Upper Ocean Turbulence

Raffaele Ferrari
Joern Callies, Glenn Flierl (and Baylor Fox-Kemper)
Massachusetts Institute of Technology
Ocean Mixed Layer

Ferrari and Rudnick (JGR, 2000)
Mixed Layer 3D turbulence

Air-sea fluxes trigger 3D turbulence and “mix” the mixed-layer

air-sea heat, freshwater fluxes

mixed-layer/deep ocean heat, freshwater exchange

3D turbulent eddies (scales < 100m)
Mixed layer mesoscale turbulence

Mesoscale eddies stir and mix lateral density gradients

Mesoscale turbulent eddies (scales > 10 km)
Submesoscale mixed layer turbulence

Turbulence emerges on scales smaller than the mesoscale eddies

Capet et al. (JPO, 2008)
Seasonality of mixed layer instabilities

- Submesoscale turbulence enhanced in winter
- Consistent with in-situ observations

Molemaker et al. (personal communication)
Ocean Fronts

Submesoscale turbulence accelerates vertical exchange with deep ocean

\[f^2 \partial_{zz} \phi + N^2 \partial_{yy} \phi = -2 \partial_y v \partial_y b \]
A quasi-geostrophic model to study submesoscale turbulence
Mixed layer instabilities

Sharp PV contrast between mixed layer and thermocline

Boccaletti, Ferrari and Fox-Kemper (JPO, 2007)
Mixed layer instabilities

- Sharp PV contrast between mixed layer and thermocline
- Submesoscale baroclinic instability in the mixed layer

Boccaletti, Ferrari and Fox-Kemper (JPO, 2007)
Quasi-geostrophic (QG) dynamics

- Quasi-geostrophic approximation
 - small Rossby number, \(Ro \equiv \frac{U}{fL} \ll 1 \)
 - motions with scales close to deformation radius, \(L \approx f^{-1} NH \)
 - vertical stratification in only a function of depth, \(N^2 = -\frac{g}{\rho_0} \frac{\partial \rho}{\partial z} \)

\[
\begin{align*}
\frac{\partial w}{\partial t} &= 0 \Rightarrow b_t^T + J(\psi, b^T) = 0, \quad b^T = f_0 \psi_z, \quad z = 0 \\
\frac{\partial q}{\partial t} + J(\psi, q) &= 0, \quad q = f_0 + \nabla^2 \psi + \frac{\partial}{\partial z} \left(f_0^2 \frac{\partial \psi}{N^2} \frac{\partial}{\partial z} \right) \\
\frac{\partial w}{\partial t} &= 0 \Rightarrow b_t^B + J(\psi, b^B) = 0, \quad b^B = f_0 \psi_z, \quad z = -H
\end{align*}
\]
QG submesoscale model

- Two layers of uniform PV (constant stratification)
 - Mixed layer of depth \(h \)
 - Thermocline of depth \(H-h \)

\[
N^2_{ML} \quad q' = \nabla^2 \psi' + \frac{\partial}{\partial z} \left(\frac{f_0^2}{N^2_{ML}} \frac{\partial \psi'}{\partial z} \right) = 0
\]

\[
N^2_{TH} \quad q' = \nabla^2 \psi' + \frac{\partial}{\partial z} \left(\frac{f_0^2}{N^2_{TH}} \frac{\partial \psi'}{\partial z} \right) = 0
\]
QG submesoscale model

- Two layers of uniform PV (constant stratification)

- Dynamics at the interface

\[
b_t^+ + J(\psi', b^+) + w N_{ML}^2 = 0, \quad b_t^- + J(\psi', b^-) + w N_{TH}^2 = 0,
\]

\[
\Rightarrow b_t^I + J(\psi', b^I) = 0, \quad b^I = f_0^2 \left(\frac{b^+}{N_{ML}^2} - \frac{b^-}{N_{TH}^2} \right)
\]

\[
w = 0 \quad \Rightarrow \quad b_t^T + J(\psi', b^T) = 0, \quad b^T = f_0 \psi_z', \quad z = 0
\]

\[
w = 0 \quad \Rightarrow \quad b_t^B + J(\psi', b^B) = 0, \quad b^B = f_0 \psi_z', \quad z = -H
\]
Linear stability analysis

- Consider a basic state with constant mean shear in geostrophic balance with lateral buoyancy gradient
- Two modes of instability (two deformation radii)

\[L \sim \frac{N_{TH} H}{f_0} \]
\[L \sim \frac{N_{ML} h}{f_0} \]
Two model configurations

Full model

No ML
Nonlinear simulations

Full model

No ML
Kinetic energy spectra

Full model

No ML
Phenomenology of mixed layer submesoscale turbulence

Extraction from the mean

Forward cascade

Baroclinic instability (ML deformation radius)

Inverse cascade

Interaction with thermocline eddies

PE

KE

Wavenumber \(k \)
• Vertical velocities are dominated by submesoscales
• Largest in frontal regions, not in coherent vortices
• Vertical velocities are ten times larger with ML
Observations

Sea surface temperature [°C]
Seasonality of submesoscales

Seasonality consistent with dynamics driven by mixed layer instabilities

Winter (full model) Summer (no ML model)

Callies, Ferrari, Klymak and Molemaker (submitted)
Seasonality of submesoscales

Seasonality consistent with dynamics driven by mixed layer instabilities

Winter (full model) Summer (no ML model)

Callies, Ferrari, Klymak and Molemaker (submitted)
Vertical structure of submesoscales

Vertical structure of kinetic energy spectra consistent between observations and simulations

Callies, Ferrari, Klymak and Molemaker (submitted)
Conclusions

• A “novel” three layer QG model captures key aspects of submesoscale turbulence in the upper ocean

• The enhancement of submesoscale fronts by mixed layer instabilities is consistent with observations

• Vertical velocities are dramatically enhanced at fronts

• Submesoscale fronts drive strong exchange of tracers between mixed layer and deep ocean in winter