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Some “big picture” comments

I There are many kinds of turbulence model, and many
reasons for making them. Our goal is to improve the
representation of large scales in numerical models.

I The most accurate models of turbulence are not always the
most useful for numerical modeling, and vice versa,
e.g. EDQNM, (Q)DIA vs Smagorinsky or GM.

I Stochastic SP is a multiscale model for turbulence, but we
sacrifice small-scale accuracy to gain computational
efficiency (without sacrificing large-scale accuracy).
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OUTLINE

1. Background: multiple scales and superparameterization
2. General formulation of stochastic superparameterization
3. Stochastic superparameterization in QG models
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Lots of multiscale models are based on multiple-scales
asymptotics, e.g.

Several by Keith & collaborators (myself included)

Also Rupert Klein and Andy Majda

Multiple-scales asymptotics is a bit delicate: it doesn’t always
lead to a closed multiscale model

Once you have a multiscale model (from asymptotics or
otherwise), how do you turn it into an efficient numerical
simulation?
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If you have a multiscale mathematical model with coupled
large-scale and small-scale equations (e.g. from asymptotics),
and you run a simulation of these equations with periodic
small-scale domains I will call it “Superparameterization” (SP).

The name SP comes from the work of Grabowski &
Smolarkiewicz in atmospheric moist convection.

The next slide illustrates SP in oceanic convection.
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SUPERPARAMETERIZATION
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SUPERPARAMETERIZATION

You need some tricks to make the computation more efficient,
e.g.

I Make the small-scale computations 2D
I Make the small-scale domains smaller than the coarse grid

scale
I Run small-scale simulations shorter than the coarse-grid

time step
I Use fewer small-scale domains than coarse grid points

E.g. Xing, Majda, & Grabowski (2009), Malecha, Chini, & Julien
(2014)

Next slide illustrates a difficulty of SP
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SUPERPARAMETERIZATION
SCALE SEPARATION
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Stochastic Superparameterization

Andy and I developed stochastic SP to
I Provide a multiscale mathematical model when other

approaches (asymptotics) fail
I Significantly reduce the cost of small-scale simulations
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STOCHASTIC SUPERPARAMETERIZATION
POINT APPROXIMATION

Start from equations governing dynamics at all scales, e.g.

∂tu = Lu + B(u,u)

Use Reynolds average to get large-scale mean and small-scale
eddy equations

∂tu = Lu + B(u,u) + B(u′,u′)
∂tu′ = (L + B(u, ·) + B(·,u))u′ + B(u′,u′)′

(Works with any polynomial nonlinearity)
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STOCHASTIC SUPERPARAMETERIZATION
POINT APPROXIMATION

Apply ‘point approximation’:
1. Eddy variables depend on new independent coordinates
∂tu′ → ∂τu′, ∂xu′ → ∂x̃u′, etc.

2. Interpret overbar as average over the new coordinates
Point-approximation eddy equations are

∂τu′ = Lu′ + B(u′,u′)′

where L = L + B(u, ·) + B(·,u) is a constant-coefficient linear
differential operator.

Point approximation is similar to asymptotics, but without
requiring scale separation.

Could be used as a basis for SP, with aforementioned
computational tricks to increase efficiency.
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STOCHASTIC SUPERPARAMETERIZATION
GAUSSIAN CLOSURE

Apply Gaussian closure: replace eddy-eddy nonlinearity by
stochastic forcing and dissipation

∂τu′ = Lu′ + F− Γu′.

F is spatially-correlated Gaussian white noise and Γ is a
positive-definite operator.

The properties of the stochastic forcing and dissipation are
chosen such that, in the absence of L, the eddies have
generic/universal properties.

The Fourier coefficients are complex Ornstein-Uhlenbeck
processes; constant-coefficient L implies Fourier modes
decouple.
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GAUSSIAN CLOSURE

I This is not an a priori model! You need to know enough
about the small scale dynamics to make a reasonable
stochastic approximation.

I This stochastic model makes most sense for turbulent (vs
weakly nonlinear) small scale dynamics. You could use a
different kind of stochastic model in other circumstances.

I The stochastic model is a crude model of small scales, but
this is OK if the method gives good large-scale dynamics.

