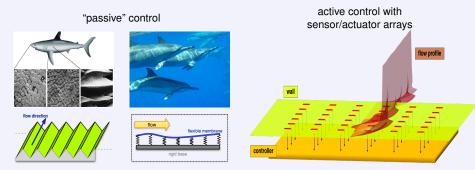
Wall Turbulence as an Open Dynamical System The Input-Output View

Bassam Bamieh

Mechanical Engineering University of California at Santa Barbara

Control of Boundary Layer Turbulence



corrugated skin

compliant skin

- Other "open loop" schemes:
 - Oscillating walls
 - Body force traveling waves

Caveat: Plant's dynamics are not well understood

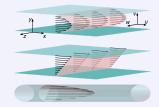
obstacles { not only device technology also: dynamical modeling and control design

Mathematical Modeling of Transition: Hydrodynamic Stability

The Navier-Stokes (NS) equations:

$$\partial_t \mathbf{u} = -\nabla_{\mathbf{u}} \mathbf{u} - \operatorname{grad} p + \frac{1}{R} \Delta \mathbf{u}$$

 $0 = \operatorname{div} \mathbf{u}$



Hydrodynamic Stability:

view NS as a dynamical system

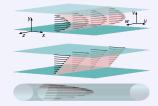
• *laminar flow* $\bar{\mathbf{u}} := a$ stationary solution of the NS equations (an *equilibrium*)

Mathematical Modeling of Transition: Hydrodynamic Stability

The Navier-Stokes (NS) equations:

$$\partial_t \mathbf{u} = -\nabla_{\mathbf{u}} \mathbf{u} - \operatorname{grad} p + \frac{1}{R} \Delta \mathbf{u}$$

 $0 = \operatorname{div} \mathbf{u}$



Hydrodynamic Stability:

view NS as a dynamical system

• laminar flow $\bar{\mathbf{u}} := a$ stationary solution of the NS equations (ar

(an equilibrium)

laminar flow $\bar{\mathbf{u}}$ stable

$$\longleftrightarrow$$

i.c.
$$\mathbf{u}(0) \neq \bar{\mathbf{u}}$$
,
 $\mathbf{u}(t) \stackrel{t \to \infty}{\longrightarrow} \bar{\mathbf{u}}$

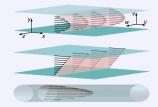
- typically done with dynamics linearized about $\bar{\mathbf{u}}$
- various methods to track further "non-linear behavior"

Mathematical Modeling of Transition: Hydrodynamic Stability

The Navier-Stokes (NS) equations:

$$\partial_t \mathbf{u} = -\nabla_{\mathbf{u}} \mathbf{u} - \operatorname{grad} p + \frac{1}{R} \Delta \mathbf{u}$$

 $0 = \operatorname{div} \mathbf{u}$



Hydrodynamic Stability:

view NS as a dynamical system

• A very successful (phenomenologically predictive) approach for many decades

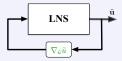
• However: it fails badly in the special (but important) case of streamlined flows

• Decompose the fields as $\mathbf{u} = \bar{\mathbf{u}} + \tilde{\mathbf{u}}$ $\uparrow \qquad \uparrow$ $laminar \qquad fluctuations$

• Add a time-varying *exogenous disturbance* field **d** (e.g. random body forces)

$$\partial_t \tilde{\mathbf{u}} = -\nabla_{\tilde{\mathbf{u}}} \tilde{\mathbf{u}} - \nabla_{\tilde{\mathbf{u}}} \tilde{\mathbf{u}} - \operatorname{grad} \tilde{p} + \frac{1}{R} \Delta \tilde{\mathbf{u}} - \nabla_{\tilde{u}} \tilde{u} + \mathbf{d}$$

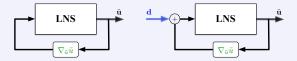
 $0 = \operatorname{div} \tilde{\mathbf{u}}$



• Decompose the fields as $\mathbf{u} = \bar{\mathbf{u}} + \tilde{\mathbf{u}}$ $\uparrow \qquad \uparrow$ laminar fluctuations

• Add a time-varying exogenous disturbance field d (e.g. random body forces)

