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Yes (well perhaps) and Maybe 



l  Question: How can we understand the dynamo properties of 
turbulent flows with a large range of scales 
l  Random fluctuations 
l  Coherent structures 

l  Question: How can an astrophysical object such as a star or 
galaxy generate a systematic (large-scale) magnetic field at 
high Rm? How can it overcome its tendency to be dominated 
by fluctuations at the small scales? 

l  Using our insight from answering this can we derive a 
(statistical?) theory that describes these interactions. 



Courtesy  
D. Hathaway 



SUNSPOT 
NUMBER: 
 last 400 years 

Modulation of basic cycle amplitude (some modulation of frequency) 
Gleissberg Cycle: ~80 year modulation 
MAUNDER MINIMUM: Very Few Spots , Lasted a few cycles 
                                           Coincided with little Ice Age on Earth 

Abraham Hondius (1684) 

Maunder  
Minimum 



Observations: Stellar (Solar-Type 
Stars) 

     Stellar Magnetic Activity can be inferred by amount of  
     Chromospheric Ca H and K emission 
     Mount Wilson Survey (see e.g. Baliunas ) 
            Solar-Type Stars show a variety of activity. 

Cyclic, Aperiodic, Modulated, 
Grand Minima 



SmaSSmall Scale Dynamos 



The Large-Scale Solar Dynamo 
Helioseismology shows the 

internal structure of the 
Sun. 

Surface Differential Rotation 
is maintained throughout 
the Convection zone 

Solid body rotation in the 
radiative interior 

Thin matching zone of 
shear known as the 
tachocline at the base of 
the solar convection zone 
(just in the stable region). Shear is very important 

Tachocline instabilities:  
Knobloch & Spruit (1982) (GSF et al) 
Gilman & Fox (1997)   (Joint diff rotn mag field) 



Large-Scale Computation 

cf Toomre, Miesch, Brun, Browning, Brown (ASH code) 



Basics for the Sun 
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Dynamics in the solar interior is governed by  
the following equations of MHD 

INDUCTION 

MOMENTUM 

CONTINUITY 

ENERGY 

GAS LAW 



Basics for the Sun 
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The Puzzle… 
•  Dynamo models at moderate rotation rates… 

•  At low Rm, or for short correlation time turbulence 
can get large-scale systematic magnetic fields. 

•  As Rm is increased (still not nearly close to 
astrophysical values) systematic magnetic field 
breaks down and small-scale dynamos emerge. 

•  Can we fix this? 

 



Basics for the Sun 
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Dynamics in the solar interior is governed by  
the following equations of MHD 

INDUCTION 

MOMENTUM 

CONTINUITY 

ENERGY 

GAS LAW 



Small-Scale Dynamos 
•  Small-scale dynamos rely on chaotic stretching and 

reinforcement of the field (see e.g. Childress & 
Gilbert 1995)  
•  More coherent (in time) the velocity the better the 

stretching (usually) 

•  Any sufficiently chaotic flow will tend to generate 
magnetic field on the resistive scale. 

•  Interesting questions do remain… 
•  e.g. Low Pm problem.  

•  What happens when magnetic field dissipates in inertial range of 
the turbulence? 

•  Coherent structures versus random flows 



Starting point is the magnetic induction equation of MHD: 
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where B is the magnetic field, u is the fluid velocity and η is the  
magnetic diffusivity (assumed constant for simplicity). 

Assume scale separation between large- and small-scale field 
and flow: 

,, 00 uUUbBB +=+=

where B and U vary on some large length scale L, and u and b 
vary on a much smaller scale l. 

,, 00 UUBB =〉〈=〉〈

where averages are taken over some intermediate scale l « a « L. 

Large-Scale Dynamos 



For simplicity, ignore large-scale flow, for the moment. 
Induction equation for mean field: 

where mean emf is 

This equation is exact, but is only useful if we can relate to 
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.〉×〈−×= bubuGWhere                           “pain in the neck term” 

Consider the induction equation for the fluctuating field: 

⇥B0

⇥t
= ⇥� E + �⇥2B0

E = ⇥u� b⇤



Traditional approach is to assume that the fluctuating field is driven solely by 
the large-scale magnetic field. 

i.e. in the absence of B0 the fluctuating field decays. 
 
i.e. No small-scale dynamo (not really appropriate for high Rm  
turbulent fluids) 

Under this assumption, the relation between  b  and 
0B (and hence between 

and 
0B ) is linear and homogeneous. E



Postulate an expansion of the form: 

where αij and βijk are pseudo-tensors, determined by the statistics  
of the turbulence. 
Simplest case is that of isotropic turbulence, for which αij = αδij and βijk = βεijk. 
Then mean induction equation becomes:  
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α: regenerative term, responsible for large-scale dynamo action.  
     Since      is a polar vector whereas        is an axial vector then α can 
    be non-zero only for turbulence lacking 
  reflexional symmetry     (i.e. possessing handedness).  
 β: turbulent diffusivity. 

