Rapidly Rotating Compressible Convection and the Breakdown of the Anelastic Approximation

#### Michael A. Calkins, Keith Julien, Philippe Marti

Department of Applied Mathematics, University of Colorado, Boulder

October 30, 2014



University of Colorado Boulder

ション ふゆ マ キャット マックシン

#### Outline

Applications

Compressible Convection Background

Linear Stability of Compressible Convection

# Compressibility in Planets and Stars

- Most geophysical and astrophysical fluid systems are stratified to some degree.
- Large depths leads to large variations in state variables across convection zone.





◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○○

# Jupiter's Internal Structure

- Very sparse direct measurements on interior of Jupiter (i.e. one, Galileo).
- Ab initio simulations have provided insight into interior structure.

•  $N_{\rho} = \ln \left[ \frac{\rho(bottom)}{\rho(top)} \right] \approx 7$ 



French et al., 2012

うして ふゆう ふほう ふほう ふしつ

# The Sun's Internal Structure

- Stellar structure models are coupled with helioseismic observations to provide insight into the Sun.
- For the convection zone,  $N_{\rho} \approx 5$
- Compressibility cannot be rigorously removed from the governing equations.



Christensen-Dalsgaard et al., 1996

イロト 不得 トイヨト イヨト 三日

# Geometry: The Tilted f-plane



- Rotating plane layer of gas
- $\blacktriangleright$  Colatitude  $\theta$  gives angle between rotation and gravity vectors

ション ふゆ く は く は く む く む く し く

▶ Stress-free, isothermal boundary conditions

#### Modeling Compressible Convection: Perfect Gas

Navier-Stokes equations:

$$\rho\left(D_t\mathbf{u} + \sqrt{\frac{PrTa}{Ra}}\widehat{\boldsymbol{\eta}} \times \mathbf{u}\right) = -H_s\nabla p + H_s\rho\widehat{\mathbf{z}} + \sqrt{\frac{Pr}{Ra}}\mathbf{F}_{\nu}$$

Continuity:

 $\partial_t \rho + \nabla \cdot \left( \rho \mathbf{u} \right) = 0$ 

Energy:

$$\rho \vartheta D_t S = \frac{1}{\sqrt{PrRa}} \nabla^2 \vartheta + \frac{1}{H_a} \sqrt{\frac{Pr}{Ra}} \Phi$$

State, Entropy:

$$p = H_a\left(\frac{\gamma - 1}{\gamma}\right)\rho\vartheta, \quad S = \ln\left(\frac{p^{1/\gamma}}{\rho}\right)$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

 Rotating compressible convection of a perfect gas is described by six (6) independent dimensionless parameters.

・ロト ・ 日 ・ モー・ モー・ うへぐ

- Rotating compressible convection of a perfect gas is described by six (6) independent dimensionless parameters.
- ▶ Forcing and fluid properties:

$$Ra = \frac{\rho_o c_p g \beta H^4}{T_o \mu k}, \quad Ta = \left(\frac{2\rho_o \Omega H^2}{\mu}\right)^2, \quad Pr = \frac{\mu c_p}{k}, \quad \gamma = \frac{c_p}{c_v}$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

- Rotating compressible convection of a perfect gas is described by six (6) independent dimensionless parameters.
- ▶ Forcing and fluid properties:

$$Ra = \frac{\rho_o c_p g \beta H^4}{T_o \mu k}, \quad Ta = \left(\frac{2\rho_o \Omega H^2}{\mu}\right)^2, \quad Pr = \frac{\mu c_p}{k}, \quad \gamma = \frac{c_p}{c_v}$$

Background state:

$$H_a = \frac{c_p T_o}{gH}, \quad H_s = \frac{T_o}{\beta H}$$

うして ふゆう ふほう ふほう ふしつ

▶ In the absence of convection we have:

$$\partial_z \overline{p} = \overline{\rho}, \quad 0 = \partial_z^2 \overline{\vartheta}, \quad \overline{p} = H_a \left(\frac{\gamma - 1}{\gamma}\right) \overline{\rho} \overline{\vartheta}$$

$$\Rightarrow \overline{\vartheta} = 1 - \left(H_a^{-1} + H_s^{-1}\right) z, \quad \overline{\rho} = \overline{\vartheta}^n, \quad \overline{p} = H_a\left(\frac{\gamma - 1}{\gamma}\right) \overline{\vartheta}^{n+1}$$

▶ The polytropic index is defined by

$$n = \left(\frac{\gamma}{\gamma - 1}\right) \frac{H_s}{H_a + H_s} - 1$$

• Adiabatic background state:  $H_s \to \infty$ ,  $n_a = (\gamma - 1)^{-1}$ .

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

# Challenges for Solving the Compressible Equations

- ▶ The equations are numerically stiff.
- Most systems are characterized by  $(Ra, Ta) \gg 1$ .