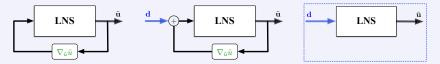
$$\begin{array}{rcl} \partial_t \tilde{\mathbf{u}} &=& -\nabla_{\tilde{\mathbf{u}}} \tilde{\mathbf{u}} &- \nabla_{\tilde{\mathbf{u}}} \bar{\mathbf{u}} &- \operatorname{grad} \tilde{p} \,+\, \frac{1}{R} \Delta \tilde{\mathbf{u}} - \nabla_{\tilde{u}} \tilde{u} \,+\, \mathbf{d} \\ 0 &=& \operatorname{div} \tilde{\mathbf{u}} \end{array}$$



• Decompose the fields as $\mathbf{u} = \bar{\mathbf{u}} + \tilde{\mathbf{u}}$ $\uparrow \qquad \uparrow$ laminar fluctuations

Add a time-varying exogenous disturbance field d (e.g. random body forces)

 $\partial_t \tilde{\mathbf{u}} = -\nabla_{\tilde{\mathbf{u}}} \tilde{\mathbf{u}} - \nabla_{\tilde{\mathbf{u}}} \tilde{\mathbf{u}} - \operatorname{grad} \tilde{p} + \frac{1}{R} \Delta \tilde{\mathbf{u}} - \nabla_{\tilde{u}} \tilde{u} + \mathbf{d}$ 0 = div $\tilde{\mathbf{u}}$

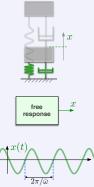


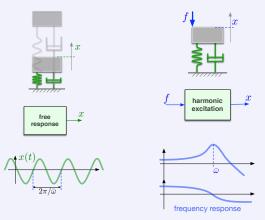
Input-Output view of the Linearized NS Equations

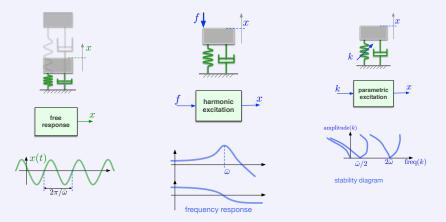
Farrell, Ioannou, '93 PoF

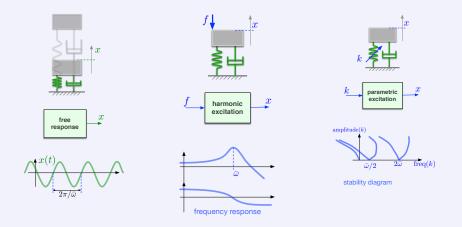
BB, Dahleh, '01 PoF

Jovanovic, BB, '05 JFM







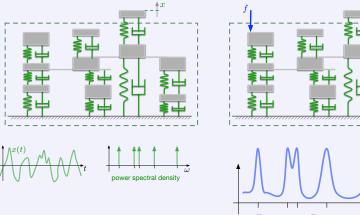


 \rightarrow

• Typically: internal modes frequencies

externally excited response frequencies

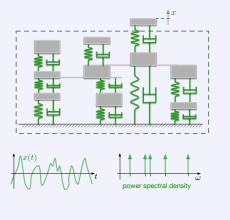
Does this correspondence hold for large-scale systems?

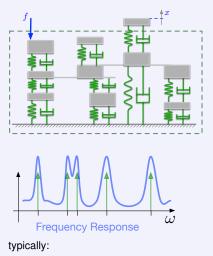


Frequency Response

ω

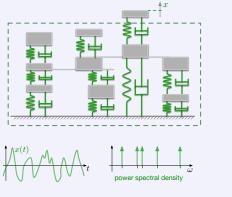
Does this correspondence hold for large-scale systems?

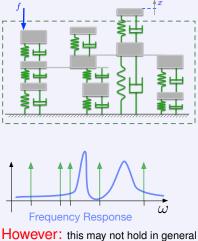




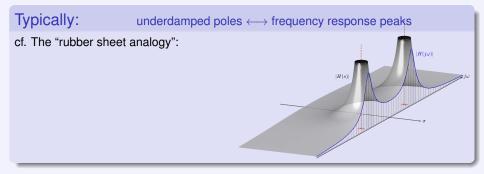
internal modes \longleftrightarrow external resonances

Does this correspondence hold for large-scale systems?





even in linear systems!



