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Compressibility in Planets and Stars

I Most geophysical and
astrophysical fluid systems
are stratified to some
degree.

I Large depths leads to large
variations in state variables
across convection zone.



Jupiter’s Internal Structure

I Very sparse direct
measurements on interior
of Jupiter (i.e. one,
Galileo).

I Ab initio simulations have
provided insight into
interior structure.

I Nρ = ln
[
ρ(bottom)
ρ(top)

]
≈ 7
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The Sun’s Internal Structure

I Stellar structure models
are coupled with
helioseismic observations to
provide insight into the
Sun.

I For the convection zone,
Nρ ≈ 5

I Compressibility cannot be
rigorously removed from
the governing equations.
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Geometry: The Tilted f -plane
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I Rotating plane layer of gas

I Colatitude θ gives angle between rotation and gravity
vectors

I Stress-free, isothermal boundary conditions



Modeling Compressible Convection: Perfect Gas

Navier-Stokes equations:

ρ

(
Dtu +

√
PrTa

Ra
η̂ × u

)
= −Hs∇p+Hsρẑ +

√
Pr

Ra
Fν

Continuity:
∂tρ+∇· (ρu) = 0

Energy:

ρϑDtS =
1√
PrRa

∇2ϑ+
1

Ha

√
Pr

Ra
Φ

State, Entropy:

p = Ha

(
γ − 1

γ

)
ρϑ, S = ln

(
p1/γ

ρ

)



Governing Equations and Parameters

I Rotating compressible convection of a perfect gas is
described by six (6) independent dimensionless parameters.

I Forcing and fluid properties:

Ra =
ρocpgβH
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Governing Equations and Parameters

I In the absence of convection we have:

∂zp = ρ, 0 = ∂2zϑ, p = Ha

(
γ − 1

γ

)
ρϑ

⇒ ϑ = 1−
(
H−1a +H−1s

)
z, ρ = ϑ

n
, p = Ha

(
γ − 1

γ

)
ϑ
n+1

I The polytropic index is defined by

n =

(
γ

γ − 1

)
Hs

Ha +Hs
− 1

I Adiabatic background state: Hs →∞, na = (γ − 1)−1.



Challenges for Solving the Compressible Equations

I The equations are numerically stiff.

I Most systems are characterized by (Ra, Ta)� 1.

I For most gases Pr < 1.
I Jupiter: 10−2 . Pr . 10−1

I Sun: 10−6 . Pr . 10−3



Challenges for Solving the Compressible Equations

I Pros: you’re not missing any physics.

I Cons: you’re not missing any physics.

I Compressible equations have it all: fast and slow inertial
waves, acoustic waves, etc.

I Do we need to solve for all the physics? Not necessarily.



The Anelastic Equations

I First derived by Batchelor (1953), then Ogura & Phillips
(1962).

I Weak convective fluctuations are much weaker in
magnitude than the adiabatic background state:

ρ(x, t) = ρ0(z) + ε1ρ1(x, t) + · · · , ε1 = H−1s → 0

I Why adiabatic background? Hydrostatic balance to leading
order.



The Anelastic Equations

I At first order we have the background state:

∂zp0 = ρ0, ∂zzϑ0 = 0, p0 = Ha

(
γ − 1

γ

)
ρ0ϑ0.

⇒ ϑ0 = 1−H−1a z

I Prognostic equations at O(ε1):

ρ0

(
Dtu0 +

√
PrTa

Ra
η̂ × u0

)
= −∇p1 + ρ1 ẑ +

√
Pr

Ra
Fν

∇· (ρ0u0) = 0

I The anelastic equations are soundproof : ε1∂tρ1 is
subdominant.



Simulating the Anelastic Equations

I Many investigations have
been in spherical
geometries.

I Began with Gilman and
Glatzmaier (1981).

I Used for (1) atmospheric
and stellar convection; (2)
dynamos.

Miesch et al., 2008

Jones et al., 2011



Do the Anelastic Equations Work?

I Surprisingly, no direct comparisons between compressible
and anelastic rotating convection.

I Benchmarks have focused on comparing different codes,
rather than investigating the accuracy of the anelastic
approximation (e.g. Jones et al., 2011).

I Question: how do the anelastic and compressible equations
compare as Ta→∞?
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Linear Compressible and Anelastic Convection

I Our starting point: linear stability.

I The method:
I Variables decomposed into normal modes, e.g.

ρ′ = ρ̂(z) exp [i (k⊥ · x− ωt)]

I k⊥ with minimum value of Ra gives (Rac, kc, ωc).



Linear Compressible and Anelastic Convection

I Parameter space is given by (Ta, Pr,Nρ, n).

I We fix γ = 5/3, such that na = 1.5.