うして ふゆう ふほう ふほう ふしつ

- For most gases Pr < 1.
  - Jupiter:  $10^{-2} \lesssim Pr \lesssim 10^{-1}$
  - Sun:  $10^{-6} \lesssim Pr \lesssim 10^{-3}$

# Challenges for Solving the Compressible Equations

- ▶ Pros: you're not missing any physics.
- Cons: you're not missing any physics.
- Compressible equations have it all: fast and slow inertial waves, acoustic waves, etc.
- ▶ Do we need to solve for all the physics? Not necessarily.

うして ふゆう ふほう ふほう ふしつ

# The Anelastic Equations

- ▶ First derived by Batchelor (1953), then Ogura & Phillips (1962).
- ▶ Weak convective fluctuations are much weaker in magnitude than the *adiabatic* background state:

$$\rho(\mathbf{x},t) = \rho_0(z) + \epsilon_1 \rho_1(\mathbf{x},t) + \cdots, \quad \epsilon_1 = H_s^{-1} \to 0$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

▶ Why adiabatic background? Hydrostatic balance to leading order.

#### The Anelastic Equations

▶ At first order we have the background state:

$$\partial_z p_0 = \rho_0, \quad \partial_{zz} \vartheta_0 = 0, \quad p_0 = H_a \left(\frac{\gamma - 1}{\gamma}\right) \rho_0 \vartheta_0.$$
  
$$\Rightarrow \vartheta_0 = 1 - H_a^{-1} z$$

• Prognostic equations at  $\mathcal{O}(\epsilon_1)$ :

$$\rho_0 \left( D_t \mathbf{u}_0 + \sqrt{\frac{PrTa}{Ra}} \widehat{\boldsymbol{\eta}} \times \mathbf{u}_0 \right) = -\nabla p_1 + \rho_1 \,\widehat{\mathbf{z}} + \sqrt{\frac{Pr}{Ra}} \mathbf{F}_{\nu}$$
$$\nabla \cdot \left( \rho_0 \mathbf{u}_0 \right) = 0$$

ション ふゆ マ キャット マックシン

• The anelastic equations are *soundproof*:  $\epsilon_1 \partial_t \rho_1$  is subdominant.

# Simulating the Anelastic Equations

- Many investigations have been in spherical geometries.
- ▶ Began with Gilman and Glatzmaier (1981).
- Used for (1) atmospheric and stellar convection; (2) dynamos.



Miesch et al., 2008



Jones et al., 2011

イロト 不得 トイヨト イヨト 三日

# Do the Anelastic Equations Work?

 Surprisingly, no direct comparisons between compressible and anelastic rotating convection.

## Do the Anelastic Equations Work?

- Surprisingly, no direct comparisons between compressible and anelastic rotating convection.
- ▶ Benchmarks have focused on comparing different codes, rather than investigating the accuracy of the anelastic approximation (e.g. Jones et al., 2011).

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

#### Do the Anelastic Equations Work?

- Surprisingly, no direct comparisons between compressible and anelastic rotating convection.
- ▶ Benchmarks have focused on comparing different codes, rather than investigating the accuracy of the anelastic approximation (e.g. Jones et al., 2011).
- ▶ Question: how do the anelastic and compressible equations compare as  $Ta \rightarrow \infty$ ?

(日) (日) (日) (日) (日) (日) (日) (日)

# Linear Compressible and Anelastic Convection

- Our starting point: linear stability.
- ► The method:
  - ▶ Variables decomposed into normal modes, e.g.

$$\rho' = \widehat{\rho}(z) \exp\left[i\left(\mathbf{k}_{\perp} \cdot \mathbf{x} - \omega t\right)\right]$$

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

▶  $\mathbf{k}_{\perp}$  with minimum value of Ra gives  $(Ra_c, k_c, \omega_c)$ .

#### Linear Compressible and Anelastic Convection

- Parameter space is given by  $(Ta, Pr, N_{\rho}, n)$ .
- We fix  $\gamma = 5/3$ , such that  $n_a = 1.5$ .
- For compressible convection, we require  $n < n_a$ .

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

• We consider values up to n = 1.49.

#### Compressible Convection Results



• Asymptotic behavior is observed for all stratification levels as  $Ta \to \infty$ :  $Ra_c \sim Ta^{2/3}$ .

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

ъ

▶ For Pr = 0.5,  $Ra_c$  increases with stratification; the opposite is true for Pr = 0.1.

# Compressible Convection Results



Pr = 0.5: vertical velocity

Pr = 0.1: vertical velocity

うして ふゆう ふほう ふほう ふしつ

For  $Pr \sim \mathcal{O}(1)$ , lower velocities are observed near the top of the layer; the opposite is true as the Prandtl number is reduced.

#### What about the Anelastic Equations?



▶ Anelastic equations can reproduce  $Pr \gtrsim 0.5$  results, but fail for lower Prandtl numbers.

・ロト ・聞ト ・ヨト ・ヨト

ъ

# Anelastic Shortcomings: $Ta = 10^{12}$



 NSE = Navier-Stokes Equations, AE = Anelastic Equations

• Open circle denotes the final resting place of the AE.