ODE (state space model) $\dot{\psi}(t) = A \psi(t) + B d(t)$ $\tilde{\mathbf{u}}(t) = C \psi(t)$ Transfer Function $H(s) = C (sI - A)^{-1} B$

• eigs(A) = poles(H(s))

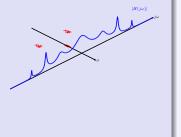
However: Pole Locations \nleftrightarrow Frequency Response Peaks Theorem: Given any desired pole locations

 $z_1, \ldots, z_n \in \mathbb{C}_-$ (LHP),

and any stable frequency response $H(j\omega)$, arbitrarily close approximation is achievable with

$$\left\| H(s) - \left(\sum_{i=1}^{N_1} \frac{\alpha_{1,i}}{(s-z_1)^i} + \cdots + \sum_{i=1}^{N_n} \frac{\alpha_{n,i}}{(s-z_n)^i} \right) \right\|_{\mathcal{H}^2} \le \epsilon$$

by choosing any of the N_k 's large enough



However: Pole Locations **Frequency Response Peaks** \leftrightarrow Theorem: Given any desired pole locations $z_1, \ldots, z_n \in \mathbb{C}_-$ (LHP), and any stable frequency response $H(j\omega)$, arbitrarily close approximation is achievable with $\left\| H(s) - \left(\sum_{i=1}^{N_1} \frac{\alpha_{1,i}}{(s-z_1)^i} + \dots + \sum_{i=1}^{N_n} \frac{\alpha_{n,i}}{(s-z_n)^i} \right) \right\|_{s=0} \le \epsilon$ by choosing any of the N_k 's large enough

Remarks:

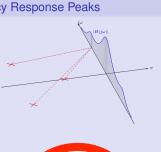
- No necessary relation between pole locations and system resonances
- ($\epsilon \to 0 \Rightarrow N_k \to \infty$), i.e. this is a *large-scale systems* phenomenon
- Large-scale systems: IO behavior not always predictable from modal behavior

However: Pole Locations \leftrightarrow Frequency Response Peaks MIMO case: $H(s) = (sI - A)^{-1}$

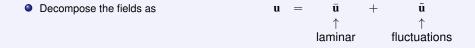
• If A is normal (has orthogonal eigenvectors), then

$$\sigma_{\max}\left(\left(j\omega I - A\right)^{-1}\right) = \frac{1}{_{\text{distance}}\left(j\omega, \text{nearest pole}\right)}$$

 If A is non-normal : no clear relation between singular value plot ↔ eigs(A)



Back to Fluids

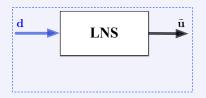


Add a time-varying exogenous disturbance field d (e.g. random body forces)

$$\partial_t \tilde{\mathbf{u}} = -\nabla_{\tilde{\mathbf{u}}} \tilde{\mathbf{u}} - \nabla_{\tilde{\mathbf{u}}} \tilde{\mathbf{u}} - \operatorname{grad} \tilde{p} + \frac{1}{R} \Delta \tilde{\mathbf{u}} - \nabla_{\tilde{u}} \tilde{u} + \mathbf{d}$$

 $0 = \operatorname{div} \tilde{\mathbf{u}}$

• Neglect the feedback $\nabla_{\tilde{u}}\tilde{u}$



Input-Output Analysis of the Linearized NS Equations

$$\partial_t \begin{bmatrix} \Delta \tilde{v} \\ \tilde{\omega} \end{bmatrix} = \begin{bmatrix} U'' \partial_x - U \Delta \partial_x + \frac{1}{R} \Delta^2 & 0 \\ -U' \partial_z & -U \partial_x + \frac{1}{R} \Delta \end{bmatrix} \begin{bmatrix} \tilde{v} \\ \tilde{\omega} \end{bmatrix} + \begin{bmatrix} -\partial_{xy} & \partial_x^2 + \partial_z^2 & -\partial_{zy} \\ \partial_z & 0 & -\partial_x \end{bmatrix} \begin{bmatrix} d_x \\ d_y \\ d_z \end{bmatrix}$$
$$\begin{bmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{w} \end{bmatrix} = \left(\partial_x^2 + \partial_z^2 \right)^{-1} \begin{bmatrix} \partial_{xy} & -\partial_z \\ \partial_x^2 + \partial_z^2 & 0 \\ \partial_{zy} & \partial_x \end{bmatrix} \begin{bmatrix} \tilde{v} \\ \tilde{\omega} \end{bmatrix}$$