I Stochastic model not correct for long times; need to
re-initialize small scales to correct.

I Easy to compute solutions of the small-scale dynamics
because the Fourier dynamics are linear and decoupled.

I You can use any Fourier modes you want; this alleviates
gaps in the spectrum discussed above for SP.
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STOCHASTIC SUPERPARAMETERIZATION FOR QG

We develop stochastic SP for two-layer quasigeostrophic (QG)
dynamics on a β-plane forced by imposed baroclinic shear

∂tq1 +∇ · (u1q1) + ∂xq1 + (k2
β + k2

d)v1 = ν∇8q1

∂tq2 +∇ · (u2q2)− ∂xq2 + (k2
β − k2

d)v2 = −r∇2ψ2 + ν∇8q2

ui = ∇⊥ψi, qi = ∇2ψi +
k2

d
2

(ψj − ψi), i, j = 1, 2, i 6= j
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STOCHASTIC SUPERPARAMETERIZATION
FORMULATION OF SP

Apply Reynolds average∗ to governing equations

∂tqj = −∇ · (ujqj) + (−1)j∂xqj −Πj∂xψj − δj2r∇2ψj − ν∇8qj,

∂tq′j = −∇ · (u′jq
′
j)
′ − (uj − (−1)jx̂) · ∇q′j − u′j · ∇Qj − δj2r∇2ψ′j − ν∇8q′j

where Πj = k2
β − k2

d(−1)j and Qj = Πjy + qj.
Note

∇ · (ujqj) = ∇ · (ujqj) +∇ · (u′jq
′
j)

∇ · (u′jq
′
j) =

k2
d(−1)j

2
∇ · (u′j(ψ

′
1 − ψ′2))

+
(
∂2

x − ∂2
y

)
u′jv
′
j + ∂xy

(
(v′j)2 − (u′j)2

)
.

∗
low-pass filter is more appropriate but gets to the same place eventually.
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STOCHASTIC SUPERPARAMETERIZATION: POINT

APPROXIMATION

Apply ‘point approximation’ to get eddy equations for SP:

∂tq′j = −∇ · (u′jq
′
j)
′ − (uj − (−1)jx̂) · ∇q′j − u′j · ∇Qj − δj2r∇2ψ′j − ν∇8q′j

↓

∂τq′j = −∇̃ · (u′jq
′
j)
′ − (uj − (−1)jx̂) · ∇̃q′j − u′j · ∇Qj − δj2r∇̃2ψ′j − ν∇̃8q′j

One could run an SP based on these equations. But it would be
way too expensive and probably wouldn’t work in some
situations (ask me).
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STOCHASTIC SUPERPARAMETERIZATION
FORMULATION OF SP

‘Gaussian Closure’ eddy equations:

∂τq′j = −∇̃ · (u′jq
′
j)
′ − (uj − (−1)jx̂) · ∇̃q′j − u′j · ∇Qj − δj2r∇̃2ψ′j − ν∇̃8q′j

↓

∂τq′j = Fj − Γq′j − (uj − (−1)jx̂) · ∇̃q′j − u′j · ∇Qj − δj2r∇̃2ψ′j − ν∇̃8q′j
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How do we specify the stochastic eddy model? We specify a
“universal” solution (next slide) for the following equation

∂tq′i = F′i − Γq′i

This isn’t enough, so we also specify Γ as follows:
Since Γ sets the decorrelation time of each Fourier mode, we set
it using a standard dimensional argument from turbulence
theory:

Γeikx = γkeikx, γk = γ0

√
k3E(k)

where γ0 is a tunable parameter.
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The “universal” eddy behavior:
I isotropic energy spectrum⇒ zero mean Reynolds stress

terms
I energy spectrum ∝ k−5/3 for k < kd

I energy spectrum ∝ k−3 for k > kd

I eddies do not generate heat flux in the absence of
temperature gradient

I specify a constant ratio of barotropic and baroclinic energy
at each k: either equipartition or 6 times more barotropic
energy

The total energy in the eddies is a tunable parameter.
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THE ALGORITHM

1 At the beginning of a coarse model time step, evaluate the
large-scale variables that appear in the eddy equations,
e.g. shear, vorticity gradient.