I For compressible convection, we require n < na.

I We consider values up to n = 1.49.



Compressible Convection Results
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I Asymptotic behavior is observed for all stratification levels
as Ta→∞: Rac ∼ Ta2/3.

I For Pr = 0.5, Rac increases with stratification; the
opposite is true for Pr = 0.1.



Compressible Convection Results

Pr = 0.5: vertical velocity Pr = 0.1: vertical velocity

I For Pr ∼ O(1), lower velocities are observed near the top
of the layer; the opposite is true as the Prandtl number is
reduced.



What about the Anelastic Equations?
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I Anelastic equations can reproduce Pr & 0.5 results, but fail
for lower Prandtl numbers.



Anelastic Shortcomings: Ta = 1012
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I NSE = Navier-Stokes Equations, AE = Anelastic
Equations

I Open circle denotes the final resting place of the AE.



Anelastic Shortcomings: Ta = 1012

0 1 2 3 4 5

0.3

0.4

0.5

0.6

0.7

0.8

Nρ

k
c
T
a
−
1
/6

 

 

Pr = 0.3

NSE, n = 1

NSE, n = 1.4
NSE, n = 1.49
AE

0 1 2 3 4 5
0.1

0.2

0.3

0.4

0.5

0.6

Nρ

k
c
T
a
−
1
/6

 

 

Pr = 0.1

NSE, n = 1

NSE, n = 1.4
NSE, n = 1.49
AE

I NSE = Navier-Stokes Equations, AE = Anelastic
Equations

I Open circle denotes the final resting place of the AE.



Anelastic Shortcomings: Ta = 1012

0 1 2 3 4 5

0.3

0.4

0.5

0.6

0.7

0.8

Nρ

k
c
T
a
−
1
/6

 

 

Pr = 0.3

NSE, n = 1

NSE, n = 1.4
NSE, n = 1.49
AE

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Nρ

k
c
T
a
−
1
/6

 

 

Pr = 0.01

NSE, n = 1

NSE, n = 1.4
NSE, n = 1.49
AE

I NSE = Navier-Stokes Equations, AE = Anelastic
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Why do the Anelastic Equations Fail?

I For n ≈ na, the background states for both equation sets
are nearly the same: ρ ≈ ρ0.

I The only difference between the two sets is the form of the
mass conservation equation:

∂tρ
′+∂x

(
ρu′
)
+∂z

(
ρw′
)

= 0 and ∂x (ρ0u0)+∂z (ρ0w0) = 0



Why do the Anelastic Equations Fail?

Axial profiles of each term in compressible mass conservation:
∂tρ
′ + ∂x (ρu′) + ∂z (ρw′) = 0
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Why do the Anelastic Equations Fail?

Axial norm of mass conservation: ∂tρ
′ + ∂x (ρu′) + ∂z (ρw′) = 0

I Shows |∂tρ′| increase with
Nρ when Pr < 1.

I Anelastic equations fail
when |∂tρ′| ∼ O(0.1)
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Geostrophic Balance in Compressible Convection

I The asymptotic scalings of
the critical parameters
suggests convection is
geostrophically balanced:

Ro−1η̂ × ρu′g ≈ −Hs∇⊥p′

I Viscosity and inertia
perturb the balance to
allow convection.
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Geostrophic Balance in Compressible Convection

I Curling the geostrophic balance leads to horizontally
non-divergent flow at leading order:

∇⊥ ·
(
ρu′g

)
≈ 0 ⇒ ∇⊥ · u′g ≈ 0.

I To allow for three-dimensional mass conservation we
require the presence of ageostrophic motions such that

∂tρ
′ +∇⊥·

(
ρu′ag

)
+ ∂z

(
ρw′
)

= 0.



Vortex Stretching in Compressible Convection:
Compressional-inertial Oscillations

I For Boussinesq quasi-geostrophic (QG) theory, vortex
stretching is given by

∇⊥·u′ag = −∂zw′

I For compressible flows we have

∇⊥·
(
ρu′ag

)
= −∂z

(
ρw′
)
− ∂tρ′

I Fluid compression now acts as a source (or sink) of axial
vorticity.

I In rapidly rotating, low Prandtl number compressible
convection, the fundamental modes are
compressional-inertial oscillations.



Summary

I Anelastic equations yield spurious results for rapidly
rotating, low Prandtl number fluids.

I Soundproof equation sets are thus inappropriate for these
flows.

I Now what do we do?
⇒ Compressible QG convection equations: can be solved
as efficiently as anelastic equations and not limited to
adiabatic background.



Open Question

I Do the anelastic equations fail for turbulent rotating
compressible convection with O(1) Prandtl numbers?

I Compressional-inertial modes may be nonlinearly excited.
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