$$\frac{\Psi}{\mathbf{u}} = \mathcal{L} \mathbf{W}$$

$$\tilde{\mathbf{u}} = \mathcal{L} \Psi$$

Input-Output Analysis of the Linearized NS Equations

$$\partial_t \begin{bmatrix} \Delta \tilde{v} \\ \tilde{\omega} \end{bmatrix} = \begin{bmatrix} U'' \partial_x - U \Delta \partial_x + \frac{1}{R} \Delta^2 & 0 \\ -U' \partial_z & -U \partial_x + \frac{1}{R} \Delta \end{bmatrix} \begin{bmatrix} \tilde{v} \\ \tilde{\omega} \end{bmatrix} + \begin{bmatrix} -\partial_{xy} & \partial_x^2 + \partial_z^2 & -\partial_{zy} \\ \partial_z & 0 & -\partial_x \end{bmatrix} \begin{bmatrix} d_x \\ d_y \\ d_z \end{bmatrix}$$
$$\begin{bmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{w} \end{bmatrix} = \left(\partial_x^2 + \partial_z^2 \right)^{-1} \begin{bmatrix} \partial_{xy} & -\partial_z \\ \partial_x^2 + \partial_z^2 & 0 \\ \partial_{zy} & \partial_x \end{bmatrix} \begin{bmatrix} \tilde{v} \\ \tilde{\omega} \end{bmatrix}$$

$$\partial_t \Psi = \mathcal{A} \Psi + \mathcal{B} \mathbf{d}$$

$$\tilde{\mathbf{u}} = \mathcal{C} \Psi$$

• eigs (\mathcal{A}) : determine stability

(standard technique in Linear Hydrodynamic Stability)

• Transfer Function $\mathbf{d} \longrightarrow \tilde{\mathbf{u}}$: determines response to disturbances (an "open system")

Input-Output Analysis of the Linearized NS Equations

$$\partial_t \begin{bmatrix} \Delta \tilde{v} \\ \tilde{\omega} \end{bmatrix} = \begin{bmatrix} U'' \partial_x - U \Delta \partial_x + \frac{1}{R} \Delta^2 & 0 \\ -U' \partial_z & -U \partial_x + \frac{1}{R} \Delta \end{bmatrix} \begin{bmatrix} \tilde{v} \\ \tilde{\omega} \end{bmatrix} + \begin{bmatrix} -\partial_{xy} & \partial_x^2 + \partial_z^2 & -\partial_{zy} \\ \partial_z & 0 & -\partial_x \end{bmatrix} \begin{bmatrix} d_x \\ d_y \\ d_z \end{bmatrix}$$
$$\begin{bmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{w} \end{bmatrix} = \left(\partial_x^2 + \partial_z^2 \right)^{-1} \begin{bmatrix} \partial_{xy} & -\partial_z \\ \partial_x^2 + \partial_z^2 & 0 \\ \partial_{zy} & \partial_x \end{bmatrix} \begin{bmatrix} \tilde{v} \\ \tilde{\omega} \end{bmatrix}$$

$$\frac{\Psi}{\tilde{\mathbf{u}}} = \mathcal{A} \Psi + \mathcal{B} \mathbf{d}$$
$$\tilde{\mathbf{u}} = \mathcal{C} \Psi$$

Surprises:

Even when A is stable

the gain $\mathbf{d} \longrightarrow \tilde{\mathbf{u}}$ can be very large ($(H^2 \text{ norm})^2$ scales with R^3)

Input-output resonances

very different from least-damped modes of $\ensuremath{\mathcal{A}}$

Spatio-temporal Impulse and Frequency Responses

Translation invariance in x & z implies

• Impulse Response (Green's Function)

$$\tilde{\mathbf{u}}(t,x,y,z) = \int G(t-\tau,x-\xi,\mathbf{y},\mathbf{y}',z-\zeta) \,\mathbf{d}(\tau,\xi,y',\zeta) \,d\tau d\xi dy' d\zeta$$
$$\tilde{\mathbf{u}}(t,x,..,z) = \int G(t-\tau,x-\xi,z-\zeta) \,\mathbf{d}(\tau,\xi,..,\zeta) \,d\tau d\xi d\zeta$$

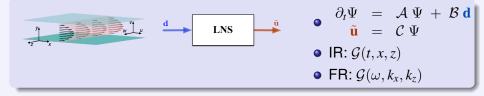
$$f(t,x,.,z) = \int \mathcal{G}(t-\tau,x-\xi,z-\zeta) \, \mathbf{d}(\tau,\xi,.,\zeta) \, d\tau d\xi d\zeta$$

 $\mathcal{G}(t, x, z)$: Operator-valued impulse response

- Frequency Response
 - $\tilde{\mathbf{u}}(\omega, k_x, k_z) = \mathcal{G}(\omega, k_x, k_z) \mathbf{d}(\omega, k_x, k_z)$
 - $\mathcal{G}(\omega, k_x, k_z)$: Operator-valued frequency response (Packs lots of information!)

