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scales (i.e., the microscale), or through global warming attributable to addition-
al greenhouse gases. These perturbed clouds include possibly all tropospheric 
clouds, including contrails which are a direct consequence of anthropogenic 
infl uences, and may include polar stratospheric clouds as well.

What are the practical considerations of this network? For individual mod-
els that can encompass at most three orders of magnitude of spatial (horizontal) 
scales, we need to rethink carefully how to use these in the network. On the 
smallest scale, direct numerical simulations (DNS) are used, ranging from the 
millimeter scale to the 1-meter scale. Large eddy simulations (LES) resolve 
partly the turbulence and the individual clouds up to a scale of 100 km but need 
to parameterize microphysics and small-scale turbulence. At the next level, 
cloud-resolving models (CRMs) address cloud clusters up to scales of 1000 
km, but these require additional parameterized turbulence and clouds for more 
coarse CRMs in the boundary layer (see Grabowski and Petch, this volume). 
On the largest scale, general circulation models (GCMs) are employed. They 
have the obvious advantage of not requiring lateral boundary conditions; how-
ever, as they operate at resolutions of typically 100 km, they fail to represent 
explicitly most of the cloud-controlling factors and essential cloud processes. 
Perhaps surprisingly, the effects of perturbed clouds in our climate system 
have been primarily studied by using these GCMs. One important theme that 
emerged from our discussions is the need to develop a more optimal use of 
this hierarchical network of models to answer questions on the representa-
tion of clouds in our climate system. This is a diffi cult task, as we do not 
yet understand completely how the various interactions propagate across the 
many scales.

Similar arguments hold for experimental research, which ranges from small-
scale laboratory experiments that address microphysical issues to large-scale 
fi eld experiments and global satellite observations.
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Figure 12.1 Depiction of the continuum  of  relevant  cloud-related processes across 
the full range of spatiotemporal scales,  showing  the  underlying  categorical  behavior 
(gray text) from which processes emerge.
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“I soon understood that there was little hope of developing 	


a pure, closed theory, and because of absence of such a theory	


the investigation must be based on hypotheses obtained 	


on processing experimental data.” 	
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level. They are denoted by black color, representing
areas where the SQG theory is consistent with the ob-
servations. The type-2 regions, denoted by dark gray
color, are the places where the spectral slopes are sig-
nificantly steeper than211/3. The type-3 regions, denoted
by light gray, are the places where the spectral slopes are
significantly flatter than 211/3 but steeper than 22. The
type-4 regions, denoted by white, are the places where
the spectral slopes are flatter than 22.
The type-1 regions are generally near the edge of the

core of the major current systems. After removing the
noise, the areas of the type-1 regions have largely in-
creased around the Gulf Stream and the Kuroshio cur-
rent systems, and they appear more connected around
the ACC. Note that much of the type-1 regions in the
ACC have changed to type-2 after removing the noise.
The type-2 regions have significantly expanded in the new
map,mainly in the core regions of themajor ocean current
systems. The spectral slopes in these regions are steeper
than the SQG theory but flatter than the original geo-
strophic turbulence theory. They are fairly close to k24,
consistent with a k22 kinetic energy spectrum of an
ocean dominated by the presence of fronts (Boyd 1992).
The type-3 regions, covering the extratropical areas

outside the major current systems, have expanded after
removing the noise, with slopes steeper than 22 every-
where poleward of the 208 latitudes. The type-4 regions
have retreated to topical areas within the 20 latitude
degrees, where the slopes are much steeper than the
original values after removing the noise, changing from
the range of [20.7–2] to the range of [21.5–2.5].

4. Conclusions

Using nearly simultaneous observations from two al-
timeters we found that the white noise level of altimeter
instrument noise was best estimated from the SSH
spectral values at wavelengths of 25–35 km. The white
noise spectrum can simply be subtracted from the SSH
wavenumber spectrum to minimize the effects of in-
strument noise in the spectral estimates. Using this ap-
proach, we have recomputed the spectral slopes of SSH
wavenumber spectrum and obtained a newmap showing
the global variability of SSH wavenumber spectral
slopes. Although the geographic pattern of the vari-
ability is similar to the previous results reported in Xu
and Fu (2011), the spectral slopes have become signifi-
cantly steeper everywhere.
A major new result is that the spectral slopes are gen-

erally steeper than k22 poleward of the 208 latitudes,
where spectral slopes flatter than k22 have been previously
found in many regions, causing problems in interpreting
the resultant ‘‘blue’’ geostrophic velocity spectrum. In the
core regions of the major ocean current systems where the
eddy energy is high, the spectral slopes have values be-
tween the predictions of the original geostrophic turbu-
lence theory (k25) and the surface quasigeostrophic theory
(k211/3). This new result suggests that the ocean dynamics
in these regions at wavelengths of 70–250 km may be
governed by frontogenesis. The spectral slopes in the re-
gions equatorward of 208 are also steeper than the pre-
vious estimates. Ageostrophic dynamics may be required
to account for the relatively flat spectral slopes.

FIG. 4. Four types of regions in terms of the spectral power law (left) before and (right) after removing the noise.
The black color represents the type-1 regions where the spectral slopes are consistent with the k211/3 power law, the
dark gray color represents the type-2 regions where the spectral slopes are steeper than k211/3, the light gray color
represents the type-3 regions where the spectral slopes are between k211/3 and k22, and the white areas are type 4
where the spectral slopes are flatter than k22.
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EV(k) ~ kx: Black: k-5/3  (``SQG’’): edge of major currents w. high eddy energy	


                 Dark grey: spectrum significantly steeper than -5/3: k-2? Fronts?	


                 Light grey: spectrum flatter than -5/3 but steeper than 0	


                 White: k0 or more	
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spectrum at these wavelengths is caused by the effect of
the instrument noise. To our surprise, the effect of the
instrument noise is substantial even in a region of high
eddy energy with steep spectral slope as illustrated by
this case.
Using the method of Xu and Fu (2011) we remapped

the global SSH spectral slope after removing the noise
and compared it with the original calculation (Fig. 3). As
in Xu and Fu (2011), the areas poleward of 608S and
608N are excluded from the study to avoid the ice in-
fluence on the SSH measurements. The wavelength
range of 70–250 km was selected for computing the
spectral slope. Despite the differences in the values of
spectral slope, the geographic patterns of the two maps
are similar to each other even in some details. After
removing the noise, the spectral slopes have generally
become steeper than the previous estimates, especially
in regions of low eddy energy away from the major
ocean currents. The most important new result is that
the spectral slopes are generally steeper than k22 pole-
ward of the 208 latitudes. The previous results in some
high-latitude regions such as the northeast Pacific and
southeast Pacific show spectral slopes flatter than k22,
implying ‘‘blue’’ spectra in geostrophic velocity, which
are unphysical. These features have been removed in
the new map. Spectral slopes flatter than k22 are present
only in low-latitude regions at places where ageostrophic
effects may become important.
In the high eddy energy regions associated with

the major ocean currents, the slopes become slightly
steeper. These regions include the core regions of the
Gulf Stream, the Kuroshio Extension and the Antarctic
Circumpolar Current (ACC) systems, the Brazil–Malvinas

Confluence, and the Agulhas Current. The steepest
spectral slope of the global ocean is 24.5 6 0.12 (see
error estimation method in Xu and Fu 2011), which is
significantly flatter than the k25 power law predicted by
the original geostrophic turbulence theory (Charney
1971), suggesting that the observed SSH spectral slopes
are flatter than the prediction of the geostrophic turbu-
lence theory everywhere in the ocean.
Recent theoretical work has suggested the rele-

vance of the surface quasigeostrophic (SQG) theory for
interpreting altimeter observations (Held et al. 1995;
Capet et al. 2008; Le Traon et al. 2008). This theory
predicts k211/3 power law for SSH spectrum. To explore
the consistency of the observed spectral slopes with the
SQG theory, Fig. 4 exhibits the distribution of four
categories of regions according the spectral slopes. The
type-1 regions are the areas where the spectral slopes are
indistinguishable from 211/3 within the 95% confidence

FIG. 2. The wavenumber spectrum from Jason-1 altimeter ob-
servations before (black) and after (blue) removing the noise. The
spectra were calculated from the data within a box 108 3 108 box
centered at (2528N, 2408E). The red lines are linear fits in the
wavelength range of 70–250 km. The values of spectral slope are
noted.

FIG. 3. The global distribution of the spectral slopes of SSH
wavenumber spectrum in the wavelength band of 70–250 km esti-
mated from the Jason-1 altimeter measurements (a) before and (b)
after removing the noise. The sign of the slopes was reversed to
make the values positive.
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Fig. 7. Skewness at 850 hPa for the synoptic-scale fluctuations of zonal (a, b) and meridional (c, d) wind and the zoomed plots for 850 hPa of the
zonal wind in the North Atlantic (e) and of the meridional wind in the South Pacific (f) for January (a, c, e) and July (b, d, f).

meridional winds from a Gaussian process in all the discussed
above regions with high values of Su′ and Sv ′ , since the absolute
values of Sst,u′ and Sst,v ′ in those regions are larger in magnitude
than 2.

In our paper, we do not analyse the synoptic-scale vorticity
skewness Sζ ′ . The field of Sζ ′ (not shown in the paper) appears to
be much more patchy, as compared to Sω′ , Su′ and Sv ′ fields, which
makes it doubtful the estimation of the statistical significance of
the deviation of the synoptic-scale vorticity from the Gaussian
process. This is because the initial ERA40 reanalysis data on
the vorticity are rather noisy and reflect much more small-scale
features than those on the horizontal winds (Bengtsson et al.,
2004b). For that reason, the cyclone/anticyclone asymmetry, as
an example, which is expected to be well traced by Sζ ′ , is actually
not distinctly followed by this field, as opposed to Sω′ .

3.1.5. Summary of the results on skewness of the synoptic-
scale variations. The comparison of Figs. 1a, b, 3a, b, 5a, b
and 7a, b clearly points to dissimilar geographic patterns for
the skewnesses of the synoptic-scale vertical velocity, tempera-
ture, specific humidity, and horizontal winds. This, in particular,
casts some doubts upon the occurrence of the universal spa-
cial scale for the synoptic eddies (and the accompanying baro-
clinic zones), for all the discussed above variables, specifically
in the atmosphere with different moisture content in different
regions.

In the foregoing, we discussed some probable reasons for
non-Gaussianity of the synoptic-scale skewnesses of the con-
sidered variables. However, we can by no means exclude the
alternative explanations for a non-Gaussian character of the free-
troposphere synoptic component. We have already mentioned a

Tellus 60A (2008), 1

Gaussian	
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Fig. 7 Power spectra k S(k) of vertical velocity (w), and Temperature (T ) versus wavenumber k. Left panels
(a, b) show spectra from SBL2 (low wind), right panels (c, d) show spectra from SBL6 (high wind). Spectra
shown in the upper panels (a, c) are calculated for the highest flight levels at 160 m an 130 m, respectively.
Lower panels (b, d) are calculated from the lowest flight levels at 30 m. The dotted straight line gives the
inertial subrange k−2/3 slope

In the same case, but at the highest flight level at 130 m (Fig. 7a) the structure is basically
the same, but the intensity at the wave motion scale is slightly reduced.

In case SBL6, due to higher near-surface winds, turbulence intensity on the small-scale
is increased by a factor 10 (Fig. 7d), compared to SBL2. This indicates much stronger small
scale turbulence, being apparently mechanically generated. The spectral gap between wave-
scale and small-scale motions in this case is shifted to about k = 2 × 10−3 m−1. In case
SBL6, spectra at the highest flight level at 160 m are almost identical to case SBL2.

In both cases, the frequency of the spectral gap at the lowest level matches well with
the wavelengths corresponding to the Brunt-Väisälä frequency estimated from the measured
vertical temperature gradients (SBL2: ≈ 90 m; SBL6: ≈ 450 m).

The multi-resolution decomposition by Vickers and Mahrt (2003) is an excellent method to
separate turbulent and mesoscale contributions to the calculated fluxes of heat and momentum.
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Waves matter: Energy decay (fu=0), 5123 resolutions, 
no rotation, Re~ 3000, Fr~ 0.02, RB~1   
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FIG. 7. (Color online.) Temporal evolution of the total energy, with di↵erent scaling laws given

as indications. ABC flow (run 7, solid, black), ABC2C flow (run 3, dash-dotted, green), and TG

flow (run 1, dashed, blue), the latter two having initially vz = 0. All runs have Re ⇡ 3000 and

Fr ⇡ 0.02 except for the ABC flow with N = 0 which is shown for comparison with a dotted (red)

line (run 6, ABCN0). Note the particularly slow decay for ABC runs 3 and 7.

We now turn our attention to the temporal evolution of energy. We display in Figs. 7 and

8 the decay of the total energy for a variety of initial conditions and Froude numbers (see

captions for details). Computations are performed for roughly 30 turnover times (and thus,

for 3000 Brunt-Väıssälä periods, for Fr = 0.01); some power-laws are added to guide the eye.

When examining separately the temporal decay of the potential and kinetic energy, they

evolve in similar ways but with strong oscillatory energy exchanges, while the oscillations

due to gravity waves disappear when considering the total energy.

In Fig. 7 it is striking to notice that the decay of energy can be very di↵erent for di↵erent

flows with the same external parameters (i.e., Reynolds and Froude numbers). If t⇤ is the

time at which dissipation sets in, that is, the maximum of enstrophy, the decay in the

absence of stratification would follow a ⇠ (t⇤ � t)�2 law (dotted line) given that the growth

of the integral scale is prevented by being in a “box-limited” case, that is k0 ⇡ kmin = 1.

