Minimal Models for Precipitating Turbulent Convection

Q. Deng^a, NYU Abu Dhabi G. Hernandez-Duenas^b, UNAM
A. Majda, Courant S. Stechmann, UW-Madison
L.M. Smith, UW-Madison

Contours of rain water in a simulated squall line

^aNSF 1008396 ^bCMG 1025188 Find the simplest possible model that captures convective organization at many different length scales, for example

vortical hot towers: tall cumulonimbus clouds roughly 10 km (horizontal) by 15-20 km (vertical)

squall lines: horizontal scales \approx 200 km

convectively coupled waves: horizontal scales \approx 2000 km

Examples from Observations

Satellite data of "hot towers" during Hurricane Bonnie 1998: colors correspond to surface precipitation; 18 km high; \approx 10 km wide.

Examples from Observations

Radar image of a squall line near Hong Kong, roughly 200 km long, propagates normal to the line

- Derivation of the minimal model
- Test case: squall lines

 Dynamic stability analysis; relation to thermodynamic stability

The Anelastic Equations with Warm-Rain Bulk Cloud Physics

$$\frac{D\mathbf{u}}{Dt} + f\sin(\phi)\mathbf{u}_{h}^{\perp} = -\nabla\left(\frac{p'}{\tilde{\rho}(z)}\right) + \mathbf{k} g\left(\frac{\theta'}{\tilde{\theta}(z)} + \varepsilon_{o}q_{v} - q_{c} - q_{r}\right)$$

$$\nabla \cdot (\tilde{\rho}(z)\mathbf{u}) = 0, \quad \frac{D\theta'}{Dt} + w \frac{d\tilde{\theta}(z)}{dz} = \frac{L\tilde{\theta}(z)}{c_p \tilde{T}(z)} (C_d - E_r)$$

 $\rho(\mathbf{x},t) = \tilde{\rho}(z) + \rho'(\mathbf{x},t),$ with $\tilde{\rho}(z)$ prescribed, etc; valid for $H \approx -\tilde{\rho}(d\tilde{\rho}/dz)^{-1}$ (the density scale height)

$$\frac{Dq_v}{Dt} = -C_d + E_r, \quad \frac{Dq_c}{Dt} = C_d - A_r - C_r$$

$$\frac{Dq_r}{Dt} - \frac{1}{\tilde{\rho}(z)} \frac{\partial}{\partial z} (\tilde{\rho}(z) V_T q_r) = A_r + C_r - E_r$$

 C_d : Condensation $q_v \to q_c$, E_r : Evaporation $q_r \to q_v$

 A_r , C_r : Auto-conversion and Collection $q_c \rightarrow q_r$

 V_T : Rainfall velocity

- Boussinesq $H \ll -\tilde{\rho}(d\tilde{\rho}/dz)^{-1}$ (not true here!), eliminates prescribed backgrounds
- Fast Auto-Conversion of cloud to rain water (in reality 15 minutes), eliminates q_c, A_r, C_r
- Fast Condensation (in reality a few seconds) and Fast Evaporation

The Boussinesq Approximation

un-differentiated background replaced by constants

$$\frac{D\mathbf{u}}{Dt} + f\sin(\phi)\mathbf{u}_h^{\perp} = -\nabla p' + \mathbf{k} g\left(\frac{\theta'}{\theta_o} + \boldsymbol{\epsilon_o}\boldsymbol{q_v} - \boldsymbol{q_r}\right)$$

$$\nabla \cdot \mathbf{u} = 0, \quad \frac{D\theta'}{Dt} + \frac{d\tilde{\theta}(z)}{dz}w = \frac{L}{c_p}(C_d - E_r)$$

 $\theta = T(p_o/p)^{R/c_p}$

R, R_v gas constant for air, vapor; $R_v/R = \epsilon_o + 1$

Equations for water vapor and rain

$$\frac{Dq_v}{Dt} = -(C_d - E_r), \quad \frac{Dq_r}{Dt} - V_T \frac{\partial q_r}{\partial z} = C_d - E_r$$

$$C_d - E_r = 0, \quad q_v \le q_{vs}, \quad q_r = 0$$
 unsat

$$C_d - E_r = -w \frac{dq_{vs}(z)}{dz}, \quad q_v = q_{vs}, \quad q_r > 0 \text{ sat}$$

