Large Scale Dynamos at high Rm

Do they work and can we get a
statistical theory?

Steve Tobias (University of Leeds)
Fausto Cattaneo (University of Chicago)

Yes (well perhaps) and Maybe



. Question: How can we understand the dynamo properties of
turbulent flows with a large range of scales

Random fluctuations
Coherent structures

. Question: How can an astrophysical object such as a star or
galaxy generate a systematic (large-scale) magnetic field at
high Rm" How can it overcome its tendency to be dominated
by fluctuations at the small scales?

Using our insight from answering this can we derive a
(statistical?) theory that describes these interactions.
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D. Hathaway

‘ -
. .-‘ 1 .
.,. - .. l’
I\ s ¥ ‘J ” - ,!
’ . :‘ -
O8N SUNSPOT AREA IN EQUAL AREA LATFUDE STRIPS (% OF STRIF AREA) ®-0.0% M=0.1% T=1.0%

308

G905

F880 1890 1960 1910 1920 1936 1940 OS50 1966 1970 1986 1994 2008
ATE



™ Wbl

——— b ——

——

1800 1900

Modulation of basic cycle amplitude (some modulation of frequency)
Gleissberg Cycle: ~80 year modulation




Observations: Stellar (Solar-Type
Stars)

Mount Wilson Survey
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Small Scale Dynamos
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The Large-Scale Solar Dynamo

MHelioseismology shows the
a internal structure of the
Sun.

mSurface Differential Rotation
IS maintained throughout
the Convection zone

SSolid body rotation in the
radiative interior

Thin matching zone of
shear known as the

Tachocline instabilities:

Knobloch & Spruit (1982) (GSF et al) tachocline at the base of
Gilman & Fox (1997) (Joint diff rotn mag field) the SOIar COnveCtion zone
(just in the stable



Large-Scale Computation

cf Toomre, Miesch, Brun, Browning, Brown (ASH code)



Basics for the Sun

Dynamics in the solar interior is governed by

the following equations of MHD

oB

MUl — =Vx(uxB)+7V’B (V.B=0),

ot

ou
MOMENTUM P(E + U. V“) =-Vp+jxB+pog+FK .

CONTINUITY (2’(; + V.(ou) =0,

D(pp™)
Dt
GAS LAW p=RoT.

ENERGY = loss terms,

+F

other?




Basics for the Sun
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The Puzzle...

Dynamo models at moderate rotation rates...

At low Rm, or for short correlation time turbulence
can get large-scale systematic magnetic fields.

As Rm is increased (still not nearly close to

astrophysical values) systematic magnetic field
breaks down and small-scale dynamos emerge.



Basics for the Sun

Dynamics in the solar interior is governed by

the following equations of MHD

oB

MUl — =Vx(uxB)+7V’B (V.B=0),

ot

MOMENTUM +uVu |=-Vp+jxB+pg+F, .

0
CONTINUITY a/z-) +V.(ou) =

~y
ENERGY Dipp ")
Dt

GAS LAW p=RoT.

= loss terms,

+F

other?




Small-Scale Dynamos

Small-scale dynamos rely on chaotfic stretching and
reinforcement of the field (see e.g. Childress &
Gilbert 1995)

More coherent (in time) the velocity the better the
stretching (usually)

Any sufficiently chaotic flow will tend to generate
magnetic field on the resistive scale.

Interesting questions do remain...

e.g. Low Pm problem.

What happens when magnetic field dissipates in inertial range of
the turbulence?

Coherent structures versus random flows



L arge-Scale Dynamos

Starting point is the magnetic induction equation of MHD:

%—?=Vx(uxB)+nV2B,

where B is the magnetic field, u is the fluid velocity and n is the
magnetic diffusivity (assumed constant for simplicity).

Assume scale separation between large- and small-scale field
and flow:

B=B,+b, U=U, +u,

where B and U vary on some large length scale L, anduand b
vary on a much smaller scale I.

(B)=B,, (U)=U,,

where averages are taken over some intermediate scale | « a « L.