Considering the non-helical TG flow, the decay seems to follow a power-law ⇠ (t⇤ � t)�1,

after an initial ideal (inviscid) phase. This result is expected on the basis of slowing-down

21
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II. NUMERICAL SET-UP

A. Equations

The Boussinesq equations in the presence of solid body rotation, for a fluid with velocity u, vertical velocity
component w, and density (or temperature) fluctuations ⇢, are:

@u

@t
+ ! ⇥ u+ 2⌦⇥ u = �N⇢êz �rP + ⌫r2u , (4)

@⇢

@t
+ u ·r⇢ = Nw + r2⇢ , (5)

together with r · u = 0 assuming incompressibility. P is the total pressure and êz is the unit vector in the vertical
direction which is in the direction of the imposed rotation and opposed to the imposed gravity; therefore, ⌦ = ⌦ẑ.
The initial conditions for the velocity are centered on the large scales, with excited wavenumbers k0 2 [2, 3] and
isotropic with random phases. In the absence of dissipation (⌫ = ⌘ = 0), the total energy ET = EV +EP is conserved,
with EV = 1

2

⌦
|u|2

↵
and EP = 1

2

⌦
⇢2
↵
respectively the kinetic and potential energies; the point-wise potential vorticity

is also conserved. Lastly, EP = 0 initially.
When linearizing the above equations in the absence of dissipation, one obtains inertia-gravity waves of frequency

!k = k�1
q

N2k2? + f2k2k , (6)

with k =
q

k2? + k2k, k? =
q

k2x + k2y, and kk = kz, respectively the total, horizontal (or perpendicular), and vertical

(or parallel) wavenumbers (see, e.g., [20, 43]). Fourier spectra will be built-up from their axisymmetric counterparts
defined from the two-point one-time velocity covariance U(k) (see, e.g., [2])

eV (|k?|, kk) =
X

k?|k⇥ẑ|<k?+1
kkkz<kk+1

U(k) =
R
U(k)|k| sin ✓d� = e(|k|, ✓) = e(k, ✓) ; (7)

here � is the longitude with respect to the kx axis and ✓ the co-latitude in Fourier space with respect to the vertical
axis. The function eV (k?, kk = 0) may be regarded as the spectrum of two-dimensional (2D) modes, having no vertical
variation. Note that for an isotropic flow, at a given point k in wavenumber space, the ratio of the axisymmetric
spectrum eV (|k?|, kk) to the isotropic spectrum is ⇠ 1/|k| because the size of the volume element in the isotropic
case contains an additional (integrating) factor of |k| compared to the axisymmetric case. Hence, if the axisymmetric
spectrum behaves as k�↵

? , then the corresponding isotropic scaling will be k�↵+1. The spectrum eV (|k?|, kk) can also
be decomposed into the kinetic energy spectrum of the horizontal components (velocity components u and v), and of
the vertical kinetic energy (velocity component w):

eV (|k?|, kk) = e?(|k?|, kk) + ek(|k?|, kk) . (8)

In the following we will also consider the reduced perpendicular spectrum [44]

EV (k?) = ⌃kkeV (k?, kk) , (9)

the reduced parallel spectrum EV (kk) (which has a sum over k?), and the spectrum representing the perpendicular
energy of the strictly three-dimensional (3D) modes:

E3D(k?) = EV (k?)� eV (k?, kk = 0) . (10)

Similar definitions hold for the helicity and potential energy spectra, hV (k?, kk) and eP (k?, kk), their reduced forms,
HV (k?) and EP (k?), as well as their 3D expressions (i.e., the perpendicular spectra of the 3D modes), HV,3D(k?)
and EP,3D(k?). They will be analyzed in the following sections.

B. Specific numerical procedure

The code used in this paper is the Geophysical High Order Suite for Turbulence (GHOST), which is fully parallelized
using a hybrid methodology [45]. It uses parallel multidimensional FFTs in a pseudo-spectral method for 2D and 3D

Incompressible Boussinesq equations	
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Evidence for Bolgiano-Obukhov scaling in rotating stratified turbulence using
high-resolution direct numerical simulations
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We report results on rotating stratified turbulence in the absence of forcing, with large-scale
isotropic initial conditions, using direct numerical simulations computed on grids of up to 40963

points. The Reynolds and Froude numbers are respectively equal to Re = 5.4⇥104 and Fr = 0.0242.
The ratio of the Brunt-Väisälä to the inertial wave frequency, N/f , is taken to be equal to 4.95,
a choice appropriate to model the dynamics of the southern abyssal ocean at mid latitudes. This
gives a global buoyancy Reynolds number RB = ReFr2 = 32, a value su�cient for some isotropy
to be recovered in the small scales beyond the Ozmidov scale, but still moderate enough that
the intermediate scales where waves are prevalent are well resolved. We concentrate on the large-
scale dynamics, for which we find a spectrum compatible with the Bolgiano-Obukhov scaling, and
confirm that the Froude number based on a typical vertical length scale is of order unity, with strong
gradients in the vertical. Two characteristic scales emerge from this computation, and are identified
from sharp variations in the spectral distribution of either total energy or helicity. A spectral break
is also observed at a scale at which the partition of energy between the kinetic and potential modes
changes abruptly, and beyond which a Kolmogorov-like spectrum recovers. Large slanted layers are
ubiquitous in the flow in the velocity and temperature fields, with local overturning events indicated
by small Richardson numbers, and a small large-scale enhancement of energy directly attributable
to the e↵ect of rotation is also observed.

I. INTRODUCTION

Rotating stratified flows are particularly important in the understanding of the dynamics of our planet and the
Sun. Several of the key concepts needed in order to progress in predictions of the weather and in the global evolution
of the climate depend crucially on a fundamental understanding of these flows. At di↵erent scales, di↵erent physical
regimes become salient, and yet all scales interact. The nonlinear advection produces steepening, albeit slowly in
the presence of strong waves. Thus, these fronts and turbulent eddies lead to enhanced dissipation and dispersion
of particles and tracers, a↵ecting the global energetic behavior of the atmosphere and climate systems, for example
for atmospheric synoptic scales, and for oceanic currents, in the latter case modifying the meridional circulation. In
the atmosphere, such e↵ects on energetics can in turn impair assessments of whether a given super-cell can spawn
a tornado, and they a↵ect both the evaluation of hurricane intensity and of climate variability. Rotating stratified
turbulence (RST hereafter) thus plays a crucial role in the dynamics of the atmosphere and oceans, with nonlinear
interactions–responsible for the complexity of turbulent flows–having to compete with the waves due to rotation and
stratification.

All of this takes place in the presence of a variety of other phenomena, including reactive chemical transport,
biological or hydrological processes, as well as large-scale shear and bounday layers for example. One common
approach is to tackle the problem in its entirety and construct a succession of models with increasing degrees of
complexity. Conversely, one can take the simplest problem with what may be the most essential ingredients and
examine the dynamics of such flows from a fundamental point of view, an approach taken in this paper. One of the
inherent di�culties is the fact that such flows are represented, in the dry Boussinesq framework, by four independent
dimensionless parameters, the Reynolds, Froude, Rossby and Prandtl numbers defined as:

Re =
U0L0

⌫
, F r =

U0

L0N
, Ro =

U0

L0f
, Pr =

⌫


, (1)

where U0 and L0 are, respectively, a characteristic velocity and length scale, ⌫ and  are the kinematic viscosity
and scalar di↵usivity (taken to be equal, Pr = 1), N is the Brunt-Väisälä frequency, and finally f = 2⌦ with ⌦
the rotation frequency. Other dimensionless parameters, combinations or variants of these basic ones, are commonly
defined as well (see §II C).

A number of studies have shown, at least in the absence of rotation, that the buoyancy Reynolds number RB =
ReFr2 needs to be large enough for vigorous turbulence to develop in the small scales (see for example the review in
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C. Other dimensionless parameters

As mentioned in the introduction, a variety of dimensionless combinations of relevant physical parameters can be
defined for rotating stratified turbulence, beyond those written in Eq. (1). One of the central limitations to a better
understanding of such flows is the need to unravel what the key parameters are that govern the dynamics. Beyond
the Reynolds, Froude, Rossby and Prandtl numbers, one also considers the ratio N/f , as well as the Froude number
based on a characteristic vertical length scale,

Fz = U0/(`ZN) .

Moreover, the combined e↵ect of turbulent eddies and waves can be encompassed in the buoyancy and rotational
Reynolds numbers, mentioned previously and respectively defined as

RB = ReFr2, R⌦ = ReRo2 . (11)

When RB � 1 in a stratified flow, isotropy recovers beyond the so-called Ozmidov scale. Similarly, in a purely rotating
flow, isotropy recovers beyond the Zeman scale for R⌦ � 1 [2].

The partition of energy between kinetic and potential modes can be measured by their ratio, EV /EP , which is one
possible definition of the Richardson number. Another definition is simply to measure the relative strength of the
buoyancy to the inertial forces, or

Ri = 1/Fr2 .

However, in order to emphasize the role of the development of small scales in mixing, one can also define a (local)
Richardson number based on velocity gradients, Rig, as:

Rig = N(N � @z⇢)/(@zu?)
2 . (12)

This definition suggests that a su�ciently large vertical gradient locally leads to negative values of Rig, which is
consistent with the intuitive picture of overturning when a denser parcel of fluid lies atop a less dense parcel.

D. Run parameters and general characterization

We use N/f = 4.95 with N = 13.2 and ⌦ = f/2 = 1.33 (thus, f = 2.66). The viscosity is chosen to have the
simulation well resolved: ⌫ = 4 ⇥ 10�5. In dimensionless units, the resulting overall energetics of the flow lead to
several scales that are of interest, and to a characterization of the flow in terms of the dimensionless parameters.
Considered at the peak of enstrophy, the characteristic velocity is U0 ⇡ 0.83 and the integral length scale, computed
from Lint = 2⇡

R
EV (k)dk/

R
kEV (k)dk ⇡ 2.6, very close as expected to the scale at which the energy spectrum

initially peaks, namely L0 = 2⇡/k0 ⇡ 2.5. The dissipation rate of kinetic energy is taken from a computation of
kinetic enstrophy at the peak of dissipation: "V = ⌫

⌦
|!|2

↵
⇡ 0.0124 (see Fig. 1(b)). Note that in the isotropic case,

"V = ✏K41 = U3
0 /Lint ⇡ 0.22, but this relation does not hold in the highly anisotropic system we are investigating.

Rather, we can take an estimate coming from weak turbulence, namely ✏K41 ⇤ Fr ⇡ 0.005, within a factor of two
of the measured rate of energy dissipation. The Kolmogorov dissipation wavenumber is computed at the peak of
dissipation to be k⌘ ⇡ 660. The Zeman and Ozmidov wavenumbers are therefore found to be, respectively, k⌦ ⇡ 39
and kOZ ⇡ 431. The buoyancy wavenumber is kB = 2⇡/LB ⇡ 16; the lack of scale separation between k⌦ and kB
suggests that it will be di�cult to distinguish as separate e↵ects those due to rotation and those due to stratification.
The Reynolds number is thus found to be Re ⇡ 5.4⇥ 104, the Froude number Fr ⇡ 0.0242, and the Rossby number
Ro ⇡ 0.12. Consequently, the buoyancy and rotational Reynolds numbers are RB ⇡ 32, and R⌦ ⇡ 775. The
Richardson number is determined to be Ri ⇡ 1700, so the flow is, indeed, found to be strongly stratified.

Finally, we can define a Taylor Reynolds number as R� = U0�/⌫, with � = 2⇡[
R
EV (k)dk/

R
k2EV (k)dk]1/2 the

Taylor scale. In classical homogeneous isotropic turbulence (HIT) R� measures the degree of development of small
scales. At peak of dissipation, � ⇡ 0.31, leading to a rather large R� ⇡ 6400, quite high compared to similar
computations in HIT (e.g., R� ⇡ 1200 in a HIT run at similar grid resolution [7, 8]). This is linked to the fact that, in
the presence of strong waves, the transport of energy to small scales is hindered and not as e�cient, and the energy
spectrum becomes steeper at least at large scales, resulting in a larger Taylor scale for the same viscosity. It is worth
noticing that in the atmosphere the Taylor Reynolds number is estimated to be R� ⇡ 20000, and it may be the case
that realistic simulations of stratified and rotating atmospheric turbulence may be feasible in the near future as a
result of this e↵ect. Finally, note also that the value of R� puts the present computation above the di↵erent thresholds
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gravity forces at scales large enough that nonlinearities
can be neglected; this balance is crucial for weather fore-
casting and simulations of climate change. However, the
consequences of geostrophic balance, as far as helical mo-
tions are concerned, has been mostly ignored except for
the pioneering work of Hide [17]. Helicity was hypothe-
sized to be important in the atmosphere in the dynamics
and persistence of rotating convective storms [18] on the
basis of the weakening of non-linear interactions in the
so-called Lamb vortex u×ω. Helicity is measured in the
context of forecasting storms and tropical tornadoes, in
particular in the presence of strong shear and it can be
used as an indicator of storm occurrence [19].

Since helicity is no longer an invariant in the absence
of dissipation, its presence in these atmospheric storms
must be explained but the physical mechanisms govern-
ing its creation, and the structures associated with it,
remain unclear. In this paper, we perform a paramet-
ric study using direct numerical simulations in which we
vary both rotation and stratification, and we show that
a rotating stratified flow can spontaneously create helic-
ity through a mechanism directly linked to geostrophic
balance at large scales.

II. EQUATIONS AND NUMERICAL PROCEDURE

We integrate the incompressible Boussinesq equations,
with solid-body rotation Ω and gravity g, anti-aligned in
the vertical (z) direction, with b the buoyancy (in units
of velocity), w the vertical velocity, P the pressure, ν
the viscosity, and κ the diffusivity (with unit Prandtl
number, ν = κ):

∂tu+ u ·∇u− ν∆u =−∇P −Nbez − 2Ωez × u ,(1)

∂tb+ u ·∇b− κ∆b = Nw , (2)

∇ · u = 0 . (3)

The Brunt-Väisälä frequency is N = [−g∂z b̄/b]1/2 where
∂z b̄ is the background imposed stratification; the iner-
tial wave frequency is 2kzΩ/k. The code is pseudo-
spectral with periodic boundary conditions in all direc-
tions and unit aspect ratio; it is parallelized with a hybrid
MPI/OpenMP method [20], and has been run on grids of
up to 81963 points (for short times), using up to 98304
compute cores.

The Froude, Rossby and Reynolds numbers are de-
fined, respectively, as

Fr =
urms

NLint
, Ro =

urms

fLint
, Re =

urmsLint

ν
,

with f = 2Ω, and with urms and Lint =
∫

[EV (k)/k]/EV

the rms velocity and integral scale evaluated around the
maximum of enstrophy; EV = 1

2

〈

u2
〉

is the kinetic en-
ergy. These parameters vary in the range 0.006 ≤ Fr ≤
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FIG. 1: Temporal evolution of the total helicity (top) and
enstrophy (bottom), both for Fr ∼ 0.01, N = 12.56, varying
rotation (and thus N/f, see insets). Oscillations are propor-
tional to N and are due to gravity waves (middle).

0.27, 0.012 ≤ Ro ≤ 8.1, and Re ≈ 3000 for grids of 2563

points, and Re ≈ 8000 using 5123 points. Decay is left
to occur for 15 to 30 turn-over times, τNL = Lint/urms.
The initial velocity field is random, with all three compo-
nents non-zero, and it is centered around wavenumbers
k0 = [1, 2]. At t = 0, b = 0, and HV ≈ +0.2. Other
initial values have been used as well to ascertain that the
results are insensitive to them. In the ideal (ν = 0) case,
potential vorticity

PV = −fN + f∂zb−Nωz + ω ·∇b

is a point-wise invariant, and the total (kinetic + poten-
tial) energy ET = EV + EP is conserved as well, with
respective enstrophies (proportional to dissipation when
ν &= 0),

ZV =
〈

ω2
〉

, ZP =
〈

|∇b|2
〉

.

Note that PV is quadratic and thus its L2 norm is not
conserved in general by the truncation; however, the non-
linear term ω · ∇b can be neglected in the presence of
strong rotation and stratification [21].