 $q_{vs}(T,p) \approx q_{vs}(z)$ is the saturation profile

 $C_d - E_r > 0$:

$$\frac{D\theta'}{Dt} + Bw = \frac{L}{c_p}(C_d - E_r)$$
$$\frac{Dw}{Dt} = -\frac{\partial p}{\partial z} + g\left(\frac{\theta'}{\theta_o} + \varepsilon_o q_{vs} - q_r\right)$$

Standard values: $L^d \approx 2.5 \times 10^6 \text{ J kg}^{-1}$, $c_p \approx 10^3 \text{ J kg}^{-1} \text{ K}^{-1}$, $\theta_o = T_o = 300 \text{ K}$, $d\tilde{\theta}(z)/dz \equiv B = 3 \text{ K km}^{-1}$, etc.

Contours of Water Vapor Anomaly ($128 \times 128 \times 15 \text{ km}$ **)**

Moisture anomaly contour $(1.2 \times 10^{-3} \text{ kg/kg})$ in a Vortical Hot Tower; 30 min after moisture bubble injection at low altitude

Either Unsaturated:

$$q_v < q_{vs}$$
: $q_r = 0$, $q_{tot} = q_v$

Or Saturated:

 $q_v = q_{vs}$: $q_r = q_{tot} - q_{vs}$

$$q_{\rm tot} = q_v + q_r$$

Using
$$\theta_e = \theta + \frac{L}{c_p} q_v$$
, q_{tot} :
 $\frac{D\theta_e}{Dt} = 0$, $\frac{Dq_{\text{tot}}}{Dt} - V_T \frac{\partial q_r}{\partial z} = 0$

no explicit source terms

Similar models for non-precipitating, shallow convection; q_r replaced by q_c : Grabowski & Clark 1993; Spyksma, Bartello & Yao 2006; Pauluis & Schumacher 2010

Environmental conditions

• Low-altitude moistening, e.g. over a warm ocean

Scattered convection; 3D contours of rain water

A background wind will organize the convection:

A squall line

Fred Roswald & Judy Jensen, http://wingssail.blogspot.com, 0337-SquallApproachesSumatra.jpg

More Characteristics of Squall Lines (Wallace & Hobbs, 2006)

- Long lasting multi-cell storm
- Tilted profile
- Propagate long distances (Houze 2004)
- Low-altitude cold pool

Observations, e.g. during GATE: Barnes & Sieckman 1984; during TOGA COARE: Jorgensen, LeMone & Trier 1997; LeMone, Zipser & Trier 1998; Review: Houze 2004.

CRMs: Fovell & Ogura 1988; Lafore & Moncrieff 1989; Grabowski, Wu & Moncrieff 1996, 1998; Xu & Randall 1996; Lucas, Zipser & Ferrier 2000; Lu & Moncrieff 2001

Conceptual & Minimal Models: Moncrieff & Green 1972; Moncrieff & Miller 1976; Moncrieff 1981; Emanuel 1986; Rotunno, Klemp, Weisman 1988; Majda & Xing 2010

FARE squall line: 3D Contours of Rain Water

Vertically averaged rain, Low-level cold pool

 θ at T=33.6 hrs, z =0.6 km

Time Evolution

Propagates at the speed of the jet max (black dash)

Multi-cloud structure

q_r contours. Time integration on [24,25.92] hrs

Stability: what is the probability for clouds/precipitation to form?

Thermodynamic stability: parcels rising adiabatically, equilibrium thermodynamics

Dynamic stability: linear/nonlinear stability analysis of the dynamical equations

Rising Dry vs Moist Parcels

Thermodynamic Concept of Conditional Stability

FARE with a saturated background gives the same right stability boundary:

 $\Gamma_e = (g/\theta_o) d\tilde{\theta}_e/dz > 0, \quad \theta_e = \theta + (L/c_p)q_{vs}$

sufficient for stability;

as well as a left boundary sufficient for instability in the saturated case.

