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Geomagnetic field changes over relatively short times 
Only present explanation: MHD process in fluid core

Movie:  
Chris Finlay (DTU)
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• Energy Equation	
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• Continuity
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• Induction Equation	
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• Current Density
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Ampere’s Law:



Magnetic induction equation:

Dynamo Action: Inherently Turbulent



Magnetic Prandtl Pm ~ 10^–6 in liquid metals 
Requires Reynolds number Re ~ 10^8 - 10^9 in 
Earth’s core

Dynamo Action: Inherently Turbulent



So Re >> 1 in natural dynamo settings 
But constrained by rotational and magnetic effects

Dynamo Action: Inherently Turbulent

Rossby number: 

Interaction Parameter:
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Observations
Remote system 

Requires accurate 
modeling

The Earth’s magnetic field is generated in the fluid core of the
Earth (radius a ¼ 3,485 km) by a ‘self-exciting dynamo’ mechan-
ism. This mechanism has sustained the field from decay over most
of the lifetime of the Earth, and convective motions associated with
the dynamomechanism are responsible for the ‘secular variation’, or
the slow changes in the magnetic field over timescales of decades to
centuries which are seen on the Earth’s surface.

Smooth images of the core field can be reliably constructed back
to the 16th century using data collected on land and sea3. As in
virtually any inverse problem, the problem of reconstructing the
core magnetic field from surface observation is formally non-
unique4,5, and therefore requires some prior information in its
solution; generally a quadratic smoothness criterion is implemented
on the magnetic field at the core surface, which therefore roughly
measures magnetic energy. Such a methodology is termed regular-
ization and is common to most inverse problems5,6. There is no
reason to suppose that any quadratic property of the field should
remain constant. However, both theory and numerical simulations
of the geodynamo support the view that on the decade-to-century
timescale the approximation of the core as a perfect electrical
conductor is a good one. Thus, Alfven’s celebrated frozen-flux
theorem will be obeyed to a high degree, and indeed numerical
estimates put the level of violation at a few per cent per century7,
whereas observationally there is no evidence that requires violation.
When faced with making images of the core field at different points
in time from sometimes vastly different data sets, an appealing
method would be one based on frozen-flux: such images would

visually have similar complexity in time, while conserving a physi-
cally relevant quantity.
Bondi and Gold8 first drew attention to a consequence of Alfven’s

theorem, namely that the ‘unsigned flux N’ over the entire core
surface Q:

N ¼
ð

Q
jBrjdQ

must be invariant with time. The field must also obey the condition:
ð

Q

BrdQ¼ 0

since there are nomonopoles allowed byMaxwell’s equations. These
two equations imply that the amount of positive flux (the ‘red’ flux
in Fig. 1), which we call Bþ

r ; and the amount of negative flux (the
‘blue’ flux), which we call B2

r ; must remain constant:
ð

Q

Bþ
r dQ¼

ð

Q

B2
r dQ¼N=2¼ constant

We can define the general radial core field Br in terms of the
spatially-varying intensities Bþ

r and B2
r as Br ¼ Bþ

r 2B2
r : The

problem is to reconstruct the two positive intensities Bþ
r and B2

r
from the surface data. For fixed total fluxes this is essentially a
problem of combinatorics which has received much attention9–11;
the answer to this problem, theMaximumEntropymethod, has had
considerable success in astronomy and medical physics fields and
this is the approach that I adopt here.
Properties of this method are well-known; it is frequently used in

radio-astronomy to reconstruct images with high dynamic ranges.
The results from certain dynamo simulations12 show that it is
possible for dynamo action to concentrate magnetic field into
localized flux lines or ‘ropes’ in which Br is strong and relatively
weak elsewhere; this is a scenario where conventional quadratic
regularization methods will produce poor images, because they bias
strong localizations heavily towards zero. A method based on
maximizing the entropy S of both Bþ

r and B2
r where:

SðxiÞ ¼
i

X
xi 2mi 2 xilogðxi=miÞ

and where x i is an intensity in either Bþ
r or B2

r with ‘default’ value
mi is much less likely to do this; indeed, synthetic tests on radial
magnetic fields from numerical dynamo models confirm this
property.
I apply the method to two high-quality data sets. The first is a

selection of Magsat data from 1980, the first three-component
magnetometry mission. The second is from the satellite Oersted,
which was launched in February 1999 and is still collecting data; the
selection of data is from December 1999–January 2000. The
representation of the core magnetic field is in the form of the
“spherical triangle tesselation”13 whereby the core is tessellated into
P ¼ 1,442 almost equally-spaced nodes and 2,880 spherical tri-
angles. The node structure is based on the subdivision of the regular
icosahedron14. Each of the P nodes specifies the core magnetic field
by two positive numbers bþi and b2i :Making the assumption that the
mantle is an insulator, a valid assumption considering the frequencies
present in the core spectrum, the forward problem is a convolution of
the core field with a known kernel13. This kernel, the equivalent of
the point-spread function in astronomical imaging, is very wide and
therefore the deconvolution problem is quite severe.