III. RESULTS

A. The helical version of geostrophic balance

We start from the primitive Boussinesq equations given
above and simplify them using several hypotheses. As-
suming stationarity, weak nonlinearities and small dissi-

Stratification + rotation: geostrophic balance	
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Take the curl of GB à thermal winds (VSHW)	


	


Then, dot with Coriolis force à 	
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FIG. 2: Buoyancy b, 5123 grid, Fr = 0.11, Ro = 0.40 (left) and Fr = 0.025, Ro = 0.05 (right); vertical is given by blue arrow;
blue and green strata represent ± variations in b, with sizable fluctuations and structuring, and with more turbulence at higher
Froude number.

suming stationarity, weak nonlinearities and small dissi-
pation at large scales, one can show that helicity produc-
tion in rotating stratified turbulence is proportional to
N/f and to the correlation between buoyancy and verti-
cal shear [17]. One starts from geostrophic balance (i.e.,
with the rhs of eq. (1) set equal to 0); taking its curl leads
to the usual thermal wind equations governing the verti-
cally sheared horizontal motions resulting from buoyancy
gradients. We finally take the dot product of the result-
ing equation with the Coriolis force. Only u? appears in
this expression, and thus we are led to decompose the he-
licity, writing H

V

⌘ H?+H+. We finally take horizontal
averages (denoted h.i?), and arrive at [17]:

hH?i? ⌘ hu? ·r⇥ u?i? =
N

f
hb @w

@z
i? . (4)

The full expression for the perpendicular-averaged helic-
ity includes not only the term on the lhs of eq.(4), but
also that portion that is proportional to the verical veloc-
ity, namely H+(uz

) = u
x

@
y

u
z

� u
y

@
x

u
z

+ u
z

!
z

. In some
cases, H? � H+, and H? alone essentially determines
the total helicity. For example, measurements of hH?i?,z

found in modeling simulations of hurricanes are seen to be
two orders of magnitude larger than the terms involving
the vertical component of the velocity [22]. Note that the
H? density is proportional to the so-called (cell-relative)
environmental helicity, when integrated over the vertical,
(see e.g. [19]). We thus conclude that the production of
helicity in rotating stratified turbulence is directly pro-
portional to N/f , and results from a balance between
rotation and stratification.

N/f scaling has also been advocated, for example, in
the context of statistical mechanics of non-dissipative
geophysical flows [23]. As N/f (proportional to the
Rossby deformation radius) increases, stratification dom-
inates and the Coriolis force is no longer available to
balance gravity, although in this case another balance
involving dissipation may be written instead, which de-
scribes well the preservation of helicity [24]. Indeed, dis-
sipation is known to play a role in the overall dynamics,
e.g. in the changes of potential vorticity once gravity
waves start to break [25].

B. Parametric study

We have performed nine runs on grids of 5123 points,
and 36 on 2563 grids, up to past the peak of dissipa-
tion, with similar (but not identical) initial conditions
and N/f 2 [1/2, 16.7].
Fig. 1 gives the temporal evolution of helicity (top)

and enstrophy (bottom) for several flows at fixed Fr;
the potential enstrophy Z

P

shows a behavior similar to
Z
V

, with slightly smaller values. Note that the oscilla-
tions are proportional to N and correspond to gravity
waves. Across all runs, the maximum of Z

V

varies from
30 (for weak waves) to ⇠ 2.5, corresponding to the small-
est Froude number. The time to reach this maximum
varies from 6.3 to 13.3 ⌧

NL

. The overall structures in
this type of flows are shown in Fig 2 which displays vol-
ume rendering of buoyancy at late time for a run with
Fr = 0.11, N/f = 4 (left) and Fr = 0.025, N/f = 2

Hide, 1976; recent DNS: Marino et al., 2013	
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  Some of the problems in Rotating Stratified Turbulence (RST)	


	


* First departure from complete isotropy: helicity dynamics, 
conservation (pure rotation) vs. creation (in RST) [Marino et al. PRE, 2013]	



* Identifying scales, directions, relevant diagnostics &         
dimensionless parameters in rotating and/or stratified turbulence	



•  Intermittency of the vertical velocity in stratified turbulence [Rorai et al. 
PRE 2014]	



•   Inverse energy cascade and anisotropy [Marino et al., EPL 2013, PRE 2014]	


•  Dual constant-flux energy cascades in rotating stratified turbulence 

[AP & Marino, PRL 2013]	


•  Restricted equilibrium and the energy cascade [Herbert et al., JFM 2014]	



•  Bolgiano-Obukhov scaling in RST? Rosenberg et al., ArXiv 2014	


•  ………….	
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FIG. 3: (Color online) Visualization of the buoyancy b in runs with 5123 grids, for Re ⇡ 8000, Fr = 0.11, and Ro = 0.40 (left)
and for the same Re, Fr = 0.025, and Ro = 0.05 (right). The vertical direction is indicated by the blue arrow; dark (blue) and
light (green) strata represent respectively positive and negative variations in b around its mean, with sizable fluctuations and
structuring, and with more turbulent eddies at higher Froude number.

TABLE I: List of runs analyzed in this paper with some characteristics parameters: run number nR, resolution np, Reynolds Re,
Froude Fr and Rossby Ro numbers; ratio EP /EV , ratio

⌦
w2

↵
/
⌦
u2
?
↵
, enstrophy ZV , ratio ZP /ZV where ZP is the potential

enstrophy (see get), H? at peak of enstrophy Tp (or we could put the maximum time of the run), [... skewness Sk?,
Flatness?, Kolmogorov (dissipative0 scale ⌘? ...] A star in the “in” column indicates points that are in the scatter plot
with N/f < 3, and two stars for those in the plot with RB < 20 or RR < 20. [OR? AND?]

nR np Re Fr Ro EP /EV

⌦
w2

↵
/
⌦
u2
?
↵

ZV ZP /ZV H? Tp in Remarks
1 256 2048 0.03 2.06 5.71 4.53 12920 1.26 157 – * –
2 256 256 – 2.07 5.59 4.60 12857 1.22 –
3 256 2048 0.03 2.06 5.71 4.53 12920 1.26 157
4 256 256 – 2.07 5.59 4.60 12857 1.22 –
5 256 2048 0.03 2.06 5.71 4.53 12920 1.26 157
6 256 256 – 2.07 5.59 4.60 12857 1.22 –

We thus conclude that the production of helicity in
strongly rotating stratified turbulence is directly propor-
tional to N/f , and results from a balance between ro-
tation and stratification. In the limit of f ! 1 (no
stratification), helicity is exactly conserved; in the limit
of N ! 1, helicity can again be created by the flow, but
in the balance, dissipation also plays a role [32]. In other
words, as N/f (proportional to the Rossby deformation
radius) increases, stratification dominates and the Corio-
lis force is no longer available to balance gravity, although
in this case another balance involving dissipation may be
written instead, which describes well the preservation of
helicity [32]. Indeed, dissipation is known to play a role
in the overall dynamics, e.g., in the changes of potential
vorticity once gravity waves start to break [33]. Finally, it
is interesting that N/f scaling has also been advocated,
for example, in the context of statistical mechanics of

non-dissipative geophysical flows [34].

B. Beyond geostrophy

Geostrophic balance is just the beginning of the story,
the assumptions (of stationarity, zero non-linearities and
no dissipation) being of course unrealistic for geophysical
and astrophysical flows. For example, it is known that in
three-dimensional turbulence without waves, the rate of
energy dissipation can be evaluated phenomenologically
as ✏

V

⇠ U3
0 /L0, no matter how high the Reynolds num-

ber; this has been demonstrated using highly-resolved di-
rect numerical simulations [35] up to grids of 40963 points
(for the case of a coupling to a magnetic field, in which
case Alfvén waves are present and interact with the flow,
see [36] in two dimensions (2D), and [37] in 3D).

Fr ~ 0.11, Ro ~ 0.4, 	


RB ~ 96, N/f ~ 3.6	



   Buoyancy                  Re ~ 8000, 5123 grids,                    RB = ReFr2 	



Marino et al., 2013	
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RB ~ 5, N/f = 2	
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Figure 2 | Key observations in the Southern Ocean. a, Climatological positions of the subantarctic front (SAF) and polar front (PF) are marked in orange,
with the thickness of the line representing the variance in the latitudinal position. The green arrows indicate the observed speed and direction of surface
ocean currents as measured by drifters floating at a depth of 15 m (note the scale in the upper right-hand side). The depth of the ocean is colour coded in
blue: the main topographic features are labelled. The black lines mark the summer (minimum) and winter (maximum) extent of sea ice. The position of key
hydrographic sections are marked by the thick grey lines. b, T (temperature), S (salinity), and O2 sections along 30� E (coloured red in a) cutting across the
ACC from Africa towards Antarctica. Black contours are labelled in �C (for T), psu (for S) and µmol l�1 (for O2). The thick white line is the 27.6 kg m�3

density surface.

Dynamics of the SouthernOcean and its upwelling branch
The Southern Ocean is driven by surface fluxes of momentum and
density (owing to heat and fresh water) induced by the strong,
predominantly westerly winds that blow over it and the freezing
phenomena close to the continent33. Zonal wind stress (Fig. 4a)
induces upwelling polewards of the zonal surface-wind maximum
and downwelling equatorwards of the maximum. This directly

wind-driven circulation, known as the Deacon cell, acts to overturn
density surfaces supporting the thermal wind current of the ACC
and creating a store of available potential energy.

Air–sea fluxes generate dense water near the continent and
lighten the surface layers in the ACC (see Fig. 4b). The dense
water sinks and tends to draw in warmer, saltier water from the
surrounding ocean; however, rather than being fed from the surface,
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Figure 2 | Key observations in the Southern Ocean. a, Climatological positions of the subantarctic front (SAF) and polar front (PF) are marked in orange,
with the thickness of the line representing the variance in the latitudinal position. The green arrows indicate the observed speed and direction of surface
ocean currents as measured by drifters floating at a depth of 15 m (note the scale in the upper right-hand side). The depth of the ocean is colour coded in
blue: the main topographic features are labelled. The black lines mark the summer (minimum) and winter (maximum) extent of sea ice. The position of key
hydrographic sections are marked by the thick grey lines. b, T (temperature), S (salinity), and O2 sections along 30� E (coloured red in a) cutting across the
ACC from Africa towards Antarctica. Black contours are labelled in �C (for T), psu (for S) and µmol l�1 (for O2). The thick white line is the 27.6 kg m�3

density surface.

Dynamics of the SouthernOcean and its upwelling branch
The Southern Ocean is driven by surface fluxes of momentum and
density (owing to heat and fresh water) induced by the strong,
predominantly westerly winds that blow over it and the freezing
phenomena close to the continent33. Zonal wind stress (Fig. 4a)
induces upwelling polewards of the zonal surface-wind maximum
and downwelling equatorwards of the maximum. This directly

wind-driven circulation, known as the Deacon cell, acts to overturn
density surfaces supporting the thermal wind current of the ACC
and creating a store of available potential energy.

Air–sea fluxes generate dense water near the continent and
lighten the surface layers in the ACC (see Fig. 4b). The dense
water sinks and tends to draw in warmer, saltier water from the
surrounding ocean; however, rather than being fed from the surface,
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alized using the characteristic length and velocity of the abyssal southern ocean at mid latitudes, i.e. with L0 = 1000
m (corresponding to the peak of energy input in the ocean from bathymetry [? ]) and U0 = 0.024 m s�1, as mea-
sured for example in the Drake passage [? ], we obtain kinematic viscosity and scalar di↵usivity, respectively, of
⌫ =  = 4.5⇥ 10�4 m2 s�1, too large by roughly two orders of magnitude. The corresponding overall e↵ective energy
dissipation rate would be ✏ ⇠ U3

0 /L0 ⇡ 1.4⇥ 10�8 m2 s�3; this latter value corresponds to the enhanced dissipation
measured in the southern ocean [? ]. As a comparison, measurements in the atmosphere indicate ✏ ⇡ 10�6 m2 s�3 at
intermediate altitude and at scales between 3 and 600 km [? ]. With a rotation frequency of ⌦ = 10�4 s�1, our choice
of parameters leads to a Brunt-Väisälä frequency of N ⇡ 10�3 s�1, and Fr ⇡ 0.024, corresponding to the parameters
of the run described above. Then, the buoyancy scale is 150 m, the Ozmidov scale is 4 m, and the Kolmogorov
dissipation scale is around 0.15 m. This last value is too large, because the viscosity is too large and the numerical
resolution is still insu�cient. Also, note that another lacking element in our simulation is the interaction with a
larger-scale (mean) flow, say at the scale of several hundred kilometers, together with proper boundary conditions in
the vertical.

III. OVERALL TEMPORAL DYNAMICS

We now examine in more detail the overall temporal evolution of large-scale features. Figure ?? displays at left
the kinetic energy dissipation, ⌫

⌦
!2

↵
, and the ratio of kinetic to potential energy at right. Easily identifiable initial

oscillations due to the waves prevail at early times; these oscillations, stronger and thus more visible at large scale in the
evolution of the energy, are due to inertia-gravity waves and their irregularity is linked with nonlinear coupling which,
at that Reynolds number, is sizable. However, the ratio of kinetic to potential energy remains relatively constant on
average throughout the run after the initial phase, at a value close to 3. This initial phase is essential, since, even
though our initial conditions have EP = 0 (and random phases for the velocity at large scale), the gravity waves
provide a source of organized potential energy for the next temporal phase when nonlinearities arise and constant-flux
self-similar spectral scaling develops (see §S:spec). The kinetic energy (not shown) starts to decay rather slowly as
small scales have been formed. By the end of the run, the dissipation has reached a plateau and the flow is fully
developed. When examining the temporal evolution of the energy and dissipation for the flows computed on 30723

and 40963 points, no di↵erences are visible, indicative of a converged simulation and of a well-resolved flow. At the
peak, "V ⇡ 0.0124, and the dissipation of potential energy is "P = 

⌦
|r⇢|2

↵
⇡ 0.0077 (not shown).

In Fig. ?? are given the temporal evolution of the ratio of the L2 norms (volume averages) of the vertical to
horizontal kinetic energy, as well as a characteristic vertical length scale defined as

`z = [
⌦
u2
?
↵
/
⌦
(@zu?)

2
↵
]1/2 . (13)

Note that `z can be viewed as a vertical Taylor scale, since it is based on vertical gradients of the velocity. As expected,
the horizontal energy dominates over the vertical at all times, by a factor close to 4, and increasingly so after the peak
of enstrophy. The vertical length-scale, of order unity to start with, undergoes a steady decrease and stabilizes as the
peak of enstrophy is approached; it is one order of magnitude smaller at peak of dissipation when compared with its
initial value. Considering now the vertical Froude number based on this vertical shearing length, Fz = U0/(N`z), we
find Fz ⇡ 0.9 . 1 at the latest time of the run. This value for Fz is predicted for strongly stratified flows from the
self-similarity analysis in [? ], if `z is taken to be the vertical scale of the dynamics, since, in this case, it is shown
that `z ⇠ U0/N . One can contrast the anisotropy arising from rotation and stratification and say that the flow is
fully turbulent but in an anisotropic manner [? ], although it still does feel the e↵ect of rotation, as can be seen in
Figure ??, with a negative energy flux at large scale.

IV. SPECTRAL BEHAVIOR

A. Evidence for a large-scale Bolgiano-Obukhov scaling

In Fig. ?? we show several isotropic spectra; all of them are averaged around the peak of dissipation in the interval
t 2 [5.3, 5.7] (see Fig. ??). The total isotropic energy spectrum is compensated by a classical Kolmogorov k�5/3 law.
Such a law is compatible with the scaling of the spectrum observed at smaller scales, for kc  k  100 with kc ⇡ 12;
note that this value is close to the buoyancy wavenumber kB ⇡ 16 but may nevertheless di↵er from it (see below).