For simplicity, ignore large-scale flow, for the moment.
Induction equation for mean field:

0B
6’?50 =V x €& —|—77v2B()

where mean emf is

£ =(uxb)

This equation is exact, but is only useful if we can relate E tOB()

Consider the induction equation for the fluctuating field:

% =Vx(uxB,)+VxG+nV°b,

Where G =uxb -(uxb)."pain in the neck term”




Traditional approach is to assume that the fluctuating field is driven solely b
the large-scale magnetic field.

l.e. in the absence of B, the fluctuating field decays.

i.e. No small-scale dynamo (not really appropriate for high Rm
turbulent fluids)




Postulate an expansion of the form:
OBy,

& = o Boj + Bijk P

where a; and 3, are pseudo-tensors, determined by the statistics

of the turbulence.

Simplest case is that of isotropic turbulence, for which a; = ad; and ;, - Be;
Then mean induction equation becomes:

B,

o =Vx(aB,)+(n+ /a’)VzBO.

d: regenerative term, responsible for large-scale dynamo action.
Since £ is a polar vector whereas By is an axial vector then a can
be non-zero only for turbulence lacking
reflexional symmetry (i.e. possessing handedness).

B: turbulent diffusivity.




Growth-rates for dynamos at a
single scale

-
™~ 10Rmcrit

A fast dynamo is has an asymptotic growth rate as Rm gets large

A quick dynamo is one which reaches this maximum growth rate close to
(Tobias & Cattaneo, JFM, 2008)

We define high Rm to be well into “the green zone”

Certainly the case for astrophysical flows

Not usually true for numerical simulations (if we are talking about small-scale flows




Dynamos at a single scale

For a velocity field
imposed at a finite scale

Competition between
stretching and diffusion.

If stretching strong
enough and coherent
enough get exponential
growth of field.
u(z,y,t) = (Yy, =z, W)  Field is usually amplified
Y =+/3/2 (sin(z + ecoswt) + cos(y + esinwt)) at small scales
w = ?p Resistive scale

B = Bla,y)e-=+" I ~ R~/

Galloway & Proctor, (1992) Nature

Note: This flow lacks reflexional syrmirneitry (helical)
And should be a good large-scale dynarmo



Dynamos at a single scale

Field is amplified on
local turnover time of the
flow

Independent of diffusion
as Rm gets large (fast)

Relies on

Chaotic stretching of
fieldlines by velocity

Measured by the finite time
Lyapunov exponent

Not too much cancellation

measured by the
cancellation exponent




Two important Ratios

XO'
1
#
1 ~10 XRm
XO' = 0-/0-*

XRm :Rm/ Rmcyit



Dynamos at two scales

Can get very interesting
dynamics at high Rm

Mode crossing between
modes driven by large-
scale flows and small-scale
flows

Suppression of growth of
small-scale field by large-
scale flow at high Rm
Uy Shear enhanced
nk dissipation
Th = 77— Reduced stretching

Decrease of Lyapunov
[ne effect or a large-scale flow at nign  exponents
snough Rm is to Jecrease the Enhanced cancellation

Rm =

Q|NS‘E

Cattaneo & Tobias, Physics of Fluids 2005

(D




Large-scale versus small-scale

All the dynamos described above have the ingredients
required to be a large-scale dynamo

Lack of reflexional symmetry in the flow

Leads to the generation of a mean EMF

However at high Ry, (in the green zone - and even in the
amber zone) the large-scale magnetic field generated by this
EMF is completely dominated by the small-scale fluctuations
provided by the small-scale dynamo (cf Cattaneo & Hughes 2006)

One idea is to use a shear flow to “boost” the EMF (and indeed
the dynamo growth) via one of many effects (shear-current

effect etc) (see e.g. Yousef et al 2008, Kapyla & Brandenburg 2009, Sridhar &
Singh 2010, Hughes & Proctor 2013)

Though see Courvoisier & Kim (2009)

An alternative is to use the shear to control the
fluctuations




High Rm effects of shear

Tobias & Cattaneo (2013, Nature) Cattaneo & Tobias (2014 ApJ)
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k
Need to get to very high Rm (so growth-rate is asymptotic for small-scale flow.)

Very hard to do in 3D flow.

Resolutions up to 40962
Use multi-scale generalisation of the GP/CT2005 flow (2.5 D)

Velocity amplitude decreases with scale; shear rate and turnover frequency increase with scale

Scale dependent renewal time

comparable with local turnover time (in asymptotic regime)
much shorter than local turnover time (poor dynamo)



No shear: long correlation time

Computations
using UK MHD
Consortium
Machine at
University of Leeds

. Great small-scale dynamo (no real surprise)

Filamentary field with

Length comparable to scale of velocity
Width controlled by diffusion oc Rm /2

Overall pattern changes on the turnover time

Comparable with correlation time



Tobias & Cattaneo (2013)

No shear: Long correlation time

Exponential growth removed... t| me

No systematic large-scale behaviour
E.g. average B, over x and plot as a function of y and t

Can also construct a velocity field with no net helicity when
averaged over time

This has comparable growth-rate as a small-scale dynamo

Similar stretching, similar cancellation, similar pictures...