Figure 1 Comparison of the radial magnetic field for epochs 1980 and 2000 on Aitoff
equal-area projection. Red colours represent magnetic flux out of the core, while blue

colours represent magnetic flux entering the core; each colour bar represents an interval

of 100mT. The continental outlines are for orientation. The labels A–D and 1–5 define the

flux spots referred to in the text; the high-latitude spots are E and e. In calculating the

models the Magsat data are assigned errors of 10 nT, commensurate with previous

studies. The Oersted data have lower errors and are treated using the anisotropic error

model of Holme and Bloxham21; we use j ¼ 2.25 nT, and errors of 10 00 and 60 00 for the

two pointing angle errors w and x (ref. 22). The sensitivity of the data to the model is

computed using the analytic solutions to the Neumann problem for Laplace’s equation

and a numerical integration over the five or six triangles adjacent to a node that have non-

zero contribution to the sensitivity matrix13. The unsigned flux of the two models differs by

less than 0.5%.

Table 1 Model comparison

Model No. of data Misfit¼
ffiffiffiffiffiffiffiffiffiffiffi
x2=N

p
a S (mT)

.............................................................................................................................................................................

1980 1,600 (Z) 1.00 3.82 £ 1022 2873 £ 103

2000 3,684 (X,Y,Z) 1.00 2.50 £ 1022 2865 £ 103
.............................................................................................................................................................................

Data, misfit, trade-off parameter a and entropy S for the 1980 and 2000 models. X, Y, Z are the
north, east and down components of themagnetic field. A ‘default’ value ofmi ¼ 10 mT has been
used; this small value does not unduly penalize large-amplitude features.
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Observations
Remote system 

Requires accurate 
modeling 

Great success in recent 
numerical efforts

The Earth’s magnetic field is generated in the fluid core of the
Earth (radius a ¼ 3,485 km) by a ‘self-exciting dynamo’ mechan-
ism. This mechanism has sustained the field from decay over most
of the lifetime of the Earth, and convective motions associated with
the dynamomechanism are responsible for the ‘secular variation’, or
the slow changes in the magnetic field over timescales of decades to
centuries which are seen on the Earth’s surface.

Smooth images of the core field can be reliably constructed back
to the 16th century using data collected on land and sea3. As in
virtually any inverse problem, the problem of reconstructing the
core magnetic field from surface observation is formally non-
unique4,5, and therefore requires some prior information in its
solution; generally a quadratic smoothness criterion is implemented
on the magnetic field at the core surface, which therefore roughly
measures magnetic energy. Such a methodology is termed regular-
ization and is common to most inverse problems5,6. There is no
reason to suppose that any quadratic property of the field should
remain constant. However, both theory and numerical simulations
of the geodynamo support the view that on the decade-to-century
timescale the approximation of the core as a perfect electrical
conductor is a good one. Thus, Alfven’s celebrated frozen-flux
theorem will be obeyed to a high degree, and indeed numerical
estimates put the level of violation at a few per cent per century7,
whereas observationally there is no evidence that requires violation.
When faced with making images of the core field at different points
in time from sometimes vastly different data sets, an appealing
method would be one based on frozen-flux: such images would

visually have similar complexity in time, while conserving a physi-
cally relevant quantity.
Bondi and Gold8 first drew attention to a consequence of Alfven’s

theorem, namely that the ‘unsigned flux N’ over the entire core
surface Q:

N ¼
ð

Q
jBrjdQ

must be invariant with time. The field must also obey the condition:
ð

Q

BrdQ¼ 0

since there are nomonopoles allowed byMaxwell’s equations. These
two equations imply that the amount of positive flux (the ‘red’ flux
in Fig. 1), which we call Bþ

r ; and the amount of negative flux (the
‘blue’ flux), which we call B2

r ; must remain constant:
ð

Q

Bþ
r dQ¼

ð

Q

B2
r dQ¼N=2¼ constant

We can define the general radial core field Br in terms of the
spatially-varying intensities Bþ

r and B2
r as Br ¼ Bþ

r 2B2
r : The

problem is to reconstruct the two positive intensities Bþ
r and B2

r
from the surface data. For fixed total fluxes this is essentially a
problem of combinatorics which has received much attention9–11;
the answer to this problem, theMaximumEntropymethod, has had
considerable success in astronomy and medical physics fields and
this is the approach that I adopt here.
Properties of this method are well-known; it is frequently used in

radio-astronomy to reconstruct images with high dynamic ranges.
The results from certain dynamo simulations12 show that it is
possible for dynamo action to concentrate magnetic field into
localized flux lines or ‘ropes’ in which Br is strong and relatively
weak elsewhere; this is a scenario where conventional quadratic
regularization methods will produce poor images, because they bias
strong localizations heavily towards zero. A method based on
maximizing the entropy S of both Bþ

r and B2
r where:

SðxiÞ ¼
i

X
xi 2mi 2 xilogðxi=miÞ

and where x i is an intensity in either Bþ
r or B2

r with ‘default’ value
mi is much less likely to do this; indeed, synthetic tests on radial
magnetic fields from numerical dynamo models confirm this
property.
I apply the method to two high-quality data sets. The first is a

selection of Magsat data from 1980, the first three-component
magnetometry mission. The second is from the satellite Oersted,
which was launched in February 1999 and is still collecting data; the
selection of data is from December 1999–January 2000. The
representation of the core magnetic field is in the form of the
“spherical triangle tesselation”13 whereby the core is tessellated into
P ¼ 1,442 almost equally-spaced nodes and 2,880 spherical tri-
angles. The node structure is based on the subdivision of the regular
icosahedron14. Each of the P nodes specifies the core magnetic field
by two positive numbers bþi and b2i :Making the assumption that the
mantle is an insulator, a valid assumption considering the frequencies
present in the core spectrum, the forward problem is a convolution of
the core field with a known kernel13. This kernel, the equivalent of
the point-spread function in astronomical imaging, is very wide and
therefore the deconvolution problem is quite severe.

Figure 1 Comparison of the radial magnetic field for epochs 1980 and 2000 on Aitoff
equal-area projection. Red colours represent magnetic flux out of the core, while blue

colours represent magnetic flux entering the core; each colour bar represents an interval

of 100mT. The continental outlines are for orientation. The labels A–D and 1–5 define the

flux spots referred to in the text; the high-latitude spots are E and e. In calculating the

models the Magsat data are assigned errors of 10 nT, commensurate with previous

studies. The Oersted data have lower errors and are treated using the anisotropic error

model of Holme and Bloxham21; we use j ¼ 2.25 nT, and errors of 10 00 and 60 00 for the

two pointing angle errors w and x (ref. 22). The sensitivity of the data to the model is

computed using the analytic solutions to the Neumann problem for Laplace’s equation

and a numerical integration over the five or six triangles adjacent to a node that have non-

zero contribution to the sensitivity matrix13. The unsigned flux of the two models differs by

less than 0.5%.

Table 1 Model comparison

Model No. of data Misfit¼
ffiffiffiffiffiffiffiffiffiffiffi
x2=N

p
a S (mT)

.............................................................................................................................................................................

1980 1,600 (Z) 1.00 3.82 £ 1022 2873 £ 103

2000 3,684 (X,Y,Z) 1.00 2.50 £ 1022 2865 £ 103
.............................................................................................................................................................................

Data, misfit, trade-off parameter a and entropy S for the 1980 and 2000 models. X, Y, Z are the
north, east and down components of themagnetic field. A ‘default’ value ofmi ¼ 10 mT has been
used; this small value does not unduly penalize large-amplitude features.
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Observations Models
Br CMB

The Earth’s magnetic field is generated in the fluid core of the
Earth (radius a ¼ 3,485 km) by a ‘self-exciting dynamo’ mechan-
ism. This mechanism has sustained the field from decay over most
of the lifetime of the Earth, and convective motions associated with
the dynamomechanism are responsible for the ‘secular variation’, or
the slow changes in the magnetic field over timescales of decades to
centuries which are seen on the Earth’s surface.