At larger scales, a steeper spectrum is observed with a spectral slope close to �11/5, a value of 2.2 being computed
from a least-squares fit on the interval k 2 [2, 14]). Note that spectra with a power-law index close to �2 were found
in [? ] for N/f varying from 4 to 32, and observations in the ocean also indicate values that are similar and in fact
closer to 2.5 [? ].
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FIG. 7: Perspective volume renderings of a thin y-z sub-volume of size 0.4⇥ 0.7 times the compute box size at
t = 5.54 (close to the peak of enstrophy). The y-axis is directed horizontally, and the z-axis, vertically. Presented

are (a) perpendicular and (b) vertical velocity with identical color mapping. Note that the perpendicular velocity is
dominant in magnitude. The slab thickness in the x (depth) direction is 0.04 times the box size. All renderings were

made using the using the VAPOR visualization system [? ].

The partition of energy between kinetic and potential modes can be measured by their ratio, EV /EP , which is one
possible definition of the Richardson number. Another definition is simply to measure the relative strength of the
buoyancy to the inertial forces, or

Ri = 1/Fr2 .

However, in order to emphasize the role of the development of small scales in mixing, one can also define a (local)
Richardson number based on velocity gradients, Rig, as:

Rig = N(N � @z⇢)/(@zu?)
2 . (12)

This definition suggests that a su�ciently large vertical gradient locally leads to negative values of Rig, which is
consistent with the intuitive picture of overturning when a denser parcel of fluid lies atop a less dense parcel.

D. Run parameters and general characterization

We use N/f = 4.95 with N = 13.2 and ⌦ = f/2 = 1.33 (thus, f = 2.66). The viscosity is chosen to have the
simulation well resolved: ⌫ = 4 ⇥ 10�5. In dimensionless units, the resulting overall energetics of the flow lead to
several scales that are of interest, and to a characterization of the flow in terms of the dimensionless parameters.
Considered at the peak of enstrophy, the characteristic velocity is U0 ⇡ 0.83 and the integral length scale, computed
from Lint = 2⇡

R
EV (k)dk/

R
kEV (k)dk ⇡ 2.6, very close as expected to the scale at which the energy spectrum

initially peaks, namely L0 = 2⇡/k0 ⇡ 2.5. The dissipation rate of kinetic energy is taken from a computation of
kinetic enstrophy at the peak of dissipation: "V = ⌫

⌦
|!|2

↵
⇡ 0.0124 (see Fig. ??). Note that in the isotropic case,

"V = ✏K41 = U3
0 /Lint ⇡ 0.22, but this relation does not hold in the highly anisotropic system we are investigating.

Rather, we can take an estimate coming from weak turbulence, namely ✏K41 ⇤ Fr ⇡ 0.005, within a factor of two
of the measured rate of energy dissipation. The Kolmogorov dissipation wavenumber is computed at the peak of
dissipation to be k⌘ ⇡ 660. The Zeman and Ozmidov wavenumbers are therefore found to be, respectively, k⌦ ⇡ 39
and kOZ ⇡ 431. The buoyancy wavenumber is kB = 2⇡/LB ⇡ 16; the lack of scale separation between k⌦ and kB
suggests that it will be di�cult to distinguish as separate e↵ects those due to rotation and those due to stratification.
The Reynolds number is thus found to be Re ⇡ 5.4⇥ 104, the Froude number Fr ⇡ 0.0242, and the Rossby number
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Stably stratified turbulence: Bolgiano-Obukhov 1959 scaling	


	


	


Main hypothesis:   Inertial range with a constant buoyancy flux uρ2/ l 	
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K a K d 
1--Spectral forms in a stab]y stratified atmosphere. 

effects dominate. The first two intervals are 
then separated by the wave number k•, the 
second and third by the viscosity cutoff, 
• = (•/•,9•/•. 

Under these circumstances more specific pre- 
dictions can be made. In the buoyancy subrange 
the rate of inertial transfer of turbulent energy 
across the spectrum is so much in excess of • 
and the local dissipation is so small that •, •, 
and • may be dropped from the list of governing 
parameters. One is thus led to' 

2/5 • 4/5 11/5 • 
4/5 /• 2/,5 7/5 

where •. represents the scale of the energy 
contai'rdng eddies, Tn the inertial subrange 
(k.• • k • k,•) the usual k-"/• forms apply, Result- 
ant typical spectra are shown in •igure 1, 

Notice should be ta]•en of the fact that k.• and 
k• are iz:ff].uenced oppositely by variation of the 
stability (8,•/8•), Tncreasing ]apse of density 
ten• to increase X• but to decrease e. 0onse- 
quent]y k• becomes larger whereas/c• becomes 
smaller, It is conceivable that under su•cient]y 
stable conditions the inertia] subra'nge d•- 
appears ent•'e]y and the whole structure is 

Two further properties of the buoyancy sub- 
range are of some interest. First, the value of 
Richardson's number characterizing a given size 
eddy may be calculated, according to Batchelor 
[953N, as 

Ri = gn•/(•oU •) • g•-'/•r/=/(•o•r) (z3) 
On substitution of the forms for I'a and E 
appropriate to the buoyancy subrange, it is 
found that Ri is of order unity throughout the 
interval, a not surprising result since buoyancy 
forces presumably dominate the structure here. 

Second, the relative diffusion of two particles 
separated a distance r, corresponding to a scale 
lying within the buoyancy subrange, should 
proceed according to 

r • x•(g/•o) (14) 

This may be compared with the t • law noted by 
Batchelor earlier in this session as descriptive 
of the inertial subrange. 

REFERENCES 

BATCHELOR, G. K., The Theory o/ Homogeneous 
Turbulence, University Press, Cambridge, 197 

anisotropic. Of course, under neutral conditions, ' pp., 1953a. 
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revealed values of heat flux and dissipation in 
the troposphere (0.001 cal/cm2-sec and 0.2 
cm2/sec s) such that Sp... and e are comparable. 
That S,•. may exceed e significantly under some 
stable circumstances does not seem out of the 
question. 

7. Conclusion. Although some initial steps 
have been taken in describing turbulence in a 
stably stratified atmosphere and in understanding 
the energy processes involved, a vast amount of 
work remains to be done before this problem can 
be considered solved. Experimental studies of 
the actual anisotropic structure and comparison 
of these results with theoretical models, such as 
the one proposed here, should shed much 
valuable hght on the subject. Important progress 
appears likely within the next few years. 
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=u„=b„=Obecomes unstable at Ra=Ra, =ko =1,
where Ra=(vg) ' corresponds to a Rayleigh number.
The nonmagnetic state b„0(but 8„,u„aO) becomes
linearly unstable (dynamo effect), if (Ahu„+I—Bu„-I)/
gk„&1 for some n. For the remainder we focus on large
Rayleigh numbers so that the solutions are chaotic. The
results presented below are for g =v=g.
We numerically integrated (12)-(14) using as initial

condition 8„u„b„Owith a small perturbation in u„
(and b„)for an intermediate value of n. We investigated
the solutions for various coefficients A, 8, A, and 8. Note
that one of these four coefficients can always be normal-
ized to unity. We mostly used A 0.01, 8=A =8=1.
(See Refs. [14,15] for a discussion of the case of small
A. ) We looked at the various time-averaged spec-
tra Ee (8„)/2k„,E» (u„)/2k„,Esr =(b„)/2k„,and
pushed the Rayleigh number as high as possible so that
we just resolve a dissipative subrange. Using N=30
modes we were able to reach Ra/Ra, =2.5x1025 in the
nonmagnetic case and 4& 10 in the magnetic case.
In the absence of magnetic fields we find an extended

inertial subrange with Eg 0- k " and Ee cx' k
(Bolgiano-Obukhov scaling); see Fig. l. It is interesting
to note that these spectra are obtained only after averag-
ing over many hundred time units. The instantaneous en-
ergy of modes in the inertial range ean vary over 6 orders
of magnitude.
The Bolgiano-Obukhov scaling is closely related to the

relative importance of inverse transfer of kinetic energy
measured by the ratio ~B/A ~. If this ratio is below some
critical value (around 0.4) we find classical Kolmogorov
scaling. The qualitative behavior does not seem to be
very sensitive to the exact values of A and 8, provided
there is a direct transfer of either kinetic energy or tem-
perature. (The case ~8/A ~

) 1 and ~8/A~ ) I leads to an
unlimited growth of energy at large scales. )
In the presence of magnetic fields we find for all com-

E» E»(ag, ee, k) =C»(ag) ee'k

Ee Ee(ag, &elk) Ce(ag) &e k

(15)

where ee yak„8„is the rate of 8 dissipation. (For the
ease depicted in Fig. 1 we obtain C» =O.S and Ce=2.)
On the other hand, if the cascade is governed by the
kinetic-energy dissipation then

E» -E»(&»,k) -C»&k"k

Ee Ee(e», ce,k ) =Cee» eek

EM EM(&» &N k) CM&» &Mk (i9)
where e» vgk„u„is the rate of viscous dissipation and
esr =yak„b„is the rate of Joule dissipation. (For the
case depicted in Fig. 2 we obtain C» =2.5, Ce = 1.5, and
The dissipative cutoff wave numbers, k», ke (and kyar),

above which the dissipative subranges in E», Ee (and
Esr) begin, can be estimated using (15)-(19) to solve
e» 2v fII'k E»dk, and similarly for ke and ksr. This
yields

( s vC ) 5/4(ag) —l~ —I/2~/54 (20)

k -(-'gC ) ' '(ag) ' 'e' ' (2i)
Inconsistencies have been noted [5] if ke [see (lie) in

binations of A, 8, A, and 8, Kolmogorov k / spectra
for Ee, E», and Esr, see Fig. 2. Note that the famous
k / spectrum [19] is only to be expected when nonlocal
interactions via the Alfven effect are taken into account
[i4].
From dimensional arguments one can see that the

different scaling behaviors crucially depend on the role of
the buoyancy term ag8 in determining the energy cas-
cade [5,7]. If the coefficient ag is important for the cas-
cade then the spectra must have the form
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FIG. 1. Spectra for the nonmagnetic case with Ra/Ra,
4x 1024. The inset shows that the local slope dlnE/dink is

around —
& for Ee and around —'5 for E» (horizontal dash-

dotted lines). The two vertical bars on the k axis mark dissipa-
tive cutoff wave numbers.

FIG. 2. Spectra for the magnetic case with Ra/Ra, 10
The inset shows that the local slope for all three spectra varies
around —

3 . The three vertical bars on the k axis mark dissi-
pative cutoff wave numbers.
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FIGURE 2. The kinetic and potential energy spectra for N2 =loo. (Potential energy is not normal- 
ized by N2. )  (a )  t is from 1.0 to 1.6, and ( b )  t is from 5.0 to 5.6. The time interval of plots 
is 0.2. 

3. Numerical results 
Figure 1 summarizes the overall statistics of turbulence for N 2  = 0, 1, 10, 100, and 

1000. (Hereafter, the label N 2  = 0 means the turbulence is uncoupled from both the 
mean and fluctuation temperature fields.) Both kinetic energy, 

and enstrophy 

D = 1 k 2  I ~ ( k )  l 2  ( 3 4  
k 

decay almost as a power of time ( E ( t )  - t P ) ,  with some oscillatory fluctuations due 
to conservative energy exchange between kinetic and potential energy. We denote the 
latter by 

k 

The value of p becomes smaller with increasing N .  This fact is consistent with the 
faster decay of the skewness factor of the longitudinal velocity gradient field duldx: 

(3.4) 2 312 Sx = - ( (WW3)/((wW ) 2 

which is a measure of the energy cascade to smaller scales. S, is shown in figure l(c). 
The decay of S in the vertical direction is significant if there is stratification, and thus 
the inhibition of the energy cascade to smaller scales keeps the kinetic energy from 
the dissipation range. This observation goes back to Riley et al. (1982). 

The inhibition of the energy cascade is also reflected in the fact that the energy 
spectrum becomes steeper with increasing N. Typical spectra for Ekin(k) and E,,,(k) 
are shown in figure 2. These spectra have been spherically averaged over wavenumber 
bins of unit radial thickness. Two time slots are shown for N 2  = 100: one around 
t = 1.0, when S, is sharply dropping (figure 2a), and the other around t = 5.0, by 
which time S, has fallen and begun oscillating around zero (figure 2b). (The potential 
energy (shown in figure 2b) is not divided by N 2  = (100)). In figure 2(a), lines are 
shown which correspond to the Bolgiano-Obukhov spectra of kinetic energy and 
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One can invoke a dimensional argument to explain the large-scale spectral distribution, namely the Bolgiano-
Obukhov scaling ([? ? ] BO hereafter) derived for purely and stabley stratified turbulence. This scaling is obtained
under the assumption that the source of energy at large scale is contained in the buoyancy, or in the potential
modes, with nonlinear transfer rate "P = |dEP |/dt, assumed constant, and with a negligible advection term in the
momentum equation. Since ⇢ in the primitive equations written in Eq. (??) has the dimension of a velocity, we have
to re–introduce the physical dimension of the buoyancy flux in terms of length and time, i.e., L2T�5; similarly one
can use "PN

2 for the constant flux. This then leads to (see [? ] for a review):

EV (k) ⇠ "
2/5
P k�11/5 , EP (k) ⇠ "

4/5
P k�7/5 . (14)

In the BO phenomenology, the scalar actively modifies the velocity field, and is therefore not passive. Note that
the Coriolis force does not contribute to the energy balance but only to an angular redistribution of energy favoring
negative flux to large scales, and thus does not perturb the dynamics leading to the BO scaling. The phenomenology
derives from the idea that at large scales, the nonlinear advection term is not strong enough in the direct cascade to
small scales, and the only available source of energy is therefore that coming from the scalar fluctuations. Stating that
the kinetic and potential energy spectra will depend only on the dimensional buoyancy flux, "P , and wavenumber, k,
leads to the above spectra.

There are indications that the BO scaling has been observed in stably stratified in the atmosphere [? ], as well
as at the bottom boundary of convectively unstable cells, using temporal structure functions conditionally averaged
on local values of the thermal dissipation rate [? ]. A recent three-dimensional DNS analysis of Rayleigh-Bénard
convection shows such a scaling as well [? ]. BO scaling has been associated with a bi-dimensionalization of the flow
due to stratification and the growth of the mixing layer leading to a confined dynamics [? ? ]. In the case of the
present computation, we note that the quasi 2D large-scale dynamics is reinforced by the presence of rotation, as
observed in the kinetic energy flux which is negative, corresponding to inverse transfer (see below).

We show in Fig. ?? (top right) the kinetic and potential energy spectra averaged over the time interval corresponding
to the peak of enstrophy and compensated by the BO scaling. This scaling seems to hold at large scales, up to k ⇡ 12
for the velocity, and on a shorter range for the temperature field. In Fig. ?? (bottom right) is shown the ratio of
kinetic to potential energies, each averaged over time, and their ratio is consistent with a k�4/5 law at large scale,
as predicted by Eq. (??) to within constants of order unity, whereas in the next regime, close to a Kolmogorov law,
this ratio is close to equipartition in these units. Fig. ?? (bottom left) displays several fluxes. The (forward) flux of
total energy (solid line) is approximately constant, at a level of ⇡ 0.022 in these two identified ranges, indicative of a
classical turbulent cascade. Note also that it becomes negative (reaching ⇡ �0.0085) at scales larger than the scale
of the initial conditions; it can be expected, therefore, that, in the presence of forcing, a small inverse cascade may
develop, as observed in [? ] and as it does when the forcing is placed at smaller scale (see e.g., [? ? ? ]).

