Institut de Recherche
P e sur les Phénomeénes

Hors Equilibre

€
@ spinlab.ic/

Understanding exchanges across
stratified/convective zones

interfaces

M. Le Bars, D. Lecoanet, J. Aurnou, A. Ribeiro,
P. Le Gal, S. Perrard, L. Rodet

COMMISSIon 44 ARTE CURIE INTERNA TIONAL OUTGOING FELLOWSHIPS FOR CAREER DEVELOPMENT (IOF)




Motivations...

Generic situation: a turbulent convective fluid layer stands
above or below a stably stratified one, with a sharp but
deformable interface.

e.g. atmospheres, stars, planetary cores...




Atmospheres...

Turbulent plume Storm




Atmospheres...

T° fluctuations from a 2D model of a storm
km (Alexander & Barnet 2007)
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Atmospheres...

T° fluctuations from a 2D model of a storm
km (Alexander & Barnet 2007)
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How are waves excited?
How and what do they propagate?
What are their consequences?



Atmospheres...

Gravity wave generation by convection
(e.g. Ansong & Sutherland 2010)

mechanical oscillator deep forcing
effect
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Atmospheres...

* Gravity waves affect the global energy budget
» have to be included in general circulation models for
accurate predictions of global weather patterns
» coarse grids with long time steps => parameterization

* Gravity waves carry momentum:
» Breaking and mixing
» Non-linear interactions generate zonal flows
e.g. quasi-biennial oscillation (e.g. Plumb 1977)
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Atmospheres...

+ Gravity waves affect the global energy budget
» have to be included in general circulation models for

accurate predictions of global weather patterns
» coarse grids with long time steps => parameterization

* Gravity waves carry momentum:
» Breaking and mixing
» Non-linear interactions generate zonal flows
e.g. quasi-biennial oscillation (e.g. Plumb 1977)

anti-diffusive effect, accentuating anqular velocity gradients...
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Stars...

Same questions in stellar interiors...

—
A
<
<
4
S
©
.
S




Stars...
Same questions in stellar interiors...
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Stars...
Same questions in stellar interiors...

3D numerical simulations of
the Sun by Alvan et al. (2012):
time snapshot of the radial
velocity.




Stars...

Gravity waves excited
* at the interface by overshooting plumes

+ within the convective layer by Reynolds stress and
entropy fluctuations
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Stars...

Gravity waves = important diagnostic tool of stellar structure
in asteroseismology

A Kepler “concert” of Red Giant Stars

Oscillations at the surface

S

Changes in the propagation
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Stars...

Gravity waves = important diagnostic tool of stellar structure
in asteroseismology

Gravity waves transport energy and momentum:
* mixing, enhancing diffusion (e.g. observed lower Li
abundance in F-stars, Charbonnel & Talon 2005)

+ increased light flux and mass loss at the surface of
massive starts (Quataert & Shiode 2012)

+ selective damping because of symmetry breaking by
rotation
=> angular momentum deposit and modification of
rotation profile.



Stars...

Axisymmetric numerical simulations by
Rogers et al. (2012)

Angular velocity
Red = prograde
Blue = retrograde

1.64 2.46 . 4.10

Time (107s)

Time snapshots of vorticity at different times
White = positive vorticity, black = negative vorticity

IGWs generally have an anti-diffusive effect,
accentuating angular velocity gradients...



Stars...

Axisymmetric numerical simulations by
Rogers et al. (2012)

Angular velocity
Red = prograde
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"Internal” mechanism for explaining the observed
misalignment between extrasolar planets and their
hot host stars



Earth's core...

Standard model :
+ convective motions in the outer core
=> mixing => adiabatic T° and well-mixed composition.
+ growth of (nearly) pure iron inner core by crystallization
* energy budget = age of the inner core.

NAubert IPGP



Earth's core...

But
* ill-constrained composition of the core
= Density jump and temperature at ICB?
= Radiogenic heating?
« CMB heat flux over time? Present T°(3800-4200K)?
+ Extremely tight energy budget to drive convection:
density difference dp/p~10-°
OT gterat ~ 104 at CMB (Hirose et al 2013)
* Physical constants? (e.g. thermal conductivity)

possibility of stably stratified regions
+ at the bottom and/or top of the outer core
* at infermediate depth...