Smooth images of the core field can be reliably constructed back
to the 16th century using data collected on land and sea3. As in
virtually any inverse problem, the problem of reconstructing the
core magnetic field from surface observation is formally non-
unique4,5, and therefore requires some prior information in its
solution; generally a quadratic smoothness criterion is implemented
on the magnetic field at the core surface, which therefore roughly
measures magnetic energy. Such a methodology is termed regular-
ization and is common to most inverse problems5,6. There is no
reason to suppose that any quadratic property of the field should
remain constant. However, both theory and numerical simulations
of the geodynamo support the view that on the decade-to-century
timescale the approximation of the core as a perfect electrical
conductor is a good one. Thus, Alfven’s celebrated frozen-flux
theorem will be obeyed to a high degree, and indeed numerical
estimates put the level of violation at a few per cent per century7,
whereas observationally there is no evidence that requires violation.
When faced with making images of the core field at different points
in time from sometimes vastly different data sets, an appealing
method would be one based on frozen-flux: such images would

visually have similar complexity in time, while conserving a physi-
cally relevant quantity.
Bondi and Gold8 first drew attention to a consequence of Alfven’s

theorem, namely that the ‘unsigned flux N’ over the entire core
surface Q:

N ¼
ð

Q
jBrjdQ

must be invariant with time. The field must also obey the condition:
ð

Q

BrdQ¼ 0

since there are nomonopoles allowed byMaxwell’s equations. These
two equations imply that the amount of positive flux (the ‘red’ flux
in Fig. 1), which we call Bþ

r ; and the amount of negative flux (the
‘blue’ flux), which we call B2

r ; must remain constant:
ð

Q

Bþ
r dQ¼

ð

Q

B2
r dQ¼N=2¼ constant

We can define the general radial core field Br in terms of the
spatially-varying intensities Bþ

r and B2
r as Br ¼ Bþ

r 2B2
r : The

problem is to reconstruct the two positive intensities Bþ
r and B2

r
from the surface data. For fixed total fluxes this is essentially a
problem of combinatorics which has received much attention9–11;
the answer to this problem, theMaximumEntropymethod, has had
considerable success in astronomy and medical physics fields and
this is the approach that I adopt here.
Properties of this method are well-known; it is frequently used in

radio-astronomy to reconstruct images with high dynamic ranges.
The results from certain dynamo simulations12 show that it is
possible for dynamo action to concentrate magnetic field into
localized flux lines or ‘ropes’ in which Br is strong and relatively
weak elsewhere; this is a scenario where conventional quadratic
regularization methods will produce poor images, because they bias
strong localizations heavily towards zero. A method based on
maximizing the entropy S of both Bþ

r and B2
r where:

SðxiÞ ¼
i

X
xi 2mi 2 xilogðxi=miÞ

and where x i is an intensity in either Bþ
r or B2

r with ‘default’ value
mi is much less likely to do this; indeed, synthetic tests on radial
magnetic fields from numerical dynamo models confirm this
property.
I apply the method to two high-quality data sets. The first is a

selection of Magsat data from 1980, the first three-component
magnetometry mission. The second is from the satellite Oersted,
which was launched in February 1999 and is still collecting data; the
selection of data is from December 1999–January 2000. The
representation of the core magnetic field is in the form of the
“spherical triangle tesselation”13 whereby the core is tessellated into
P ¼ 1,442 almost equally-spaced nodes and 2,880 spherical tri-
angles. The node structure is based on the subdivision of the regular
icosahedron14. Each of the P nodes specifies the core magnetic field
by two positive numbers bþi and b2i :Making the assumption that the
mantle is an insulator, a valid assumption considering the frequencies
present in the core spectrum, the forward problem is a convolution of
the core field with a known kernel13. This kernel, the equivalent of
the point-spread function in astronomical imaging, is very wide and
therefore the deconvolution problem is quite severe.

Figure 1 Comparison of the radial magnetic field for epochs 1980 and 2000 on Aitoff
equal-area projection. Red colours represent magnetic flux out of the core, while blue

colours represent magnetic flux entering the core; each colour bar represents an interval

of 100mT. The continental outlines are for orientation. The labels A–D and 1–5 define the

flux spots referred to in the text; the high-latitude spots are E and e. In calculating the

models the Magsat data are assigned errors of 10 nT, commensurate with previous

studies. The Oersted data have lower errors and are treated using the anisotropic error

model of Holme and Bloxham21; we use j ¼ 2.25 nT, and errors of 10 00 and 60 00 for the

two pointing angle errors w and x (ref. 22). The sensitivity of the data to the model is

computed using the analytic solutions to the Neumann problem for Laplace’s equation

and a numerical integration over the five or six triangles adjacent to a node that have non-

zero contribution to the sensitivity matrix13. The unsigned flux of the two models differs by

less than 0.5%.