We also show in Fig. ?? (bottom left) the energy flux decomposed into its kinetic (dashed) and potential (dash-
dotted) components, ⇧V,P , as well as the buoyancy flux, ⇧w⇢, (dotted line), defined in wavenumber space as:

⇧w⇢(k) =
k0=kX

k0=0

X

k0<|k00|<k0+1

Re(ŵ(k00)⇢̂(k00)⇤) , (15)

where ŵ(k) and ⇢̂(k) are the Fourier coe�cients for the vertical velocity and the scalar, respectively. The first two
fluxes, ⇧V,P , correspond to a scale–by–scale analysis of the two non-linear flux terms, ⇢u ·r⇢ and u · [u ·r]u, whereas
the buoyancy flux concerns the energetic exchanges between the velocity and density fluctuations. The sum of the
kinetic enstrophy at its peak (see Fig. ??) plus the kinetic energy flux, ⇧v(k = 1) ⇡ �0.01 is ⇡ 0.0024, which is in
excellent agreement with the nearly constant value of ⇧v in the region k 2 [4, 20] seen in this figure. Furthermore, it
can be seen that, as hypothesized in the BO phenomenology, the potential flux to small scales is dominant, constant
and positive for a wide range of scales. The kinetic flux has a strong peak at wavenumbers smaller than k0. It is in
fact negative throughout the wavenumber range around the peak of enstrophy; this is likely due to the fact that the
buoyancy flux acts as a source of energy for the velocity in a wide range of scales.

We present the time average of ⇧w⇢ in Fig. ?? (bottom left, dotted curve), where it is seen that it is, in fact,
comparable to the total energy flux, and can serve potential as a kinetic energy source. We note that large temporal
fluctuations in the buoyancy flux are observed; they correspond to gravity waves directly a↵ecting vertical motions.

Finally, we can evaluate the wavenumber, KBO, at which the transition to a Kolmogorov spectrum EV (k) ⇠

"
2/3
V k�5/3 is taking place, in the framework of the BO scaling, by equating the two spectra at that scale. This leads
immediately to

KBO ⇠ "
3/4
P "

�5/4
V . (16)
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To compare the length scales obtained from the simula-
tions we present their values along a horizontal cross section
at half-height in Fig. 3. Also, the lengths as calculated from
the global averages are given in Table II. In Fig. 3!a" it is
found that ! decreases monotonically in the bulk toward the
sidewall and shows a minimum within the viscous boundary
layer. At higher Ra, ! is smaller, as is expected for a flow
with a higher turbulence intensity. Note also the differences

as a result of changing " for the runs with Ra=1#108 and
Ra=1#109 !dotted line compared to dotted line with pluses
and solid line compared to dotted line with triangles, respec-
tively". An increase in " yields a larger !. The global-
average values #!$ from Table II show rather good compli-
ance with the local values at half-height !within a factor of
2".

Continuing to Fig. 3!b", LB is found to be constant in the
bulk region. A comparison with the global-average values
shows that the local bulk values can be about one order of
magnitude larger. Furthermore, the global-average #LB$ val-
ues from Table II decrease when Ra increases, while its local
value actually increases. These points indicate that the often-
used formula !4" for #LB$ is not suitable for the interpretation
of SF results, since the estimate can be off by an order of
magnitude compared to the actual value. Concluding, for re-
solving a possible BO regime one must investigate scales
much larger than the estimate of Eq. !4". A decreased bulk LB
value can be achieved by lowering Ra.

From the inset of Fig. 3!b" it becomes clear that LB is also
smaller when approaching the bottom or top plates, but out-
side of the boundary layers. This observation was also re-
ported in Refs. %19,29,32&. Hence, observation of the BO
scaling regime is easier when measuring outside of the cen-
tral part of the cylinder as LB is smaller there.

The values for LB, averaged over 0.1$%$0.4 at half-
height, are shown as a function of Ra in Fig. 4. A power-law
fit is given by

LB = 0.024 Ra0.107±0.016. !7"

The slope of this fit matches also with the "=6.4 points
!crosses", but with a slight downward shift. However, there
may be two different regimes to be identified. In the presen-
tation of the experimental SF results in Sec. VI these simu-
lation results !represented by the crosses" will be used to
estimate the value of LB at the center of the cell.

From the simulation results it is possible to calculate both
velocity and temperature SFs. We adopt the following steps.
Since the grid is nonuniform in radial as well as in axial
directions, the numerical probe data were first interpolated
onto a uniform grid with a cubic spline interpolation algo-
rithm separately for each time step. Then, direct calculation
of the velocity differences as a function of the separation,
followed by time averaging, gave the SF results.
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FIG. 3. Length scales at half-height as a function of radial co-
ordinate. !a" Kolmogorov length !. !b" Bolgiano length LB. Solid
line, Ra=1#108, "=4; dotted line, Ra=1#109, "=4; dash-dotted
line, Ra=5#109, "=4; dashed line, Ra=1#1010, "=4; dotted line
with triangles, Ra=1#108, "=6.4; dotted line with pluses, Ra=1
#109, "=6.4. Some simulation results are left out for clarity. The
inset in !b" shows LB as a function of the axial coordinate z !%
=0.2" for the case Ra=1#109, "=6.4.
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for 0.1!"!0.5. This, however, is only a minor problem
since as shown in Figs. 1 and 2 the isolines of all quantities
tend to become orthogonal to the axis as "→0 !thus imply-
ing that the inner core of the flow is indeed homogeneous"
and the value of each variable at the axis, if needed, can be
easily extrapolated from the off-axis regions. The kinetic en-
ergy dissipation rate # #Fig. 1!a"$ has its maximal values
inside the viscous boundary layers at the bottom and top
plates, as well as on the sidewall. The temperature variance
dissipation rate N #Fig. 1!b"$ is also high inside the !very
thin" thermal boundary layers near the bottom and top plates.
However, as the sidewall is adiabatic, no thermal boundary
layer is present there, and N shows no strong boundary layer
behavior.

The turbulent length scales are, with the current dimen-
sionless units, calculated as follows: $=%3/8 / !Ra3/8#1/4", LB

=#5/4 /N3/4. These lengths are depicted in Fig. 2. The Kol-
mogorov length $ has the expected distribution, in that it is
small inside the viscous boundary layers and attains its maxi-
mal value in the center; see Fig. 2!a". The Bolgiano length in
Fig. 2!b" has a more complex distribution. Very close to the
bottom and top walls, inside the thermal boundary layer, LB
becomes very small. Just outside this region, but still inside
the viscous boundary layer near the bottom and top walls,
there is a local maximum of LB #see also the inset of Fig.
2!b"$. Traversing the domain vertically, it then gradually in-
creases toward a roughly constant value LB%0.2 across the
bulk. One additional interesting point is that LB has its global
maximum near the sidewall, due to the presence of a viscous
boundary layer !large #" while a thermal boundary layer is
absent !small N".
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FIG. 1. Averaged dissipation rates for Ra=1&109, %=6.4. The
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the cylinder sidewall. !a" Logarithm of kinetic energy dissipation
rate #, contour increment 0.2. !b" Logarithm of thermal variance
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One can invoke a dimensional argument to explain the large-scale spectral distribution, namely the Bolgiano-
Obukhov scaling ([? ? ] BO hereafter) derived for purely and stabley stratified turbulence. This scaling is obtained
under the assumption that the source of energy at large scale is contained in the buoyancy, or in the potential
modes, with nonlinear transfer rate "P = |dEP |/dt, assumed constant, and with a negligible advection term in the
momentum equation. Since ⇢ in the primitive equations written in Eq. (??) has the dimension of a velocity, we have
to re–introduce the physical dimension of the buoyancy flux in terms of length and time, i.e., L2T�5; similarly one
can use "PN

2 for the constant flux. This then leads to (see [? ] for a review):

EV (k) ⇠ "
2/5
P k�11/5 , EP (k) ⇠ "

4/5
P k�7/5 . (14)

In the BO phenomenology, the scalar actively modifies the velocity field, and is therefore not passive. Note that
the Coriolis force does not contribute to the energy balance but only to an angular redistribution of energy favoring
negative flux to large scales, and thus does not perturb the dynamics leading to the BO scaling. The phenomenology
derives from the idea that at large scales, the nonlinear advection term is not strong enough in the direct cascade to
small scales, and the only available source of energy is therefore that coming from the scalar fluctuations. Stating that
the kinetic and potential energy spectra will depend only on the dimensional buoyancy flux, "P , and wavenumber, k,
leads to the above spectra.

There are indications that the BO scaling has been observed in stably stratified in the atmosphere [? ], as well
as at the bottom boundary of convectively unstable cells, using temporal structure functions conditionally averaged
on local values of the thermal dissipation rate [? ]. A recent three-dimensional DNS analysis of Rayleigh-Bénard
convection shows such a scaling as well [? ]. BO scaling has been associated with a bi-dimensionalization of the flow
due to stratification and the growth of the mixing layer leading to a confined dynamics [? ? ]. In the case of the
present computation, we note that the quasi 2D large-scale dynamics is reinforced by the presence of rotation, as
observed in the kinetic energy flux which is negative, corresponding to inverse transfer (see below).

We show in Fig. ?? (top right) the kinetic and potential energy spectra averaged over the time interval corresponding
to the peak of enstrophy and compensated by the BO scaling. This scaling seems to hold at large scales, up to k ⇡ 12
for the velocity, and on a shorter range for the temperature field. In Fig. ?? (bottom right) is shown the ratio of
kinetic to potential energies, each averaged over time, and their ratio is consistent with a k�4/5 law at large scale,
as predicted by Eq. (??) to within constants of order unity, whereas in the next regime, close to a Kolmogorov law,
this ratio is close to equipartition in these units. Fig. ?? (bottom left) displays several fluxes. The (forward) flux of
total energy (solid line) is approximately constant, at a level of ⇡ 0.022 in these two identified ranges, indicative of a
classical turbulent cascade. Note also that it becomes negative (reaching ⇡ �0.0085) at scales larger than the scale
of the initial conditions; it can be expected, therefore, that, in the presence of forcing, a small inverse cascade may
develop, as observed in [? ] and as it does when the forcing is placed at smaller scale (see e.g., [? ? ? ]).

We also show in Fig. ?? (bottom left) the energy flux decomposed into its kinetic (dashed) and potential (dash-
dotted) components, ⇧V,P , as well as the buoyancy flux, ⇧w⇢, (dotted line), defined in wavenumber space as:

⇧w⇢(k) =
k0=kX

k0=0

X

k0<|k00|<k0+1

Re(ŵ(k00)⇢̂(k00)⇤) , (15)

where ŵ(k) and ⇢̂(k) are the Fourier coe�cients for the vertical velocity and the scalar, respectively. The first two
fluxes, ⇧V,P , correspond to a scale–by–scale analysis of the two non-linear flux terms, ⇢u ·r⇢ and u · [u ·r]u, whereas
the buoyancy flux concerns the energetic exchanges between the velocity and density fluctuations. The sum of the
kinetic enstrophy at its peak (see Fig. ??) plus the kinetic energy flux, ⇧v(k = 1) ⇡ �0.01 is ⇡ 0.0024, which is in
excellent agreement with the nearly constant value of ⇧v in the region k 2 [4, 20] seen in this figure. Furthermore, it
can be seen that, as hypothesized in the BO phenomenology, the potential flux to small scales is dominant, constant
and positive for a wide range of scales. The kinetic flux has a strong peak at wavenumbers smaller than k0. It is in
fact negative throughout the wavenumber range around the peak of enstrophy; this is likely due to the fact that the
buoyancy flux acts as a source of energy for the velocity in a wide range of scales.

We present the time average of ⇧w⇢ in Fig. ?? (bottom left, dotted curve), where it is seen that it is, in fact,
comparable to the total energy flux, and can serve potential as a kinetic energy source. We note that large temporal
fluctuations in the buoyancy flux are observed; they correspond to gravity waves directly a↵ecting vertical motions.

Finally, we can evaluate the wavenumber, KBO, at which the transition to a Kolmogorov spectrum EV (k) ⇠

"
2/3
V k�5/3 is taking place, in the framework of the BO scaling, by equating the two spectra at that scale. This leads
immediately to

KBO ⇠ "
3/4
P "

�5/4
V . (16)
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To compare the length scales obtained from the simula-
tions we present their values along a horizontal cross section
at half-height in Fig. 3. Also, the lengths as calculated from
the global averages are given in Table II. In Fig. 3!a" it is
found that ! decreases monotonically in the bulk toward the
sidewall and shows a minimum within the viscous boundary
layer. At higher Ra, ! is smaller, as is expected for a flow
with a higher turbulence intensity. Note also the differences

as a result of changing " for the runs with Ra=1#108 and
Ra=1#109 !dotted line compared to dotted line with pluses
and solid line compared to dotted line with triangles, respec-
tively". An increase in " yields a larger !. The global-
average values #!$ from Table II show rather good compli-
ance with the local values at half-height !within a factor of
2".

Continuing to Fig. 3!b", LB is found to be constant in the
bulk region. A comparison with the global-average values
shows that the local bulk values can be about one order of
magnitude larger. Furthermore, the global-average #LB$ val-
ues from Table II decrease when Ra increases, while its local
value actually increases. These points indicate that the often-
used formula !4" for #LB$ is not suitable for the interpretation
of SF results, since the estimate can be off by an order of
magnitude compared to the actual value. Concluding, for re-
solving a possible BO regime one must investigate scales
much larger than the estimate of Eq. !4". A decreased bulk LB
value can be achieved by lowering Ra.

From the inset of Fig. 3!b" it becomes clear that LB is also
smaller when approaching the bottom or top plates, but out-
side of the boundary layers. This observation was also re-
ported in Refs. %19,29,32&. Hence, observation of the BO
scaling regime is easier when measuring outside of the cen-
tral part of the cylinder as LB is smaller there.

The values for LB, averaged over 0.1$%$0.4 at half-
height, are shown as a function of Ra in Fig. 4. A power-law
fit is given by

LB = 0.024 Ra0.107±0.016. !7"

The slope of this fit matches also with the "=6.4 points
!crosses", but with a slight downward shift. However, there
may be two different regimes to be identified. In the presen-
tation of the experimental SF results in Sec. VI these simu-
lation results !represented by the crosses" will be used to
estimate the value of LB at the center of the cell.