Earth's core..

Hirose et al. 2013

Consequences on the geomagnetism?



Open questions...

Turbulent convective
patterns

* character of the wave field?
+ amount of energy/momentum carried away?
- possible retro-action on the turbulence?

* Global intfegrated model & non-linear couplings
« Turbulence, stratification and waves

+ Length and time scales spanning many orders of magnitude

» Numerics = very challenging
» Experimental study and analytical model



Basics of gravity waves...

A

Background Fluid linearly stratified with
it density profile p=p,(1-N2/g.2),
N being the buoyancy
frequency
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Basics of gravity waves...

/ Generalisation: looking for
plane wave solutions of the
' linearised Navier-Stokes
equations

solutions = gravity waves
(u'p'):(uo,pu, ) eilk.r-ot)

: i ; 2 Zicolia i)
dispersion relation @~ =N"sin"(y)

Group velocity L . Ow — 0
perpendicular to wavevector ok




Emission from a localized source
1 Energy propagation...
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Basic results from ray theory
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Basic results from ray theory
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Basic results from ray theory
Including diffusive effects..

, w+ vk’
Diffusive dispersion relation: (iw+vk3)' +N? (I,m ! )A =0
(1(u+l{k“)

Knowing the source signal (i.e.  and k, at z=0), we solve for k,

uzuoei(k.r-a)t) e—Art(v,K,y)z



Basic results from ray theory

Wave amplitude at a given depth z as a function of ®
starting from a uniform excitation
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Basic results from ray theory

1 Extended source = superimposition of all
contributions from local sources...
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Basic results from ray theory

Extended source = superimposition of all
contributions from local sources...
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Validation in a simple, “self-organized”,
experimental system?



Convection in water around 4°C..

Water = maximum density at 4°C
(Townsend 1964)




Convection in water around 4°C...

Dimensions: 20 x 4 x 35 cm3



Convection in water around 4°C...

* Local T° measurements = high precision thermistors
* PIV measurements in the convective and stratified zones

Ra ~ 2x107 - 2x108



Convection in water around 4°C..
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Convection in water around 4°C..

~ 3 days... "
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Convection in water around 4°C..
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Convection in water around 4°C..
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PIV measurements

Interface location
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Wave field
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Wave field
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Wave f.eld Linear diffusive theory with k, ~ f0¢
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Excitation mechanism?

Convective jldatve

convective
updraft
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Excitation mechanism?
Numerical simulation...

Dedalus

D. Lecoanet (Ber'keley) K. Burns (MIT), J. Oishi (AMNH/
SUNY Far'mmgdale) Br'own (Colorado), G. Vasil (Sydney)

Open-source
'y &/ Python
‘"5 Very flexible equations
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Excitation mechanism?
Numerical simulation... « 126045
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Excitation mechanism?
Simulation of the simulation: use full simulation data
as inputs for simplified model simulations

Deep Forcing (Lighthill)

Split full solution into linear
convective and linear wave modes:

u:uc+at€ C@

Project onto linear wave mode:

Turbulent fluctuations

VAo~ N*(a)Vig =5 U

l from water simulation ‘




Excitation mechanism?

Simulation of the simulation: use full simulation data
as inputs for simplified model simulations

Interface fluctuations

No source term, but force
boundaries

V202¢, — N%(2)V2 ¢, =0

Boundary condition:
fz (.’B, Zint) — Zint (f) — Zint

Convective \radiative

convective
updraft
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full sim source
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full sim
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Interface forcing = over excite high frequency
waves because assume the excitation to be
« impulsive » penetration of plumes,
but real excitation = « sweeping » motion of
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Conclusions

A stratified region above/below a turbulent one is not
motionless, but carries part of the energy

+ Required = statistics of the convective source
* then wave amplitude and frequency selection depend on
diffusive processes

* Main excitation mechanism = Reynolds stress... Can use this
to analytically estimate result for more turbulent cases
(e.g., stars, see Lecoanet & Quataert 2013)

+ Coming studies:
» generation of a mean flow? Generalization of the QBO...
» effect of global rotation...



Conclusions

» Generalization to other turbulence sources...
e.g. boundary fturbulence in librating planets
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