• Spectrum of A:

$$\sigma(\mathcal{A}) = \overline{\bigcup_{k_x,k_z} \sigma\left(\hat{\mathcal{A}}(k_x,k_z)\right)}$$



$$\partial_{t}\Psi = \mathcal{A}\Psi + \mathcal{B} \mathbf{d}$$

$$\tilde{\mathbf{u}} = \mathcal{C}\Psi$$

$$\bullet \text{ IR: } \mathcal{G}(t, x, z)$$

$$\bullet \text{ FR: } \mathcal{G}(\omega, k_{x}, k_{z})$$

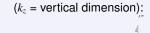
Modal Analysis: Look for unstable eigs of $\mathcal{A} \left(\bigcup_{k_x,k_z} \sigma \left(\hat{\mathcal{A}}(k_x,k_z) \right) \right)$

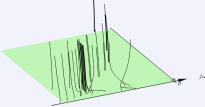
Flow type	Classical linear theory R _c	Experimental R _c
Channel Flow	5772	\approx 1,000-2,000
Plane Couette	∞	\approx 350
Pipe Flow	∞	pprox 2,200-100,000

$$\begin{array}{c} \overset{\mu}{\longrightarrow} & \overset{\mu}{\longrightarrow} &$$

Modal Analysis: Look for unstable eigs of $\mathcal{A} \left(\bigcup_{k_x,k_z} \sigma \left(\hat{\mathcal{A}}(k_x,k_z) \right) \right)$

• Channel Flow @ $R = 2000, k_x = 1,$



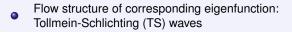


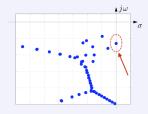
top view

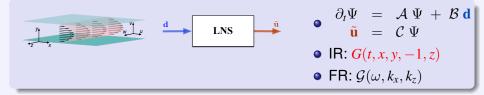
$$\begin{array}{c} \overset{n}{\longrightarrow} & \overset{n}{\longrightarrow} &$$

Modal Analysis: Look for unstable eigs of $\mathcal{A} \left(\bigcup_{k_x,k_z} \sigma \left(\hat{\mathcal{A}}(k_x,k_z) \right) \right)$

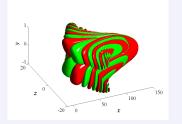
• Channel Flow @
$$R = 6000$$
, $k_x = 1$, $k_z = 0$:







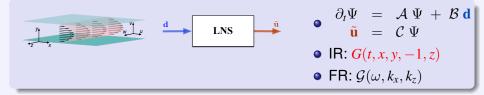
Impulse Response Analysis: Channel Flow @ R = 2000



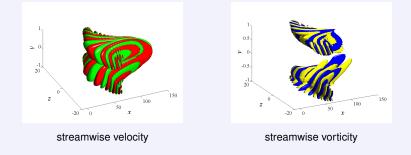
cf. "turbulent spots"

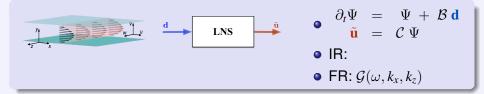
Jovanovic, BB, '01 ACC,

more movies and pics at http://engineering.ucsb.edu/~bamieh/pics/impulse_page.html

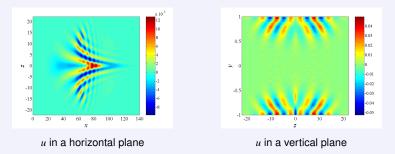


Impulse Response Analysis: Channel Flow @ R = 2000



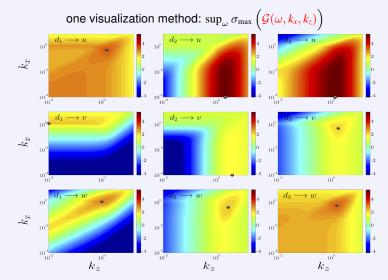


Impulse Response Analysis: Channel Flow @ R = 2000



Spatio-temporal Frequency Response

 $\mathcal{G}(\omega, k_x, k_z)$ is a *LARGE* object! (very "data rich"!)