From the simulation results it is possible to calculate both
velocity and temperature SFs. We adopt the following steps.
Since the grid is nonuniform in radial as well as in axial
directions, the numerical probe data were first interpolated
onto a uniform grid with a cubic spline interpolation algo-
rithm separately for each time step. Then, direct calculation
of the velocity differences as a function of the separation,
followed by time averaging, gave the SF results.
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FIG. 3. Length scales at half-height as a function of radial co-
ordinate. !a" Kolmogorov length !. !b" Bolgiano length LB. Solid
line, Ra=1#108, "=4; dotted line, Ra=1#109, "=4; dash-dotted
line, Ra=5#109, "=4; dashed line, Ra=1#1010, "=4; dotted line
with triangles, Ra=1#108, "=6.4; dotted line with pluses, Ra=1
#109, "=6.4. Some simulation results are left out for clarity. The
inset in !b" shows LB as a function of the axial coordinate z !%
=0.2" for the case Ra=1#109, "=6.4.
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extended range of larger scales is attainable in the measure-
ments. Thus, SFs have also been calculated from the velocity
data taken nearer to the top plate. In Fig. 18 an example plot
of the second-order SFs of w calculated in both x and y
directions can be found. At a certain separation r the curves
diverge. This is an effect of the LSC and the separation of
upward and downward motions; it is acting as a linear shear
disturbance, the direction of which oscillates in time.

The situation is sketched in Fig. 19. It is known that, for
homogeneous shear flow, the shear induces changes in the
SFs for r!L"!"# /"3#1/2 "with " the shear strength# $42%.
The calculated SFs change: effectively the averaged effect of
the shearing is a &r disturbance when SFs are calculated in
the same direction as the velocity gradient, and additionally
there is a time-dependent disturbance from the oscillation. In
the sketch we also indicate why this effect was not encoun-
tered in the measurements in the central region of the cell.
Due to the "on average# elliptic shape of the LSC $43%, the
gradient is present in the measurement area closer to the top,
while falling largely outside the measurement area in the
quiescent central region. It is possible to let the “sheared”
SFs of Fig. 18 calculated in both directions coincide by a
rotation of the coordinate frame, as is also shown in the
figure. Such a rotation can unfortunately only correct for the
time-independent disturbance. The time-dependent distur-
bance remains, contaminating the SFs.
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FIG. 16. "a# Same as Fig. 15, but now for Ra=1.11$108. "b#
Same as Fig. 15, but now for Ra=3.34$108.
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FIG. 19. Sketch of the elliptic LSC and the induced linear shear.
At the off-center vertical position the gradient is present within the
measurement area, while in the central region no noticeable gradi-
ent effect is found.
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Turbulent thermal convection in half a soap bubble heated from below displays a new and surprising

transition from intermittent to nonintermittent behavior for the temperature field. This transition is

observed here by studying the high order moments of temperature increments. For high temperature

gradients, these structure functions display Bolgiano-like scaling predicted some 60 years ago with no

observable deviations. The probability distribution functions of these increments are Gaussian throughout

the scaling range. These measurements are corroborated with additional velocity structure function

measurements.
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The importance of turbulent thermal convection for
processes of meteorological, geophysical, or industrial
interest has been stressed for over a century. Many experi-
mental and theoretical endeavors have explored this phe-
nomenon at different scales and for different geometries
[1,2] in the canonical situation of a fluid enclosed in a
container heated from below and cooled at the top [3]. As
for three dimensional hydrodynamic turbulence [4–6], the
statistical properties of temperature and velocity fluctua-
tions in turbulent thermal convection, a state which can be
reached for a high enough temperature difference between
the bottom and the top of the container, can also be
described by scaling laws [7,8]. Several experiments
have been carried out to measure these statistical properties
but a number of issues regarding the scaling properties
remain unresolved [9]. Recently, the two dimensional ver-
sion has been put forth using either vertical soap films or
soap bubbles [10,11]. A detailed examination of the statis-
tical properties of the velocity fluctuations and the density
variations [10,11] showed that they displayed scaling laws
predicted by Bolgiano and Obukhov for stratified turbu-
lence in the 1950s [7–9]. Such scaling laws have so far
been elusive in three dimensional experiments for reasons
still debated today [9,12].

We here explore the temperature field in a recently
introduced thermal convection cell: half a soap bubble
heated from below (see Fig. 1) [11]. This geometry has
the advantage of avoiding the presence of side walls and
therefore the presence of the large scale circulation often
observed when lateral walls are present. By focusing on the
structure functions of the temperature field we uncover a
transition from an intermittent to a nonintermittent behav-
ior. Our results show that the scaling of these functions
switches regimes from the so-called Obukhov-Corrsin–like
scaling [5,6] with intermittency at low temperatures to
Bolgiano-Obukhov–like scaling without intermittency at

higher temperatures. Our results are unique and surprising
since previous numerical work indicated the presence of
strong intermittency for the temperature field [13].
Intermittency in fluid turbulence is an important problem
in hydrodynamics and our experiments bring to light how a
simple system evolves from an intermittent to a noninter-
mittent state.
The convection cell, described previously in [11], con-

sists of a hollow brass ring which is heated using water
from a thermostat. A circular groove is engraved on the

FIG. 1 (color online). Infrared images of the bubble (top !T ¼
50 #C) and a region near the bottom: !T ¼ 21 #C (bottom left)
and 50 #C (bottom right). The region delimited by a rectangle in
the upper image indicates the area covered by the temperature
and velocity measurements. The brass ring is located a few
millimeters from the bottom of the images.
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upper side of the ring and contains the soap solution (0.5 to
2% detergent in water) which is heated to the desired
temperature (up to 85 !C). Half a soap bubble, of 12 cm
in diameter, is blown using a straw and the soap solution in
the groove. The setup is in a room kept at a constant
temperature of 17 !C with a humidity rate of nearly 75%
near the bubble. The temperature gradient between the
bottom and the top of the half bubble !T could be varied
up to 55 !C. The temperature measurements used a cali-
brated 14 bits infrared camera (resolution 256" 360)
working in the spectral range of 3:6 to 5 !m with a
sensitivity of 20 mK and an adjustable exposure time set
between 0.5 and 1 ms. Additional measurements were
carried out using another infrared camera working in the
range 1:9 to 5:2 !m but equipped with a band pass filter in
the range 3 to 4 !m with no noticeable changes in the
results. Images of the same region (between 100 and 500
images at a rate of 50 or 100 frames/second) were recorded
and a home made program was used to calculate tempera-
ture differences across different scales r. Averaging over
the area of interest and over several images allowed us to
improve the statistics (between 1 and 2:5" 106 points
were used) and calculate the high order moments of these
differences. The temperature field was recorded for periods
of up to 10 s which is greater than the temperature corre-
lation time (of order 0.1 s). The error in r, introduced by the
curved geometry of the bubble, turned out to be less than a
few percent over a 1 cm region. The effect of evaporation
was estimated to be small and the lifetime of the bubble,
which should decrease with increased evaporation, actually
increases by a factor of about 4 when a temperature gra-
dient is imposed indicating that convection is more impor-
tant than both evaporation and draining by gravity.

Figure 1 shows a full view of the bubble as well as images
obtained with the infrared camera in a region near the
bottom of the half bubble where the thermal convection is
strongest. One can easily identify thermal plumes rising
from the bottom of the cell which are clearly visible for the
low temperature gradient. The thermal convection becomes
more intense as the temperature gradient increases and
well-defined thermal plumes are difficult to discern. From
such spatial images we extract the temperature difference
"TðrxÞ ¼ Tðxþ rxÞ ' TðxÞ and "TðryÞ ¼ Tðyþ ryÞ '
Tðy) and calculate the nth moments as hj"TðrxÞjni and
hj"TðryÞjni. Here x and y refer to the horizontal and vertical
coordinates and the brackets refer to an average over space
and time. The temperature structure functions are important
quantities in the study of turbulence and different scaling
relations have been proposed for their variation versus the
scale r. In 3D turbulent flows, where Kolmogorov-like
scaling is believed to prevail for the low order moments,
Obhukov and Corrsin [5,6] generalized the scaling argu-
ments of Kolmogorov to a scalar field like the temperature
and used both the energy dissipation rate # and the scalar
dissipation rate #$ to predict that the second order structure

functions should scale as #$#
'1=3r2=3. Similar scaling argu-

ments can be used, as suggested by Bolgiano and Obukhov
[7–9] for stably stratified turbulence, to the case of Rayleigh
Benard convection for which the fluid thermal expansion
rate%, the gravity constant g, and the dissipation rate #$ fix
the scaling relation of the second order structure function of

the temperature as #4=5$ ð%gÞ'2=5 r2=5 [9]. The nth order
moments are expected to vary as a power law of the sepa-
ration distance r with an exponent &Tn of n=5 in the
Bolgiano-Obukhov regime and n=3 for the Obukhov-
Corrsin regime. To compare the experimental conditions
here to their classical counterparts, we estimated the
Rayleigh number (Ra ¼ %!TgR3='( where ' and ( are
the kinematic viscosity and the thermal diffusivity of water)
to be between 7" 107 and 2" 108 while the Reynolds
number (Re ¼ VmeanR=' where Vmean is the characteristic
horizontal velocity) is estimated to be about 3000.
The temperature structure functions are displayed in

Figs. 2(a) and 2(b) for two different !T: 21 and 50 !C.
For the low !T, Fig. 2(a), the temperature structure func-
tions are roughly isotropic as the values of the differences
for the two orthogonal spatial increments rx and ry are

〉
〈

〉
〈

FIG. 2 (color online). Temperature structure functions for
!T ¼ 21 !C (a) !T ¼ 50 !C (b). The horizontal (squares) and
vertical (crosses) components are plotted up to order 8. The data
are shifted by a multiplicative factor (x2 for n ¼ 3 up to x64 for
n ¼ 8). Insets: compensated moments and scaling exponents.
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FIG. 3. Absolute value of the third order structure function
|S3(kn)| for the velocity u (circles), and temperature θ (squares),
for nh = 20 (black symbols) and nh = 26 (empty symbols). Sθ

3 has
been multiplied by a factor 10−3 for plotting purposes.

cascade of enstrophy, which could develop from the forcing
scales "f down to the scale h. It should therefore decay as
εν ∼ εI (h/"f )2. It would be interesting to test such conjecture
with the results of direct numerical simulations.

The geometrical splitting of the energy cascade can be
extended to other systems of physical interest. Recently, we
have investigated this feature in a Rayleigh-Taylor setup of
turbulent convection. In the following we show that also in
this case a shell model is able to reproduce the observed
phenomenology. We consider a shell model for convective
turbulence, in which the turbulent cascade is sustained by an
unstable mean temperature gradient γ in the vertical direction.
Within the Boussinesq approximation, the shell model for the
coupled dynamics of variables representing the velocity un

and temperature fluctuations θn reads [13]

dun

dt
= i&n(u,u) − Dnun + βgθn, (4)

dθn

dt
= iLn(u,θ ) − κk2

nun + γun, (5)

where g is the gravity acceleration, β is the volume expansion
coefficient, and κ is the thermal diffusivity. Here, the nonlinear
term &n(u,u) and the dissipative term Dnun are chosen as in
Eq. (1). The operator Ln(u,θ ), which models the advection
term in the equation for the temperature fluctuations, is chosen
as Ln(u,θ ) = kmθm−1u

∗
m + km+1θm+1um+1.

If the coefficients (a,b,c) of the nonlinear term &n(u,u) are
chosen according to Eq. (3), the model provides a suitable tool
to investigate the scaling behavior of velocity and temperature
fluctuations of a turbulent flow confined in a narrow convective
cell, in which one of the two horizontal directions h is
much smaller than the other. In general, two different scaling
behaviors are expected in turbulent convection. The balance
between the buoyancy and inertia forces, which holds for
scale larger than the Bolgiano scale "B , leads to the Bolgiano-
Obukhov [14,15] scaling δu(") $ ε

1/5
θ (βg)2/5"3/5 and δθ (") $

ε
2/5
θ (βg)−1/5"1/5, where εθ is flux of the direct cascade of

temperature fluctuations. At small scales " % "B the buoyancy
force becomes negligible, and the temperature fluctuations

are passively transported by the turbulent cascade, leading to
the Kolmogorov-Obukhov [16,17] scaling δu(") $ ε1/3"1/3,
δθ (") $ ε

1/2
θ ε−1/6"1/3. The flux of kinetic energy ε can be

estimated by matching the two scaling regimes at the Bolgiano
scale ε = "

4/5
B (βg)6/5ε

3/5
θ .

Understanding the dependence of the Bolgiano scale on
the control parameters of a real flow is a long standing issue
in turbulent convection [18]. Here we use the modified shell
model to investigate the dependence of "B on the confinement
scale h. We performed numerical simulations of Eqs. (4) and
(5) where the coefficients (a,b,c) are chosen according to
Eq. (3), for various values of the shell nh, which is associated
to the confinement scale h ∼ 1/kh. The values of the other
parameters used in the simulations are βg = γ = 1, κ = ν =
10−16, µ = 103 p = 1, q = 2 , λ = 2, and k0 = 1/2.

As shown in Fig. 3, the third order structure functions,
which in the case of the temperature has been defined as
Sθ

3 (kn) = 〈|θn|3〉, clearly show two distinct scaling regimes.
At wave numbers kn ( kh Kolmogorov-Obukhov scaling is
observed for temperature and velocity, i.e., Su,θ

3 (kn) ∼ k−1
n .

Conversely at small wave numbers kn % kh the structure
functions follows the Bolgiano-Obukhov scaling Su

3 (kn) ∼
k

−9/5
n and Suθ

3 (kn) ∼ k
−3/5
n . The collapse of structure functions

obtained for different nh on the scale kh is remarkable
and provides compelling evidence that in the shell model
considered here the Bolgiano scale is determined by the scale
of confinement, i.e., "B $ k−1

h . This result confirms our recent
findings based on high-resolution direct numerical simulations
of turbulent Boussinesq flow confined in a narrow convective
cell [19].

It is interesting to observe that the Bolgiano scale is
located exactly at the point where the sign of Su

3 (kn) changes,
indicating the reversal of the energy transfer in the turbu-
lent cascade. In particular the Bolgiano-Obukhov scaling is
observed only in the wave-number range where an inverse
energy cascade takes place. This is in agreement with previous
numerical [13,20] and experimental observations [21,22]
which have shown that two-dimensional convective flows
are characterized by Bolgiano-Obukhov phenomenology, and
corroborates the conjecture that such scaling is associated to
an upscale energy transfer.

In conclusion, we have shown that shell models with scale-
dependent parameters provide a useful tool for investigating
the phenomenology of turbulent cascades in fluid layers with
large aspect ratio. The proposed model is able to reproduce
different phenomena emerging when a 2D dynamics at large
scale coexists with a 3D dynamics at small scales. When
mechanically forced Navier-Stokes turbulence is considered,
the 2D-3D shell model exhibits a split energy cascade, recently
observed in direct numerical simulations and experiments,
and allows a detailed study of the dependence of energy
partitioning on the thickness of the layer. In the more complex
case of turbulence driven by a thermal gradient, the model
helps to clarify the natural emergence of the Bolgiano scale
from the geometrical confinement of the system. Our results
suggest the possibility to apply similar modeling to systems
comprising several scale intervals with different dynamical
behavior, which are challenging to tackle by means of direct
numerical simulation.
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FIG. 3. (Color online) For stably stratified simulation with Pr =
1 and Ri = 0.01, plots of KE flux !u(k), normalized KE flux
!u(k)k4/5, and potential energy flux !θ (k).

