPAM, Nov 2014

Robust Control Theory

20/24



Analysis of Uncertain Systems

Lyapunov Stability

F(y)

- uncertain i.c.

$(0)
lim ) (t)

t—o0

- investigate

investigate transients

sup [[(8)]l
t=>0

exogenous disturbances

Y(@&)=F (v (®),d@)

dynamical uncertainty

Y = F()+A@)

increasing uncertainty

combinations
b =F (v, d(>)+

A (vod)

N\

N

Eigenvalue Stability

1%}

g 9

8 U= Ay
9]

>

T -uncertain i.c.

8 $(0)
& - investigate

(9]

£ tlgxolow( )

non-normal transient growth

sup [[4(8)]l
>0

input-output analysis

$(t) = Ag(t) + Bd(1)

pseudo-spectrum

b= (A+2)y

4

\* great progress in the
past 25 years

IPAM, Nov 2014
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Analysis of Uncertain Systems

investigate transients

Lyapunov Stability sup ||[(t)]|
t>0
F (¢) combinations
exogenous disturbances .
- uncertain i.c. W) = F <¢ #),d (t)) Y(t) = ( Y (t),d(t )) +
o %(0) ( t))
- investigate
rhm (L) dynamical uncertainty

Y = F()+A@)

N\
increasing uncertainty /
non-normal transient growth
Eigenvalue Stability sup||v(t) ||

8 . t>0 \* great progress in the
ke} _ A past 25 years
2 Y = Ay _ ,
0 input-output analysis
T -uncertaini.c. h(t) =
9\1" 1/;(0) w(t) Aw(t) + Bd(t) * yet the perception that:
% - investigate it’s main'utility is t(.).help better understand
g:) lim o ( ) pseudo-spectrum the nonlinear stability problem
= t—o0 .

v = (A+4)¢




Analysis of Uncertain Systems

Lyapunov Stability

F(y)

investigate transients

sup || (8]l
t=>0

combinations
b =F (v, d(>)+

A (va)

exogenous disturbances

- uncertain i.c. qp(t) =F (qp t),d (t))
o $(0)
- investigate
lim w(t) dynamical uncertainty
t—o0
P = F()+AW)
1 increasing uncert&inty >
non-normal transient growth
Eigenvalue Stability sup |[¢(t)]|
2 >0
RS} i
& Y = Ay _ _ stability theory alone
g input-output analysis (linear or nonlinear)
T -uncertaini.c. b(t) = Ap(t) + Bd(t
L _ i ¥(0) v v ®) insufficient to capture the
- investigate phenomenology of transition
S:’ lim w( ) pseudo-spectrum
= t—o0

b= (A+2)y

20/24



The Nature of Turbulence

@ Fluid flows are described by deterministic equations
@ OLD QUESTION: why do fluid flows “look random” at high R?



The Nature of Turbulence

@ A common view of turbulence

unstable

q stable
-

T
0 R

state space




The Nature of Turbulence

@ A common view of turbulence

b - o 7Chaotic
© unstable dynamics
s}
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The Nature of Turbulence

@ A common view of turbulence

- ____ _ chaotic
unstable " “dynamics

stable

state space

@ Intuitive reasoning:
Complex, “statistical looking” behavior — chaotic dynamics
“self-sustaining” cycle



The Nature of Turbulence

@ A common view of turbulence

f - ____ _ chaotic
unstable " “dynamics

stable

state space

@ Intuitive reasoning:
Complex, “statistical looking” behavior — chaotic dynamics
“self-sustaining” cycle

@ Assumes NS egs. with perfect BC, no disturbances or uncertainty
(i.e. a a closed system)



The Nature of Turbulence
An Alternate Possibility

@ A driven (open) system

Noise Fluctuating
Surface Roughness > Dynamics of the Flow Field
Thermal Forces NS Equations

Free Stream disturbances (looks statistical)

The NS equations act as an amplifier of ambient uncertainty at high R

@ Qualitatively similar to

Noise Fluctuating

Surface Roughness > Dyz;r:f;:‘f‘t’he Flow Field
Thermal Forces NS Equations

Free Stream disturbances (looks statistical)




The Nature of Turbulence (a mixed picture)

chaotic
8 unstable " dynamics
stable IJ Dynamics of the
u- — NS Equations
0 R

more typical in more typical in
bluff body flows highly streamlined flows




The Nature of Turbulence (a mixed picture)

<. chaotic
2 unstable ~dynamics
Ly
e
stable Dynamics of the
u- — NS Equations
0 R

more typical in more typical in
bluff body flows highly streamlined flows

N

There’s probably a mixture of both mechanisms in most flows

state space

IPAM, Nov 2014 23/24
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