Ei = �ijB0j + ⇥ijk
⇤B0j

⇤xk
+ . . .



Growth-rates for dynamos at a 
single scale 

• A fast dynamo is  has an asymptotic growth rate as Rm gets large 

• A quick dynamo is one which reaches this maximum growth rate close to       
    (Tobias & Cattaneo, JFM, 2008)        

• We define high Rm to be well into “the green zone” 
• Certainly the case for astrophysical flows 

• Not usually true for numerical simulations (if we are talking about small-scale flows) 

Rmcrit

�

�⇤

Rmcrit



Dynamos at a single scale  
l  For a velocity field 

imposed at a finite scale 
l  Competition between 

stretching and diffusion. 
l  If stretching strong 

enough and coherent 
enough get exponential 
growth of field. 

l  Field is usually amplified 
at small scales  

-  Resistive scale 

lB ⇠ Rm�1/2

Note:This flow lacks reflexional symmetry (helical) 
And should be a good large-scale dynamo 
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Dynamos at a single scale  
l  Field is amplified on 

local turnover time of the 
flow 
l  Independent of diffusion 

as Rm gets large (fast) 

l  Relies on  
l  Chaotic stretching of 

fieldlines by velocity 
l  Measured by the finite time 

Lyapunov exponent 
l  Not too much cancellation 

l   measured by the 
cancellation exponent 



Two important Ratios 
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Dynamos at two scales  
l  Can get very interesting 

dynamics at high Rm 
l  Mode crossing between 

modes driven by large-
scale flows and small-scale 
flows 

l  Suppression of growth of 
small-scale field by large-
scale flow at high Rm 
l  Shear enhanced 

dissipation 
l  Reduced stretching 

l  Decrease of Lyapunov 
exponents 

l  Enhanced cancellation 

Cattaneo & Tobias (2005) Physics of Fluids, 17, 127105 

The effect of a large-scale flow at high 
enough  Rm is to decrease the 
efficiency of a small-scale dynamo. 

k=64 

Dynamos at two scales  
C

at
ta

ne
o 

&
 T

ob
ia

s,
 P

hy
si

cs
 o

f F
lu

id
s 

20
05

 



Large-scale versus small-scale 
l  All the dynamos described above have the ingredients 

required to be a large-scale dynamo 
l  Lack of reflexional symmetry in the flow 
l  Leads to the generation of a mean EMF 
 

l  However at high RRm (in the green zone - and even in the 
amber zone) the large-scale magnetic field generated by this 
EMF is completely dominated by the small-scale fluctuations 
provided by the small-scale dynamo (cf Cattaneo & Hughes 2006) 

l  One idea is to use a shear flow to “boost” the EMF (and indeed 
the dynamo growth) via one of many effects (shear-current 
effect etc) (see e.g. Yousef et al 2008, Käpylä & Brandenburg 2009, Sridhar & 
Singh 2010, Hughes & Proctor 2013) 

l  Though see Courvoisier & Kim (2009) 

l  An alternative is to use the shear to control the 
fluctuations 

E = ⇥u0 � b0⇤



High Rm effects of shear  

l  Need to get to very high Rm (so growth-rate is asymptotic for small-scale flow.) 
l  Very hard to do in 3D flow. 

l  Resolutions up to 40962 
l  Use multi-scale generalisation of the GP/CT2005 flow (2.5 D) 

l  Velocity amplitude decreases with scale; shear rate and turnover frequency increase with scale 

l  Scale dependent renewal time 
l   comparable with local turnover time (in asymptotic regime) 
l   much shorter than local turnover time (poor dynamo) 

+ +… 

Rmk =
Uk

k�
⇡ 2500Rms ⇡ 0 ! 105

Tobias & Cattaneo  (2013, Nature) Cattaneo & Tobias (2014 ApJ)  



No shear: long correlation time 

l  Great small-scale dynamo (no real surprise) 
l  Filamentary field with  

l  Length comparable to scale of velocity 
l  Width controlled by diffusion 

l  Overall pattern changes on the turnover time 
l  Comparable with correlation time 
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No shear: Long correlation time 

l  No systematic large-scale behaviour 
l  E.g. average Bx over x and plot as a function of y and t 

l  Can also construct a velocity field with no net helicity when 
averaged over time 
l  This has comparable growth-rate as a small-scale dynamo 

l  Similar stretching, similar cancellation, similar pictures… 
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Exponential growth removed… 



Add some shear; long correlation 
time 

No net helicity Helicity 



With shear… 
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Mechanism? Long correlation time 
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l  Is it boosting the EMF? 