We also performed 5123 grid simulations for Ri = 0.5 and
4 × 10−7 with Pr = 1. The normalized KE spectra for these
two cases are exhibited in Figs. 5(a) and 5(b), respectively.
Our results show that BO scaling is valid for Ri = 0.5, but KO
scaling [with a constant !u(k)] is valid for Ri = 4 × 10−7,
which is as expected since buoyancy is significant only for
moderate and large Ri’s.

We compute F (k), D(k), and d!u(k)/dk for Ri = 0.5 and
4 × 10−7 and plot them in Figs. 6(a) and 6(b), respectively. In
the inertial range, F (k) < 0 for both cases, just like Ri = 0.01.
The behavior of F (k), D(k), and d!u(k)/dk for Ri = 0.5 is
very similar to that of Ri = 0.01, except that F (k) for Ri = 0.5
is a bit smaller than that for Ri = 0.01. For Ri = 4 × 10−7,
buoyancy is weak, hence F (k) is much smaller than that for
Ri = 0.01, which leads to an approximately constant !u(k),
and Kolmogorov’s spectrum for the kinetic energy.

Recall that we employ the periodic boundary condition
for the stably stratified flows in the vertical direction, thus
eliminating the effects of boundary walls. In Fig. 7 we
plot the plane-averaged (over xy plane) mean temperature
profile T̄ (z) = 〈T (x,y,z)〉xy . Since T̄ (z) is linear, a constant
temperature gradient dT̄ /dz (hence buoyancy) acts in the
whole box. Therefore, BO scaling is expected everywhere.
It is important to contrast the above profile with that for

FIG. 4. (Color online) For stably stratified simulation with
Pr = 1 and Ri = 0.01, plots of −F (k),D(k),[−F (k) + D(k)],
−d!u(k)/dk, and k−9/5 line to match with −d!u(k)/dk in the
small-k regime.

FIG. 5. (Color online) For stably stratified simulation with Pr =
1, and (a) Ri = 0.5 and (b) Ri = 4 × 10−7, the plots of normalized
KE spectra for BO scaling and KO scaling.

Rayleigh-Bénard convection in which most of the temperature
drop takes place in the narrow thermal boundary layers at the
plates [19,37], while the bulk flow has dT̄ /dz ≈ 0. Thus we
expect BO scaling in the boundary layers and KO scaling in
the bulk, as reported by Calzavarini et al. [21].

In the next subsection we will discuss the results of
Rayleigh-Bénard convection.

B. Rayleigh-Bénard convection

Borue and Orszag [16] and Skandera et al. [17] simulated
RBC flow under the periodic boundary condition. They
observed KO scaling for both velocity and temperature fields,
consistent with the arguments presented in Sec. II. A shell
model approximates the turbulence in a periodic box quite
well; a recent shell model of RBC flow [38] also yields KO
scaling, consistent with the numerical results of Borue and
Orszag [16] and Skandera et al. [17]. In a typical RBC flow,
however, a fluid is confined between two horizontal conducting
plates that are maintained at constant temperatures, with the
bottom plate hotter than the top one. Earlier, Mishra and Verma
[18] showed that zero- and small-Prandtl-number RBC exhibit
Kolmgorov’s spectrum for the kinetic energy, but their results
were inconclusive for moderate-Prandtl-number RBC. In this
subsection, we will investigate this issue for Pr = 1.

To explore which of the two scaling (KO or BO) is
applicable for RBC turbulence with plates, we perform RBC
simulations for Pr = 1 and Ra = 107 and compute the spectra
and fluxes of the KE as well as the entropy for the steady-state
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Our results show that BO scaling is valid for Ri = 0.5, but KO
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buoyancy is weak, hence F (k) is much smaller than that for
Ri = 0.01, which leads to an approximately constant !u(k),
and Kolmogorov’s spectrum for the kinetic energy.

Recall that we employ the periodic boundary condition
for the stably stratified flows in the vertical direction, thus
eliminating the effects of boundary walls. In Fig. 7 we
plot the plane-averaged (over xy plane) mean temperature
profile T̄ (z) = 〈T (x,y,z)〉xy . Since T̄ (z) is linear, a constant
temperature gradient dT̄ /dz (hence buoyancy) acts in the
whole box. Therefore, BO scaling is expected everywhere.
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Rayleigh-Bénard convection in which most of the temperature
drop takes place in the narrow thermal boundary layers at the
plates [19,37], while the bulk flow has dT̄ /dz ≈ 0. Thus we
expect BO scaling in the boundary layers and KO scaling in
the bulk, as reported by Calzavarini et al. [21].

In the next subsection we will discuss the results of
Rayleigh-Bénard convection.

B. Rayleigh-Bénard convection

Borue and Orszag [16] and Skandera et al. [17] simulated
RBC flow under the periodic boundary condition. They
observed KO scaling for both velocity and temperature fields,
consistent with the arguments presented in Sec. II. A shell
model approximates the turbulence in a periodic box quite
well; a recent shell model of RBC flow [38] also yields KO
scaling, consistent with the numerical results of Borue and
Orszag [16] and Skandera et al. [17]. In a typical RBC flow,
however, a fluid is confined between two horizontal conducting
plates that are maintained at constant temperatures, with the
bottom plate hotter than the top one. Earlier, Mishra and Verma
[18] showed that zero- and small-Prandtl-number RBC exhibit
Kolmgorov’s spectrum for the kinetic energy, but their results
were inconclusive for moderate-Prandtl-number RBC. In this
subsection, we will investigate this issue for Pr = 1.

To explore which of the two scaling (KO or BO) is
applicable for RBC turbulence with plates, we perform RBC
simulations for Pr = 1 and Ra = 107 and compute the spectra
and fluxes of the KE as well as the entropy for the steady-state
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drop takes place in the narrow thermal boundary layers at the
plates [19,37], while the bulk flow has dT̄ /dz ≈ 0. Thus we
expect BO scaling in the boundary layers and KO scaling in
the bulk, as reported by Calzavarini et al. [21].
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Rayleigh-Bénard convection.
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RBC flow under the periodic boundary condition. They
observed KO scaling for both velocity and temperature fields,
consistent with the arguments presented in Sec. II. A shell
model approximates the turbulence in a periodic box quite
well; a recent shell model of RBC flow [38] also yields KO
scaling, consistent with the numerical results of Borue and
Orszag [16] and Skandera et al. [17]. In a typical RBC flow,
however, a fluid is confined between two horizontal conducting
plates that are maintained at constant temperatures, with the
bottom plate hotter than the top one. Earlier, Mishra and Verma
[18] showed that zero- and small-Prandtl-number RBC exhibit
Kolmgorov’s spectrum for the kinetic energy, but their results
were inconclusive for moderate-Prandtl-number RBC. In this
subsection, we will investigate this issue for Pr = 1.

To explore which of the two scaling (KO or BO) is
applicable for RBC turbulence with plates, we perform RBC
simulations for Pr = 1 and Ra = 107 and compute the spectra
and fluxes of the KE as well as the entropy for the steady-state
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One can invoke a dimensional argument to explain the large-scale spectral distribution, namely the Bolgiano-
Obukhov scaling ([? ? ] BO hereafter) derived for purely and stabley stratified turbulence. This scaling is obtained
under the assumption that the source of energy at large scale is contained in the buoyancy, or in the potential
modes, with nonlinear transfer rate "P = |dEP |/dt, assumed constant, and with a negligible advection term in the
momentum equation. Since ⇢ in the primitive equations written in Eq. (??) has the dimension of a velocity, we have
to re–introduce the physical dimension of the buoyancy flux in terms of length and time, i.e., L2T�5; similarly one
can use "PN

2 for the constant flux. This then leads to (see [? ] for a review):

EV (k) ⇠ "
2/5
P k�11/5 , EP (k) ⇠ "

4/5
P k�7/5 . (14)

In the BO phenomenology, the scalar actively modifies the velocity field, and is therefore not passive. Note that
the Coriolis force does not contribute to the energy balance but only to an angular redistribution of energy favoring
negative flux to large scales, and thus does not perturb the dynamics leading to the BO scaling. The phenomenology
derives from the idea that at large scales, the nonlinear advection term is not strong enough in the direct cascade to
small scales, and the only available source of energy is therefore that coming from the scalar fluctuations. Stating that
the kinetic and potential energy spectra will depend only on the dimensional buoyancy flux, "P , and wavenumber, k,
leads to the above spectra.

There are indications that the BO scaling has been observed in stably stratified in the atmosphere [? ], as well
as at the bottom boundary of convectively unstable cells, using temporal structure functions conditionally averaged
on local values of the thermal dissipation rate [? ]. A recent three-dimensional DNS analysis of Rayleigh-Bénard
convection shows such a scaling as well [? ]. BO scaling has been associated with a bi-dimensionalization of the flow
due to stratification and the growth of the mixing layer leading to a confined dynamics [? ? ]. In the case of the
present computation, we note that the quasi 2D large-scale dynamics is reinforced by the presence of rotation, as
observed in the kinetic energy flux which is negative, corresponding to inverse transfer (see below).

We show in Fig. ?? (top right) the kinetic and potential energy spectra averaged over the time interval corresponding
to the peak of enstrophy and compensated by the BO scaling. This scaling seems to hold at large scales, up to k ⇡ 12
for the velocity, and on a shorter range for the temperature field. In Fig. ?? (bottom right) is shown the ratio of
kinetic to potential energies, each averaged over time, and their ratio is consistent with a k�4/5 law at large scale,
as predicted by Eq. (??) to within constants of order unity, whereas in the next regime, close to a Kolmogorov law,
this ratio is close to equipartition in these units. Fig. ?? (bottom left) displays several fluxes. The (forward) flux of
total energy (solid line) is approximately constant, at a level of ⇡ 0.022 in these two identified ranges, indicative of a
classical turbulent cascade. Note also that it becomes negative (reaching ⇡ �0.0085) at scales larger than the scale
of the initial conditions; it can be expected, therefore, that, in the presence of forcing, a small inverse cascade may
develop, as observed in [? ] and as it does when the forcing is placed at smaller scale (see e.g., [? ? ? ]).

We also show in Fig. ?? (bottom left) the energy flux decomposed into its kinetic (dashed) and potential (dash-
dotted) components, ⇧V,P , as well as the buoyancy flux, ⇧w⇢, (dotted line), defined in wavenumber space as:

⇧w⇢(k) =
k0=kX

k0=0

X

k0<|k00|<k0+1

Re(ŵ(k00)⇢̂(k00)⇤) , (15)

where ŵ(k) and ⇢̂(k) are the Fourier coe�cients for the vertical velocity and the scalar, respectively. The first two
fluxes, ⇧V,P , correspond to a scale–by–scale analysis of the two non-linear flux terms, ⇢u ·r⇢ and u · [u ·r]u, whereas
the buoyancy flux concerns the energetic exchanges between the velocity and density fluctuations. The sum of the
kinetic enstrophy at its peak (see Fig. ??) plus the kinetic energy flux, ⇧v(k = 1) ⇡ �0.01 is ⇡ 0.0024, which is in
excellent agreement with the nearly constant value of ⇧v in the region k 2 [4, 20] seen in this figure. Furthermore, it
can be seen that, as hypothesized in the BO phenomenology, the potential flux to small scales is dominant, constant
and positive for a wide range of scales. The kinetic flux has a strong peak at wavenumbers smaller than k0. It is in
fact negative throughout the wavenumber range around the peak of enstrophy; this is likely due to the fact that the
buoyancy flux acts as a source of energy for the velocity in a wide range of scales.

We present the time average of ⇧w⇢ in Fig. ?? (bottom left, dotted curve), where it is seen that it is, in fact,
comparable to the total energy flux, and can serve potential as a kinetic energy source. We note that large temporal
fluctuations in the buoyancy flux are observed; they correspond to gravity waves directly a↵ecting vertical motions.

Finally, we can evaluate the wavenumber, KBO, at which the transition to a Kolmogorov spectrum EV (k) ⇠

"
2/3
V k�5/3 is taking place, in the framework of the BO scaling, by equating the two spectra at that scale. This leads
immediately to

KBO ⇠ "
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Figure 4. Wave-, vortical- and kh = 0 (wave) mode spectra for B-series δ = 1, Fr ! 0.002 flows with
(Ro, N/f ) as indicated, at τ nl = 50 non-linear times. The VSHF (excluding the forcing scales) are
not significant at these early times. (a) B4: Ro = 0.0091; N/f = 4. (b) B8: Ro = 0.016; N/f = 8.
(c) B16: Ro = 0.032; N/f = 16. (d) B32: Ro = 0.064; N/f = 32.

3.2. Equal time data analysis

Since our flows are run out to different non-linear times (see Figure 1) we first compare
B4–B32 at equal time τ nl ≈ 50 (the latest time for B32). Layered structure has emerged
in the wave modes in all four cases (left column of Figure 3). The vortical component
shows very weak structures for B4, becoming more distinct for higher values of Ro (B8,
B16, B32, right column of Figure 3). From these early time visualisations we may conclude
qualitatively, that: (1) layering is set up at early times in all cases; (2) for relatively small
N/f (Ro ! 4Fro) the layers observed in the vortical component of the flow are not very
distinct, and the magnitudes of the vortical and wave components are comparable; (3) for
larger N/f (Ro ≥ 8Fro) the layered structure becomes more distinct in the vortical mode and
the magnitude of the vortical component becomes much larger than the wave component;
and (4) fine-scale layered structure in the vertical increases in the wave component as Ro
increases, but the magnitude of the wave component becomes sub-dominant to the vortical.
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One can invoke a dimensional argument to explain the large-scale spectral distribution, namely the Bolgiano-
Obukhov scaling ([? ? ] BO hereafter) derived for purely and stabley stratified turbulence. This scaling is obtained
under the assumption that the source of energy at large scale is contained in the buoyancy, or in the potential
modes, with nonlinear transfer rate "P = |dEP |/dt, assumed constant, and with a negligible advection term in the
momentum equation. Since ⇢ in the primitive equations written in Eq. (??) has the dimension of a velocity, we have
to re–introduce the physical dimension of the buoyancy flux in terms of length and time, i.e., L2T�5; similarly one
can use "PN

2 for the constant flux. This then leads to (see [? ] for a review):

EV (k) ⇠ "
2/5
P k�11/5 , EP (k) ⇠ "

4/5
P k�7/5 . (14)

In the BO phenomenology, the scalar actively modifies the velocity field, and is therefore not passive. Note that
the Coriolis force does not contribute to the energy balance but only to an angular redistribution of energy favoring
negative flux to large scales, and thus does not perturb the dynamics leading to the BO scaling. The phenomenology
derives from the idea that at large scales, the nonlinear advection term is not strong enough in the direct cascade to
small scales, and the only available source of energy is therefore that coming from the scalar fluctuations. Stating that
the kinetic and potential energy spectra will depend only on the dimensional buoyancy flux, "P , and wavenumber, k,
leads to the above spectra.

There are indications that the BO scaling has been observed in stably stratified in the atmosphere [? ], as well
as at the bottom boundary of convectively unstable cells, using temporal structure functions conditionally averaged
on local values of the thermal dissipation rate [? ]. A recent three-dimensional DNS analysis of Rayleigh-Bénard
convection shows such a scaling as well [? ]. BO scaling has been associated with a bi-dimensionalization of the flow
due to stratification and the growth of the mixing layer leading to a confined dynamics [? ? ]. In the case of the
present computation, we note that the quasi 2D large-scale dynamics is reinforced by the presence of rotation, as
observed in the kinetic energy flux which is negative, corresponding to inverse transfer (see below).