Table 1 Model comparison

Model No. of data Misfit¼
ffiffiffiffiffiffiffiffiffiffiffi
x2=N

p
a S (mT)

.............................................................................................................................................................................

1980 1,600 (Z) 1.00 3.82 £ 1022 2873 £ 103

2000 3,684 (X,Y,Z) 1.00 2.50 £ 1022 2865 £ 103
.............................................................................................................................................................................

Data, misfit, trade-off parameter a and entropy S for the 1980 and 2000 models. X, Y, Z are the
north, east and down components of themagnetic field. A ‘default’ value ofmi ¼ 10 mT has been
used; this small value does not unduly penalize large-amplitude features.
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Observations Models
z-vorticity

The Earth’s magnetic field is generated in the fluid core of the
Earth (radius a ¼ 3,485 km) by a ‘self-exciting dynamo’ mechan-
ism. This mechanism has sustained the field from decay over most
of the lifetime of the Earth, and convective motions associated with
the dynamomechanism are responsible for the ‘secular variation’, or
the slow changes in the magnetic field over timescales of decades to
centuries which are seen on the Earth’s surface.

Smooth images of the core field can be reliably constructed back
to the 16th century using data collected on land and sea3. As in
virtually any inverse problem, the problem of reconstructing the
core magnetic field from surface observation is formally non-
unique4,5, and therefore requires some prior information in its
solution; generally a quadratic smoothness criterion is implemented
on the magnetic field at the core surface, which therefore roughly
measures magnetic energy. Such a methodology is termed regular-
ization and is common to most inverse problems5,6. There is no
reason to suppose that any quadratic property of the field should
remain constant. However, both theory and numerical simulations
of the geodynamo support the view that on the decade-to-century
timescale the approximation of the core as a perfect electrical
conductor is a good one. Thus, Alfven’s celebrated frozen-flux
theorem will be obeyed to a high degree, and indeed numerical
estimates put the level of violation at a few per cent per century7,
whereas observationally there is no evidence that requires violation.
When faced with making images of the core field at different points
in time from sometimes vastly different data sets, an appealing
method would be one based on frozen-flux: such images would

visually have similar complexity in time, while conserving a physi-
cally relevant quantity.
Bondi and Gold8 first drew attention to a consequence of Alfven’s

theorem, namely that the ‘unsigned flux N’ over the entire core
surface Q:

N ¼
ð

Q
jBrjdQ

must be invariant with time. The field must also obey the condition:
ð

Q

BrdQ¼ 0

since there are nomonopoles allowed byMaxwell’s equations. These
two equations imply that the amount of positive flux (the ‘red’ flux
in Fig. 1), which we call Bþ

r ; and the amount of negative flux (the
‘blue’ flux), which we call B2

r ; must remain constant:
ð

Q

Bþ
r dQ¼

ð

Q

B2
r dQ¼N=2¼ constant

We can define the general radial core field Br in terms of the
spatially-varying intensities Bþ

r and B2
r as Br ¼ Bþ

r 2B2
r : The

problem is to reconstruct the two positive intensities Bþ
r and B2

r
from the surface data. For fixed total fluxes this is essentially a
problem of combinatorics which has received much attention9–11;
the answer to this problem, theMaximumEntropymethod, has had
considerable success in astronomy and medical physics fields and
this is the approach that I adopt here.
Properties of this method are well-known; it is frequently used in

radio-astronomy to reconstruct images with high dynamic ranges.
The results from certain dynamo simulations12 show that it is
possible for dynamo action to concentrate magnetic field into
localized flux lines or ‘ropes’ in which Br is strong and relatively
weak elsewhere; this is a scenario where conventional quadratic
regularization methods will produce poor images, because they bias
strong localizations heavily towards zero. A method based on
maximizing the entropy S of both Bþ

r and B2
r where:

SðxiÞ ¼
i

X
xi 2mi 2 xilogðxi=miÞ

and where x i is an intensity in either Bþ
r or B2

r with ‘default’ value
mi is much less likely to do this; indeed, synthetic tests on radial
magnetic fields from numerical dynamo models confirm this
property.
I apply the method to two high-quality data sets. The first is a

selection of Magsat data from 1980, the first three-component
magnetometry mission. The second is from the satellite Oersted,
which was launched in February 1999 and is still collecting data; the
selection of data is from December 1999–January 2000. The
representation of the core magnetic field is in the form of the
“spherical triangle tesselation”13 whereby the core is tessellated into
P ¼ 1,442 almost equally-spaced nodes and 2,880 spherical tri-
angles. The node structure is based on the subdivision of the regular
icosahedron14. Each of the P nodes specifies the core magnetic field
by two positive numbers bþi and b2i :Making the assumption that the
mantle is an insulator, a valid assumption considering the frequencies
present in the core spectrum, the forward problem is a convolution of
the core field with a known kernel13. This kernel, the equivalent of
the point-spread function in astronomical imaging, is very wide and
therefore the deconvolution problem is quite severe.