Stability Diagram; fixed $q_{vs}(z)$ profile

Grey denotes unstable scales; left of red line guaranteed unstable: $\Gamma = (g/\theta_o)d(\tilde{\theta}_e - \theta_o \tilde{q}_t)/dz < 0$ right of blue line guartd. stable: $\Gamma_e = (g/\theta_o)d\tilde{\theta}_e/dz > 0$, [E86]

Growth rate of the unstable eigenmode

Fixed background temp/saturation gradients; $k_z = 2\pi/15 \text{ km}^{-1}$

• Numerically find $\Gamma < 0$, $\Gamma_e > 0$ as sufficient conditions

• Analytically $\Gamma = 0$ is the single stability boundary for $V_T = 0$ (a singular limit)

• Analytically $\Gamma_e = 0$ is the single stability boundary for $V_T \to \infty$ (nonlinear asymptotics)

Singular limit $V_T = 0$

Left: $V_T = 0 \text{ m s}^{-1}$; Right: $V_T = 0.01 \text{ m s}^{-1}$; Grey = unstable; $k_z = 2\pi/15 \text{ km}^{-1}$, $B = 3 \text{ K km}^{-1}$.

Equation Structure: Saturated with $V_T = 0$ or $V_T \rightarrow \infty$

$$\frac{D\mathbf{u}}{Dt} = -\nabla p + \hat{\mathbf{k}}b', \quad \frac{1}{w}\frac{Db'}{Dt} = -\Gamma \ (-\Gamma_e)$$

with positive definite energy for $\Gamma > 0$:

$$E = \frac{1}{2} \left(||\mathbf{u}||^2 + \frac{(b')^2}{\Gamma} \right)$$

and eigenvalues $\sigma^{\pm} = \pm (k_h/k)\Gamma^{1/2}$

• Dry:
$$b' = g\theta'/\theta_o$$
, $\Gamma_{dry} = N^2 = (g/\theta_o)d\tilde{\theta}/dz$

• Saturated, $V_T = 0$: $b' = g(\theta'_e/\theta_o - q'_t)$

• Saturated, $V_T \rightarrow \infty$: $b' = g\theta'_e/\theta_o$

Energy Conservation in Saturated Regimes, $V_T \neq 0$

$$\partial_t E + \nabla \cdot \left(\mathbf{u}(E+p) \right) = V_T \partial_z \left(\frac{(gq'_r)^2}{2(\Gamma - \Gamma_e)} \right)$$
$$E = \frac{1}{2} \left(||\mathbf{u}||^2 + \frac{(g\theta'_e/\theta_o)^2}{\Gamma_e} + \frac{(gq'_r/\theta_o)^2}{\Gamma - \Gamma_e} \right)$$

positive definite for

$$\Gamma_e = \frac{g}{\theta_o} \frac{d\tilde{\theta}_e}{dz} > 0$$

 $\Gamma - \Gamma_e$ strictly greater than zero

 The FARE model ignores detailed cloud physics, but retains conservations laws for

$$q_{\text{tot}}, \quad \theta_e = \theta + \frac{L}{c_p} q_v$$

(why it "works")

 Provides a framework for linear and nonlinear analysis FARE adds V_T to a concept of "conditional instability" in a saturated domain

Next: Derivation of a Moist Balanced Dynamics (the vortical mode + the moisture mode)?

Nonlinear energy analysis

$$\frac{\partial}{\partial t} \left(\frac{\mathbf{u} \cdot \mathbf{u}}{2} + \Pi \right) + \nabla \cdot \left[\mathbf{u} \left(\frac{\mathbf{u} \cdot \mathbf{u}}{2} + \Pi + p \right) \right] - \frac{\partial}{\partial z} \left[V_T g(z - a) q_r \right] = -V_T g q_r$$

$$\Pi(\theta_e, q_t, z) = -\int_a^z \frac{g}{\theta_o} \ \theta_v(\theta_e, q_t, \eta) \ d\eta$$

$$\theta_v = \theta_v(\theta_e, q_t, z) = \theta_e - \theta_o q_t + \theta_o \left(\epsilon_o - \frac{L}{c_p \theta_o} + 1\right) \min(q_t, q_{vs}(z)).$$

 θ_v linear virtual potential temperature; integration assumes θ_e , q_t fixed; a arbitrary reference height with $q_{vs}(a) = 0$.