 

 
l  Nope it is suppressing the small-scale dynamo (CT05) 

l  This only happens for high enough Rm 
l  Flows in the green zone! 
l  Really for efficient enough small-scale dynamos 
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Are these really dynamo waves? 
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l  Yes, they have all the right properties 
l  Propagate in correct direction 
l  Swap direction with direction of shear 
l  Period Decreases with increasing shear. 



Short correlation time 
Of course reducing the correlation time reduces the 
efficiency of the small-scale dynamo (at fixed Rm) 
so χRm is decreased (even though Rm is still very high) 

l  This flow is a good mimic of current 3D numerical 
dynamo calculations 
l  These small-scale flows are not usually optimised for small-

scale dynamo action and are usually run at Rm close to 
onset  - χRm order unity 

l  Not usually in the asymptotic regime (green zone) 
l  Growth-time is again on local turnover time but gets 

longer as correlation time decreases. 

Cattaneo & Tobias  (ApJ 2014) 



Short correlation time 

Cattaneo & Tobias  (ApJ 2014) 
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Short correlation time 

Cattaneo & Tobias  (ApJ 2014) 
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Short correlation time 

Cattaneo & Tobias  (ApJ 2014) 
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Variance of EMF is a simple function 
of shear rate 

(Tobias & Cattaneo 2014) 



•  For geophysical and astrophysical (hydrodynamic) 
flows progress can be made by directly calculating 
the statistics of the flows via cumulant expansions 
•  Direct Statistical Simulation 

•  e.g. formation of jets (oceans, Jupiter) 
•  Barotropic and baroclinic instability 

•  Importance of interactions can be analysed by 
generalising the definition of means and fluctuations 
and only keeping certain triad interactions (GCE2) 

Analysing Interactions 

Srinivasan & Young (2012); Parker & Krommes (2014);  T & Marston (2011); 
Bouchet, Nardini & Tangarife (2013);  Farrell & Ioannou;  



Separate Triads Into Long and Short Scales 
m=along shear wavenumber 



“Truth” Λ=0 Λ=1 

Severe truncations do quite well when shear is strong 
and distributions of EMF are narrow. 
Slightly over-exaggerate mean to fluctuations 
Linear equation: easier for truncations to do well. 



•  Clearly there are scales in a turbulent cascade that 
are too small to 
•  Feel the effects of a shear 
•  Feel the effects of rotation 

•  These have very fast turnover times and low 
amplitudes and so will grow and saturate quickly? 

•  These will provide a background noise to the large-
scale dynamo (cf the magnetic carpet and the solar 
cycle) 

•  Can only tell by performing a nonlinear calculation 
•  Currently underway… 

Further Thoughts and Further Work 



•  It is all very well to try and boost the EMF to sustain 
large-scale dynamo action, but… 
•  The small scale dynamo will win unless some agent acts 

to suppress it. 
•  Shear 
•  Nonlinear suppression (faster eddies have less energy) 
•  Roughness of the turbulence (Subramanian & Brandenburg 2014, ArXiv) 

The Suppression Principle 
(Cattaneo & Tobias ApJ 2014) 



•  At high Rm 
•  Shear may suppress the small-scale dynamo 

•  If small-scale dynamo is “as good as it gets”            ratio χRm large 

•  If small-scale dynamo is “weak” then shear may help     ratio χRm small (2-3) 

•  Shear may suppress the average EMF 
•  But narrows distribution (reduced intermittency) potentially 
•  making statistical approaches more accurate. 

•  So what do we mean by a high Rm small-scale dynamo? 
•  One where adding a systematic large-scale flow decreases the 

efficiency of dynamo action by making the flow more integrable… 

Conclusions 



•  So when do we get a large-scale dynamo and when a 
small-scale? 

•  For a turbulent cascade… 
1.  (a) Can calculate which scales are active in creating small-scale dynamos 
2.  (T&C JFM, 2007). 
3.  (b) Can calculate which scales contribute to mean and variance of EMF 
4.  (T&C 2014) 
5.  If timescale of (a) << growth-time of large-scales in (b) then SSD wins 

6.  Note large-scale shear can modify both (b) and more 
importantly (a)! 

Large vs Small 