Jovanovic, BB, '05 JFM

Spatio-temporal Frequency Response

 $\mathcal{G}(\omega, k_x, k_z)$ is a *LARGE* object! (very "data rich"!)

one visualization method: $\sup_{\omega} \sigma_{\max} \left(\mathcal{G}(\omega, k_x, k_z) \right)$

What do the corresponding flow structures look like?

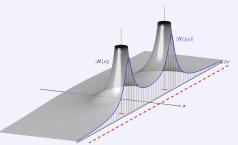
streamwise velocity isosurfaces

streamwise vorticity isosurfaces

Subcritical vs. Supercritical Frequency Response

Using "exponentially discounted" signal norms, e.g $\int_{0}^{\infty} \left\langle e^{-\alpha t} \tilde{\mathbf{u}}(t), e^{-\alpha t} \tilde{\mathbf{u}}(t) \right\rangle_{E} dt$

a proxy for finite-time-horizon energy integrals



Amounts to:

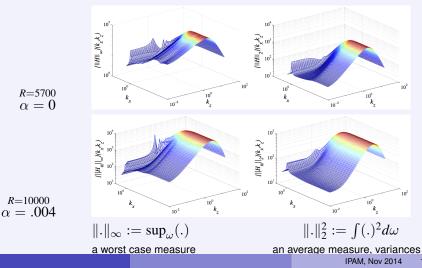
Frequency response is the Transfer Function on a shifted imaginary axis ($\alpha + j\omega$)

Subcritical vs. Supercritical Frequency Response

Using "exponentially discounted" signal norms, e.g

$$\int_0^\infty \left\langle e^{-\alpha t} \tilde{\mathbf{u}}(t), e^{-\alpha t} \tilde{\mathbf{u}}(t) \right\rangle_E dt$$

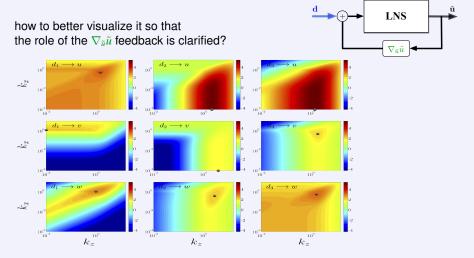
a proxy for finite-time-horizon energy integrals



15/24

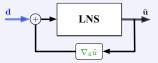
Spatio-temporal Frequency Response

How to view $\mathcal{G}(\omega, k_x, k_z)$?



Spatio-temporal Frequency Response

How to view $\mathcal{G}(\omega, k_x, k_z)$?



The Linearized Navier-Stokes equations are still not fully explored!

Implications for Turbulence

For large-scale systems: IO behavior not predictable from modal behavior

$$\partial_{t}\Psi = \mathcal{A}\Psi + \mathcal{B} \mathbf{d}$$

$$\tilde{\mathbf{u}} = \mathcal{C}\Psi$$

$$\bullet \text{ IR: } \mathcal{G}(t, x, z)$$

$$\bullet \text{ FR: } \mathcal{G}(\omega, k_{x}, k_{z})$$

Implications for Turbulence

For large-scale systems: IO behavior not predictable from modal behavior

$$\partial_t \Psi = \mathcal{A} \Psi + \mathcal{B} \mathbf{d}$$

$$\tilde{\mathbf{u}} = \mathcal{C} \Psi$$

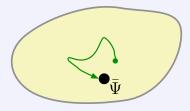
$$\bullet \quad \mathsf{IR:} \ \mathcal{G}(t, x, z)$$

$$\bullet \quad \mathsf{FR:} \ \mathcal{G}(\omega, k_x, k_z)$$

- "modal behavior": Stability due to initial condition uncertainty
- "IO behavior": behavior in the presence of ambient uncertainty
 - forcing terms from wall roughness and/or vibrations
 - Free-stream disturbances in boundary layers
 - Thermal (Langevin) forces
 - uncertain dynamics

Reexamining Stability Theory

If starting "near" equilibrium, does system come back to it??