We show in Fig. ?? (top right) the kinetic and potential energy spectra averaged over the time interval corresponding
to the peak of enstrophy and compensated by the BO scaling. This scaling seems to hold at large scales, up to k ⇡ 12
for the velocity, and on a shorter range for the temperature field. In Fig. ?? (bottom right) is shown the ratio of
kinetic to potential energies, each averaged over time, and their ratio is consistent with a k�4/5 law at large scale,
as predicted by Eq. (??) to within constants of order unity, whereas in the next regime, close to a Kolmogorov law,
this ratio is close to equipartition in these units. Fig. ?? (bottom left) displays several fluxes. The (forward) flux of
total energy (solid line) is approximately constant, at a level of ⇡ 0.022 in these two identified ranges, indicative of a
classical turbulent cascade. Note also that it becomes negative (reaching ⇡ �0.0085) at scales larger than the scale
of the initial conditions; it can be expected, therefore, that, in the presence of forcing, a small inverse cascade may
develop, as observed in [? ] and as it does when the forcing is placed at smaller scale (see e.g., [? ? ? ]).

We also show in Fig. ?? (bottom left) the energy flux decomposed into its kinetic (dashed) and potential (dash-
dotted) components, ⇧V,P , as well as the buoyancy flux, ⇧w⇢, (dotted line), defined in wavenumber space as:

⇧w⇢(k) =
k0=kX

k0=0

X

k0<|k00|<k0+1

Re(ŵ(k00)⇢̂(k00)⇤) , (15)

where ŵ(k) and ⇢̂(k) are the Fourier coe�cients for the vertical velocity and the scalar, respectively. The first two
fluxes, ⇧V,P , correspond to a scale–by–scale analysis of the two non-linear flux terms, ⇢u ·r⇢ and u · [u ·r]u, whereas
the buoyancy flux concerns the energetic exchanges between the velocity and density fluctuations. The sum of the
kinetic enstrophy at its peak (see Fig. ??) plus the kinetic energy flux, ⇧v(k = 1) ⇡ �0.01 is ⇡ 0.0024, which is in
excellent agreement with the nearly constant value of ⇧v in the region k 2 [4, 20] seen in this figure. Furthermore, it
can be seen that, as hypothesized in the BO phenomenology, the potential flux to small scales is dominant, constant
and positive for a wide range of scales. The kinetic flux has a strong peak at wavenumbers smaller than k0. It is in
fact negative throughout the wavenumber range around the peak of enstrophy; this is likely due to the fact that the
buoyancy flux acts as a source of energy for the velocity in a wide range of scales.

We present the time average of ⇧w⇢ in Fig. ?? (bottom left, dotted curve), where it is seen that it is, in fact,
comparable to the total energy flux, and can serve potential as a kinetic energy source. We note that large temporal
fluctuations in the buoyancy flux are observed; they correspond to gravity waves directly a↵ecting vertical motions.

Finally, we can evaluate the wavenumber, KBO, at which the transition to a Kolmogorov spectrum EV (k) ⇠

"
2/3
V k�5/3 is taking place, in the framework of the BO scaling, by equating the two spectra at that scale. This leads
immediately to

KBO ⇠ "
3/4
P "

�5/4
V . (16)~ 11	
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One can invoke a dimensional argument to explain the large-scale spectral distribution, namely the Bolgiano-
Obukhov scaling ([? ? ] BO hereafter) derived for purely and stabley stratified turbulence. This scaling is obtained
under the assumption that the source of energy at large scale is contained in the buoyancy, or in the potential
modes, with nonlinear transfer rate "P = |dEP |/dt, assumed constant, and with a negligible advection term in the
momentum equation. Since ⇢ in the primitive equations written in Eq. (??) has the dimension of a velocity, we have
to re–introduce the physical dimension of the buoyancy flux in terms of length and time, i.e., L2T�5; similarly one
can use "PN

2 for the constant flux. This then leads to (see [? ] for a review):

EV (k) ⇠ "
2/5
P k�11/5 , EP (k) ⇠ "

4/5
P k�7/5 . (14)

In the BO phenomenology, the scalar actively modifies the velocity field, and is therefore not passive. Note that
the Coriolis force does not contribute to the energy balance but only to an angular redistribution of energy favoring
negative flux to large scales, and thus does not perturb the dynamics leading to the BO scaling. The phenomenology
derives from the idea that at large scales, the nonlinear advection term is not strong enough in the direct cascade to
small scales, and the only available source of energy is therefore that coming from the scalar fluctuations. Stating that
the kinetic and potential energy spectra will depend only on the dimensional buoyancy flux, "P , and wavenumber, k,
leads to the above spectra.

There are indications that the BO scaling has been observed in stably stratified in the atmosphere [? ], as well
as at the bottom boundary of convectively unstable cells, using temporal structure functions conditionally averaged
on local values of the thermal dissipation rate [? ]. A recent three-dimensional DNS analysis of Rayleigh-Bénard
convection shows such a scaling as well [? ]. BO scaling has been associated with a bi-dimensionalization of the flow
due to stratification and the growth of the mixing layer leading to a confined dynamics [? ? ]. In the case of the
present computation, we note that the quasi 2D large-scale dynamics is reinforced by the presence of rotation, as
observed in the kinetic energy flux which is negative, corresponding to inverse transfer (see below).

We show in Fig. ?? (top right) the kinetic and potential energy spectra averaged over the time interval corresponding
to the peak of enstrophy and compensated by the BO scaling. This scaling seems to hold at large scales, up to k ⇡ 12
for the velocity, and on a shorter range for the temperature field. In Fig. ?? (bottom right) is shown the ratio of
kinetic to potential energies, each averaged over time, and their ratio is consistent with a k�4/5 law at large scale,
as predicted by Eq. (??) to within constants of order unity, whereas in the next regime, close to a Kolmogorov law,
this ratio is close to equipartition in these units. Fig. ?? (bottom left) displays several fluxes. The (forward) flux of
total energy (solid line) is approximately constant, at a level of ⇡ 0.022 in these two identified ranges, indicative of a
classical turbulent cascade. Note also that it becomes negative (reaching ⇡ �0.0085) at scales larger than the scale
of the initial conditions; it can be expected, therefore, that, in the presence of forcing, a small inverse cascade may
develop, as observed in [? ] and as it does when the forcing is placed at smaller scale (see e.g., [? ? ? ]).

We also show in Fig. ?? (bottom left) the energy flux decomposed into its kinetic (dashed) and potential (dash-
dotted) components, ⇧V,P , as well as the buoyancy flux, ⇧w⇢, (dotted line), defined in wavenumber space as:

⇧w⇢(k) =
k0=kX

k0=0

X

k0<|k00|<k0+1

Re(ŵ(k00)⇢̂(k00)⇤) , (15)

where ŵ(k) and ⇢̂(k) are the Fourier coe�cients for the vertical velocity and the scalar, respectively. The first two
fluxes, ⇧V,P , correspond to a scale–by–scale analysis of the two non-linear flux terms, ⇢u ·r⇢ and u · [u ·r]u, whereas
the buoyancy flux concerns the energetic exchanges between the velocity and density fluctuations. The sum of the
kinetic enstrophy at its peak (see Fig. ??) plus the kinetic energy flux, ⇧v(k = 1) ⇡ �0.01 is ⇡ 0.0024, which is in
excellent agreement with the nearly constant value of ⇧v in the region k 2 [4, 20] seen in this figure. Furthermore, it
can be seen that, as hypothesized in the BO phenomenology, the potential flux to small scales is dominant, constant
and positive for a wide range of scales. The kinetic flux has a strong peak at wavenumbers smaller than k0. It is in
fact negative throughout the wavenumber range around the peak of enstrophy; this is likely due to the fact that the
buoyancy flux acts as a source of energy for the velocity in a wide range of scales.

We present the time average of ⇧w⇢ in Fig. ?? (bottom left, dotted curve), where it is seen that it is, in fact,
comparable to the total energy flux, and can serve potential as a kinetic energy source. We note that large temporal
fluctuations in the buoyancy flux are observed; they correspond to gravity waves directly a↵ecting vertical motions.

Finally, we can evaluate the wavenumber, KBO, at which the transition to a Kolmogorov spectrum EV (k) ⇠

"
2/3
V k�5/3 is taking place, in the framework of the BO scaling, by equating the two spectra at that scale. This leads
immediately to

KBO ⇠ "
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V . (16)
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One can invoke a dimensional argument to explain the large-scale spectral distribution, namely the Bolgiano-
Obukhov scaling ([? ? ] BO hereafter) derived for purely and stabley stratified turbulence. This scaling is obtained
under the assumption that the source of energy at large scale is contained in the buoyancy, or in the potential
modes, with nonlinear transfer rate "P = |dEP |/dt, assumed constant, and with a negligible advection term in the
momentum equation. Since ⇢ in the primitive equations written in Eq. (??) has the dimension of a velocity, we have
to re–introduce the physical dimension of the buoyancy flux in terms of length and time, i.e., L2T�5; similarly one
can use "PN

2 for the constant flux. This then leads to (see [? ] for a review):

EV (k) ⇠ "
2/5
P k�11/5 , EP (k) ⇠ "

4/5
P k�7/5 . (14)

In the BO phenomenology, the scalar actively modifies the velocity field, and is therefore not passive. Note that
the Coriolis force does not contribute to the energy balance but only to an angular redistribution of energy favoring
negative flux to large scales, and thus does not perturb the dynamics leading to the BO scaling. The phenomenology
derives from the idea that at large scales, the nonlinear advection term is not strong enough in the direct cascade to
small scales, and the only available source of energy is therefore that coming from the scalar fluctuations. Stating that
the kinetic and potential energy spectra will depend only on the dimensional buoyancy flux, "P , and wavenumber, k,
leads to the above spectra.

There are indications that the BO scaling has been observed in stably stratified in the atmosphere [? ], as well
as at the bottom boundary of convectively unstable cells, using temporal structure functions conditionally averaged
on local values of the thermal dissipation rate [? ]. A recent three-dimensional DNS analysis of Rayleigh-Bénard
convection shows such a scaling as well [? ]. BO scaling has been associated with a bi-dimensionalization of the flow
due to stratification and the growth of the mixing layer leading to a confined dynamics [? ? ]. In the case of the
present computation, we note that the quasi 2D large-scale dynamics is reinforced by the presence of rotation, as
observed in the kinetic energy flux which is negative, corresponding to inverse transfer (see below).

We show in Fig. ?? (top right) the kinetic and potential energy spectra averaged over the time interval corresponding
to the peak of enstrophy and compensated by the BO scaling. This scaling seems to hold at large scales, up to k ⇡ 12
for the velocity, and on a shorter range for the temperature field. In Fig. ?? (bottom right) is shown the ratio of
kinetic to potential energies, each averaged over time, and their ratio is consistent with a k�4/5 law at large scale,
as predicted by Eq. (??) to within constants of order unity, whereas in the next regime, close to a Kolmogorov law,
this ratio is close to equipartition in these units. Fig. ?? (bottom left) displays several fluxes. The (forward) flux of
total energy (solid line) is approximately constant, at a level of ⇡ 0.022 in these two identified ranges, indicative of a
classical turbulent cascade. Note also that it becomes negative (reaching ⇡ �0.0085) at scales larger than the scale
of the initial conditions; it can be expected, therefore, that, in the presence of forcing, a small inverse cascade may
develop, as observed in [? ] and as it does when the forcing is placed at smaller scale (see e.g., [? ? ? ]).

We also show in Fig. ?? (bottom left) the energy flux decomposed into its kinetic (dashed) and potential (dash-
dotted) components, ⇧V,P , as well as the buoyancy flux, ⇧w⇢, (dotted line), defined in wavenumber space as:

⇧w⇢(k) =
k0=kX

k0=0

X

k0<|k00|<k0+1

Re(ŵ(k00)⇢̂(k00)⇤) , (15)

where ŵ(k) and ⇢̂(k) are the Fourier coe�cients for the vertical velocity and the scalar, respectively. The first two
fluxes, ⇧V,P , correspond to a scale–by–scale analysis of the two non-linear flux terms, ⇢u ·r⇢ and u · [u ·r]u, whereas
the buoyancy flux concerns the energetic exchanges between the velocity and density fluctuations. The sum of the
kinetic enstrophy at its peak (see Fig. ??) plus the kinetic energy flux, ⇧v(k = 1) ⇡ �0.01 is ⇡ 0.0024, which is in
excellent agreement with the nearly constant value of ⇧v in the region k 2 [4, 20] seen in this figure. Furthermore, it
can be seen that, as hypothesized in the BO phenomenology, the potential flux to small scales is dominant, constant
and positive for a wide range of scales. The kinetic flux has a strong peak at wavenumbers smaller than k0. It is in
fact negative throughout the wavenumber range around the peak of enstrophy; this is likely due to the fact that the
buoyancy flux acts as a source of energy for the velocity in a wide range of scales.

We present the time average of ⇧w⇢ in Fig. ?? (bottom left, dotted curve), where it is seen that it is, in fact,
comparable to the total energy flux, and can serve potential as a kinetic energy source. We note that large temporal
fluctuations in the buoyancy flux are observed; they correspond to gravity waves directly a↵ecting vertical motions.

Finally, we can evaluate the wavenumber, KBO, at which the transition to a Kolmogorov spectrum EV (k) ⇠

"
2/3
V k�5/3 is taking place, in the framework of the BO scaling, by equating the two spectra at that scale. This leads
immediately to
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Conclusions and questions	



•  Large resolutions allow for scale separation …	


       and thus to distinguish between multiple regimes within a flow	


•  Evidence for Bolgiano-Obukhov scaling at large scale	


    and complex interplay between velocity and buoyancy modes & fluxes	


•  Local instabilities and strong local variations (dissipation, PV, …)	



•  Waves and eddies partition	


•  Local small-scale dynamics	


•  Role of rotation             in the Bolgiano-Obukhov scaling?	


•  Role of inverse cascade in the Bolgiano-Obukhov scaling?	


•  Role of walls and B.C.  in the Bolgiano-Obukhov scaling?	



•  Role of forcing (3D vs. 2D, vortices vs. waves, …)	


•  Role of non-local interactions	


•  Role of large-scale friction in the presence of forcing	
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Bolgiano, Marseille meeting, 1962	


	


	


``Important progress appears likely in the next few years.’’	


	


	


	


	


                Thank you for your attention!	
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Kolmogorov: 	


“I soon understood that there was little 
hope of developing a pure, closed theory, 
and because of absence of such a theory 
the investigation must be based on 
hypotheses obtained on processing 
experimental data.” 	



“In this unfolding conundrum of life and history there is such a thing as being too 	


late ... We may cry out desperately for time to pause in her passage, but time is	


adamant to every plea and rushes on. Over the bleached bones and jumbled	


residue of numerous civilizations are written the pathetic words: "Too late". ‘’	


Martin Luther King Jr, 1967, After Clive Hamilton, Utopias in the Anthropocene, 	
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