2 Pick a random direction for the eddies. (See next slide)
3 While holding the large-scale terms fixed, evolve the

eddies for a fixed time of length ε−1. This is cheap because
eddy dynamics are linear.

4 Compute the eddy PV flux from step 3. This is also cheap
because of simple Fourier analysis.

5 Update the large-scale variables.
6 Re-set the eddy variables to a ‘climatological’ state,

i.e. forget the final state of the eddies from the end of step
3.

7 Repeat



INTRODUCTION STOCHASTIC SP 2-LAYER QG

SUPERPARAMETERIZATION
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RANDOM DIRECTIONS

It turns out to be easier to compute the expected value of the
eddy feedback terms than to compute a single realization (ODE
vs SDE).

The expected value of the eddy feedback is not stochastic, and
in the test case below the fluctuations about the mean are
crucial.

To “randomize” the feedback, we take a page from
conventional SP and make the eddy domains 2D (depth plus
horizontal).

The direction of the eddy domains is a random field on the
coarse grid. This is ad hoc; similar results could presumably be
obtained by computing individual realizations of the stochastic
eddies, but it would be more expensive.
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STOCHASTIC SUPERPARAMETERIZATION

Summary

Stochastic SP involves three main tunable parameters:
1. the eddy amplitude/energy
2. the eddy decorrelation timescale γ−1

0

3. the eddy averaging time ε−1.
#1 Could be closed using an EKE model.

#2 Could probably be modeled using turbulence
phenomenology.

#3 The optimal value of ε seems to depend on the details of the
stochastic eddy model; probably should remain tunable.
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Stochastic Backscatter

To understand the effect of the Reynolds stress terms consider
their effect for ε =∞, i.e. just sampling the eddy initial
condition without allowing the eddies to respond to the local
mean flow.
In this case the Reynolds stress terms become

u′jv
′
j →

E0

2
sin(2θ), (v′j)2 − (u′j)2 → E0 cos(2θ)

where θ is the eddy ‘angle.’

It can be shown that the Reynolds stress terms in the large-scale
PV equations correspond to a random forcing with k5 spectrum.

The expected value of the eddy feedback is zero – no
backscatter.
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Randomized GM

To understand the effect of the ‘thickness flux’ terms consider
their response to a zonal shear on an f -plane.

In this case the thickness flux is directed orthogonal to θ and
down the mean gradient.

The amplitude of the flux depends on the amplitude of the
shear (and on γ0 and ε), which makes it look like a randomized
GM parameterization with κ ∝ F(∂zu) (cf Visbeck/Stone where
κ ∝ |∂zu|).
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Salmon Geo. Astro. Fluid Dyn. 1980
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To test stochastic SP we first run eddy-resolving reference
simulations with kd = 50 and a 512× 512 grid.

Then we run stochastic SP using a second-order FD
discretization on a 96× 96 grid – a factor of about 5 lower
resolution.

The coarse-grid Nyquist wavenumber is 48, which is smaller
than the deformation radius but larger than the peak of the KE
spectrum (which is around k = 5).

At this resolution & with these numerics we are in the “dual
energy cascade” not the “forward enstrophy cascade.”
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We run tests in three scenarios
I “High Latitude” f -plane, r = 16
I “Mid Latitude” β = Uk2

d/4, r = 4
I “Low Latitude” β = Uk2

d/2, r = 1
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f -plane: unparameterized code at different resolutions, tuning
ν for best results.
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Time-averaged energy spectra from 5122 reference simulation
(black) and from 962 stochastic SP simulation. f -plane.



INTRODUCTION STOCHASTIC SP 2-LAYER QG

Midlatitude.
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Low latitude.
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REFERENCES FOR STOCHASTIC SP

I G&M Comm. Math. Sci 2014: a 1D problem (MMT)
I G, Lee, &M JCP 2014: multiscale EnKF using SP (MMT)
I G&M PNAS 2014: First QG paper
I G&M JCP 2014: More complete QG paper
I M&G JCP 2014: SP review, including stochastic SP

framework for general problems
I G, M, and Smith Ocean Modelling 2014: QG channel with

complex topography
I G, Lee, and M, submitted: Backscatter in low-order

low-resolution models

www.cims.nyu.edu/˜grooms/

www.cims.nyu.edu/~grooms/
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