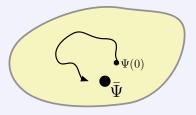
stable equilibrium

unstable equilibrium

• An unstable equilibrium is not really an "equilibrium"

Reexamining Stability Theory

deals with **uncertainty** in initial conditions



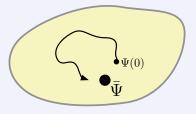
Naive thought:

Lyapunov Stability

- If $\Psi(0)$ is known to be *precisely* $\overline{\Psi}$, then $\Psi(t) = \overline{\Psi}$, $t \ge 0$
- We introduce the concept of Lyapunov stability because we can never be *infinitely certain* about the initial condition

Reexamining Stability Theory

deals with **uncertainty** in initial conditions



Naive thought:

Lyapunov Stability

- If $\Psi(0)$ is known to be *precisely* $\overline{\Psi}$, then $\Psi(t) = \overline{\Psi}$, $t \ge 0$
- We introduce the concept of Lyapunov stability because we can never be *infinitely certain* about the initial condition

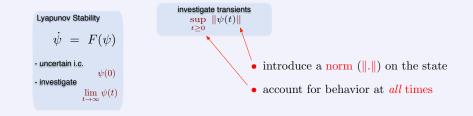
Shortcomings of Lyapunov stability

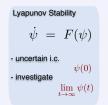
- Perturbs only initial conditions
- Cares mostly about asymptotic behavior

Lyapunov Stability

$$\dot{\psi} = F(\psi)$$

- uncertain i.c.
- investigate $\psi(0)$ $\lim_{t \to \infty} \psi(t)$





investigate transients $\sup_{t \ge 0} \|\psi(t)\|$

exogenous disturbances
$$\dot{\psi}(t) = F\left(\psi\left(t
ight), d\left(t
ight)
ight)$$

exogenous, spatio-temporally varying forcing fields, e.g.

- random body forces
- free-stream turbulence

Lyapunov Stability

 $\dot{\psi} = F(\psi)$

 $\psi(0)$

- uncertain i.c.
- investigate

 $\lim_{t \to \infty} \psi(t)$

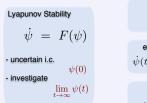
 $\underset{t \geq 0}{\operatorname{sup}} \ \|\psi(t)\|$

exogenous disturbances $\dot{\psi}(t) = F\left(\psi\left(t
ight), d\left(t
ight)
ight)$

dynamical uncertainty $\dot{\psi} = F(\psi) + \Delta(\psi)$

"unmodeled dynamics"

- effects not modeled by NS equations
- unmodeled, dynamical wall-flow interactions
- etc.



investigate transients $\sup_{t \ge 0} \|\psi(t)\|$

exogenous disturbances $\dot{\psi}(t) = F\left(\psi\left(t
ight), d\left(t
ight)
ight)$

dynamical uncertainty $\dot{\psi} = F(\psi) + \Delta(\psi)$

combinations

 $\dot{\psi}$

$$(t) = F\left(\psi\left(t\right), d\left(t\right)\right) + \\ \Delta\left(\psi(t), d\left(t\right)\right)$$

increasing uncertainty

Lyapunov Stability

 $\dot{\psi} = F(\psi)$

 $\psi(0)$

- uncertain i.c.
- investigate

 $\lim_{t\to\infty}\psi(t)$

investigate transients $\sup_{t \ge 0} \|\psi(t)\|$

exogenous disturbances $\dot{\psi}(t) = F\left(\psi\left(t
ight), d\left(t
ight)
ight)$

 combinations

$$egin{aligned} (t) &= F\left(\psi\left(t
ight), d\left(t
ight)
ight) + \ & \Delta\left(\psi(t), d\left(t
ight)
ight) \end{aligned}$$

ψ

increasing uncertainty

Eigenvalue Stability

$$\dot{\psi} = A\psi$$

- uncertain i.c.
- investigate
 $\psi(0)$
 $\lim_{t \to \infty} \psi(t)$

linearized versions

IPAM, Nov 2014 20 / 24

Lyapunov Stability

 $\dot{\psi} = F(\psi)$

 $\psi(0)$

- uncertain i.c.

- investigate

 $\lim_{t \to \infty} \psi(t)$

investigate transients $\sup_{t \ge 0} \|\psi(t)\|$

exogenous disturbances $\dot{\psi}(t) = F\left(\psi\left(t
ight), d\left(t
ight)
ight)$

 combinations

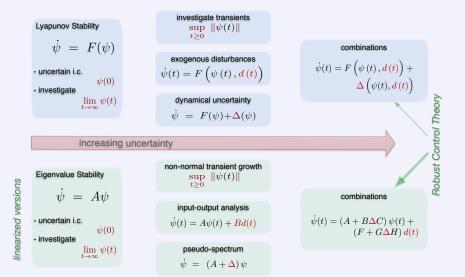
Ŵ

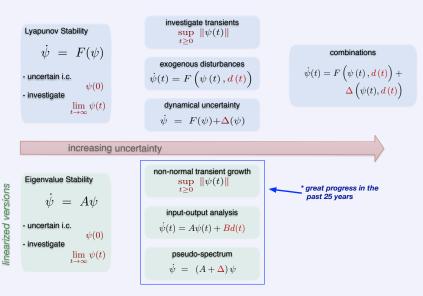
$$(t) = F\left(\psi\left(t\right), d\left(t\right)\right) + \\ \Delta\left(\psi(t), d\left(t\right)\right)$$