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

- 3

# Anelastic Shortcomings: $Ta = 10^{12}$



 NSE = Navier-Stokes Equations, AE = Anelastic Equations

▶ Open circle denotes the final resting place of the AE.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二層

# Anelastic Shortcomings: $Ta = 10^{12}$



 NSE = Navier-Stokes Equations, AE = Anelastic Equations

▶ Open circle denotes the final resting place of the AE.

3

- ► For  $n \approx n_a$ , the background states for both equation sets are nearly the same:  $\overline{\rho} \approx \rho_0$ .
- ▶ The only difference between the two sets is the form of the mass conservation equation:

$$\partial_t \rho' + \partial_x \left( \overline{\rho} u' \right) + \partial_z \left( \overline{\rho} w' \right) = 0 \quad \text{and} \quad \partial_x \left( \rho_0 u_0 \right) + \partial_z \left( \rho_0 w_0 \right) = 0$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Axial profiles of each term in compressible mass conservation:  $\partial_t \rho' + \partial_x (\overline{\rho} u') + \partial_z (\overline{\rho} w') = 0$ 



 $Ta = 10^{12}, N_{\rho} = 5$ 

ション ふゆ マ キャット キャット しょう

Axial profiles of each term in compressible mass conservation:  $\partial_t \rho' + \partial_x \left( \overline{\rho} u' \right) + \partial_z \left( \overline{\rho} w' \right) = 0$ 



 $Ta = 10^{12}, N_{\rho} = 5$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● □ ● ●

Axial norm of mass conservation:  $\partial_t \rho' + \partial_x (\bar{\rho} u') + \partial_z (\bar{\rho} w') = 0$ 

- Shows  $|\partial_t \rho'|$  increase with  $N_{\rho}$  when Pr < 1.
- Anelastic equations fail when  $|\partial_t \rho'| \sim O(0.1)$



Axial norms for  $Ta = 10^{12}, Pr = 0.1$ 

うして ふゆう ふほう ふほう ふしつ

# Geostrophic Balance in Compressible Convection

 The asymptotic scalings of the critical parameters suggests convection is geostrophically balanced:

$$Ro^{-1}\widehat{\boldsymbol{\eta}}\times\overline{\rho}\mathbf{u}_g'\approx -H_s\nabla_{\perp}p'$$

 Viscosity and inertia perturb the balance to allow convection.



 $Pr = 0.1, Ta = 10^{12}.$ 

$$Ro = \sqrt{\frac{Ra}{PrTa}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Geostrophic Balance in Compressible Convection

 Curling the geostrophic balance leads to horizontally non-divergent flow at leading order:

$$\nabla_{\perp} \cdot \left( \overline{\rho} \mathbf{u}_g' \right) \approx 0 \quad \Rightarrow \quad \nabla_{\perp} \cdot \mathbf{u}_g' \approx 0.$$

▶ To allow for three-dimensional mass conservation we require the presence of ageostrophic motions such that

$$\partial_t \rho' + \nabla_{\perp} \cdot \left( \overline{\rho} \mathbf{u}'_{ag} \right) + \partial_z \left( \overline{\rho} w' \right) = 0.$$

うして ふゆう ふほう ふほう ふしつ

Vortex Stretching in Compressible Convection: Compressional-inertial Oscillations

▶ For Boussinesq quasi-geostrophic (QG) theory, vortex stretching is given by

$$\nabla_{\perp} \cdot \mathbf{u}_{ag}' = -\partial_z w'$$

▶ For compressible flows we have

$$abla_{\perp} \cdot \left( \overline{\rho} \mathbf{u}_{ag}' \right) = -\partial_z \left( \overline{\rho} w' \right) - \partial_t \rho'$$

- Fluid compression now acts as a source (or sink) of axial vorticity.
- ▶ In rapidly rotating, low Prandtl number compressible convection, the fundamental modes are *compressional-inertial oscillations*.

# Summary

- Anelastic equations yield spurious results for rapidly rotating, low Prandtl number fluids.
- Soundproof equation sets are thus inappropriate for these flows.
- ▶ Now what do we do?

 $\Rightarrow$  Compressible QG convection equations: can be solved as efficiently as anelastic equations and not limited to adiabatic background.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● □ ● ●

# **Open Question**

- ▶ Do the anelastic equations fail for *turbulent* rotating compressible convection with  $\mathcal{O}(1)$  Prandtl numbers?
  - ▶ Compressional-inertial modes may be nonlinearly excited.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

#### Relevant work

- Calkins, M.A., Julien, K., Marti, P. Onset of Rotating and Non-rotating Convection in Compressible and Anelastic Ideal Gases. *Geophys. Astrophys. Fluid Dyn.*, in review.
- Calkins, M.A., Julien, K., Marti, P. Rapidly rotating compressible convection and the shortcomings of the anelastic equations. Submitted to *Proc. R. Soc. A.* Preprint: http://arxiv.org/abs/1409.1959
- Calkins, M.A., Julien, K., Marti, P. A model for compressible quasi-geostrophic convection on the tilted *f*-plane. J. Fluid Mech.. In prep.