Add some shear; long correlation
time
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With shear...
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Mechanism? Long correlation time
Is it boosting the EMF?

Nope it is suppressing the small-scale dynamo (CTO05)
This only happens for high enough Rm

Flows in the green zone!
Really for efficient enough small-scale dynamos




Are these really dynamo waves?

Yes, they have all the right properties

Propagate in correct direction
Swap direction with direction of shear

Period Decreases with increasing shear.




Short correlation time

Of course reducing the correlation time reduces the
efficiency of the small-scale dynamo (at fixed Rm)

SO Xrm IS decreased (even though Rm is still very high)

This flow is a good mimic of current 3D numerical
dynamo calculations

These small-scale flows are not usually optimised for small-
scale dynamo action and are usually run at Rm close to

onset - Xp, order unity
Not usually in the asymptotic regime (green zone)

Growth-time is again on local turnover time but gets
longer as correlation time decreases.

Cattaneo & Tobias (Apd 2014)



Short correlation time

Cattaneo & Tobias (Apd 2014)



Short correlation time

Cattaneo & Tobias (ApJ 2014)



Short correlation time

Variance of EMF is a simple function

of shear rate
(Tobias & Cattaneo 2014)

Cattaneo & Tobias (Apd 2014)



Analysing Interactions

For geophysical and astrophysical (hydrodynamic)
flows progress can be made by directly calculating
the statistics of the flows via cumulant expansions

Direct Statistical Simulation

e.g. formation of jets (oceans, Jupiter)

Barotropic and baroclinic instability

Srinivasan & Young (2012); Parker & Krommes (2014); T & Marston (2011);
Bouchet, Nardini & Tangarife (2013); Farrell & loannou;

Importance of interactions can be analysed by
generalising the definition of means and fluctuations
and only keeping certain triad interactions (GCE2)



Separate Triads Into Long and Short Scales

m=along shear wavenumber

im| < A m| > A LR
A
1
1
i
\ 2 LA d
) 3 " ~S
S
LN 4 LN
I8 4 I8
Im| < A Im| < A Im| > A Im| > A
A A
1 i
1
i i



“Truth” A=0 A=1

Severe truncations do quite well when shear is strong
and distributions of EMF are narrow.

Slightly over-exaggerate mean to fluctuations

Linear equation: easier for truncations to do well.



Further Thoughts and Further Work

Clearly there are scales in a turbulent cascade that
are too small to

Feel the effects of a shear
Feel the effects of rotation

These have very fast turnover times and low
amplitudes and so will grow and saturate quickly?

These will provide a background noise to the large-
scale dynamo (cf the magnetic carpet and the solar
cycle)

Can only tell by performing a nonlinear calculation

Currently underway...



The Suppression Principle

(Cattaneo & Tobias ApJ 2014)

It is all very well to try and boost the EMF to sustain
large-scale dynamo action, but...

The small scale dynamo will win unless some agent acts
to suppress it.

Shear
Nonlinear suppression (faster eddies have less energy)
Roughness of the turbulence (Subramanian & Brandenburg 2014, ArXiv)



Conclusions
At high Rm

Shear may suppress the small-scale dynamo

If small-scale dynamo is “as good as it gets” ratio Xpm large

If small-scale dynamo is "weak” then shear may help  ratio }p,,small (2-3)

Shear may suppress the average EMF

But narrows distribution (reduced intermittency) potentially
making statistical approaches more accurate.

So what do we mean by a high Rm small-scale dynamo?

One where adding a systematic large-scale flow decreases the
efficiency of dynamo action by making the flow more integrabile...




Large vs Small

So when do we get a large-scale dynamo and when a
small-scale?

For a turbulent cascade...

(a) Can calculate which scales are active in creating small-scale dynamos
(T&C JFM, 2007).

(b) Can calculate which scales contribute to mean and variance of EMF
(T&C 2014)

If timescale of (a) << growth-time of large-scales in (b) then SSD wins

Note large-scale shear can modify both (b) and more
importantly (a)!