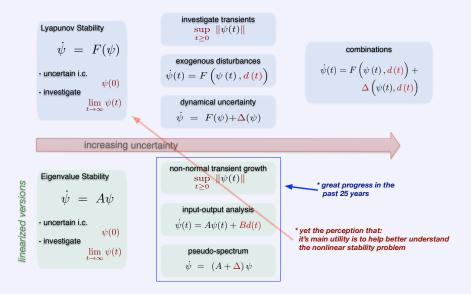
increasing uncertainty

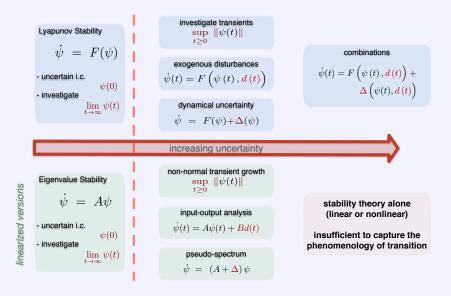
non-normal transient growth
$$\begin{split} \sup_{t\geq 0} & \|\psi(t)\| \\ \text{input-output analysis} \\ \dot{\psi}(t) &= A\psi(t) + Bd(t) \end{split}$$

pseudo-spectrum $\dot{\psi} = (A + \Delta) \psi$



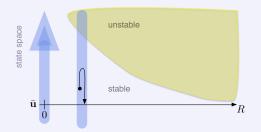




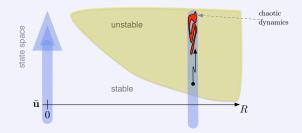


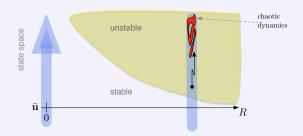
- Fluid flows are described by deterministic equations
- OLD QUESTION: why do fluid flows "look random" at high R?

• A common view of turbulence



• A common view of turbulence



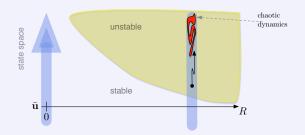


• A common view of turbulence

Intuitive reasoning:

Complex, "statistical looking" behavior

↔ chaotic dynamics "self-sustaining" cycle



• A common view of turbulence

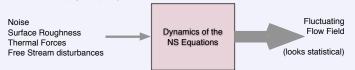
Intuitive reasoning:

Complex, "statistical looking" behavior \longleftrightarrow chaotic dynamics "self-sustaining" cycle

 Assumes NS eqs. with perfect BC, no disturbances or uncertainty (i.e. a a closed system)

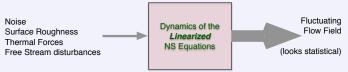
An Alternate Possibility

• A driven (open) system

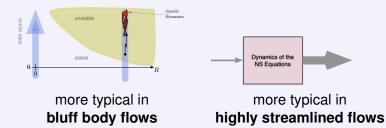


The NS equations act as an *amplifier of ambient uncertainty* at high R

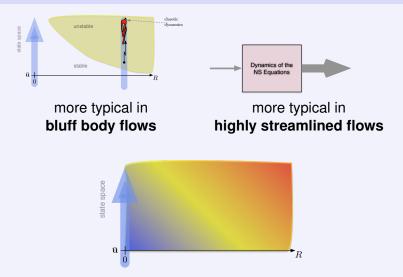
Qualitatively similar to



The Nature of Turbulence (a mixed picture)



The Nature of Turbulence (a mixed picture)



There's probably a mixture of both mechanisms in most flows

Thanks

- M. Dahleh
- M. Jovanovic
- D. Gayme
- J.C. Doyle
- B. Mckeon
- A. Papachristodoulou

Support:

Energy, Power & Adaptive Systems Program (ECCS)

Control Systems (CMMI)

Dynamics & Control Program