Figure 1 Comparison of the radial magnetic field for epochs 1980 and 2000 on Aitoff
equal-area projection. Red colours represent magnetic flux out of the core, while blue

colours represent magnetic flux entering the core; each colour bar represents an interval

of 100mT. The continental outlines are for orientation. The labels A–D and 1–5 define the

flux spots referred to in the text; the high-latitude spots are E and e. In calculating the

models the Magsat data are assigned errors of 10 nT, commensurate with previous

studies. The Oersted data have lower errors and are treated using the anisotropic error

model of Holme and Bloxham21; we use j ¼ 2.25 nT, and errors of 10 00 and 60 00 for the

two pointing angle errors w and x (ref. 22). The sensitivity of the data to the model is

computed using the analytic solutions to the Neumann problem for Laplace’s equation

and a numerical integration over the five or six triangles adjacent to a node that have non-

zero contribution to the sensitivity matrix13. The unsigned flux of the two models differs by

less than 0.5%.

Table 1 Model comparison

Model No. of data Misfit¼
ffiffiffiffiffiffiffiffiffiffiffi
x2=N

p
a S (mT)

.............................................................................................................................................................................

1980 1,600 (Z) 1.00 3.82 £ 1022 2873 £ 103

2000 3,684 (X,Y,Z) 1.00 2.50 £ 1022 2865 £ 103
.............................................................................................................................................................................

Data, misfit, trade-off parameter a and entropy S for the 1980 and 2000 models. X, Y, Z are the
north, east and down components of themagnetic field. A ‘default’ value ofmi ¼ 10 mT has been
used; this small value does not unduly penalize large-amplitude features.
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The Earth’s magnetic field is generated in the fluid core of the
Earth (radius a ¼ 3,485 km) by a ‘self-exciting dynamo’ mechan-
ism. This mechanism has sustained the field from decay over most
of the lifetime of the Earth, and convective motions associated with
the dynamomechanism are responsible for the ‘secular variation’, or
the slow changes in the magnetic field over timescales of decades to
centuries which are seen on the Earth’s surface.

Smooth images of the core field can be reliably constructed back
to the 16th century using data collected on land and sea3. As in
virtually any inverse problem, the problem of reconstructing the
core magnetic field from surface observation is formally non-
unique4,5, and therefore requires some prior information in its
solution; generally a quadratic smoothness criterion is implemented
on the magnetic field at the core surface, which therefore roughly
measures magnetic energy. Such a methodology is termed regular-
ization and is common to most inverse problems5,6. There is no
reason to suppose that any quadratic property of the field should
remain constant. However, both theory and numerical simulations
of the geodynamo support the view that on the decade-to-century
timescale the approximation of the core as a perfect electrical
conductor is a good one. Thus, Alfven’s celebrated frozen-flux
theorem will be obeyed to a high degree, and indeed numerical
estimates put the level of violation at a few per cent per century7,
whereas observationally there is no evidence that requires violation.
When faced with making images of the core field at different points
in time from sometimes vastly different data sets, an appealing
method would be one based on frozen-flux: such images would

visually have similar complexity in time, while conserving a physi-
cally relevant quantity.
Bondi and Gold8 first drew attention to a consequence of Alfven’s

theorem, namely that the ‘unsigned flux N’ over the entire core
surface Q:

N ¼
ð

Q
jBrjdQ

must be invariant with time. The field must also obey the condition:
ð

Q

BrdQ¼ 0

since there are nomonopoles allowed byMaxwell’s equations. These
two equations imply that the amount of positive flux (the ‘red’ flux
in Fig. 1), which we call Bþ

r ; and the amount of negative flux (the
‘blue’ flux), which we call B2

r ; must remain constant:
ð

Q

Bþ
r dQ¼

ð

Q

B2
r dQ¼N=2¼ constant

We can define the general radial core field Br in terms of the
spatially-varying intensities Bþ

r and B2
r as Br ¼ Bþ

r 2B2
r : The

problem is to reconstruct the two positive intensities Bþ
r and B2

r
from the surface data. For fixed total fluxes this is essentially a
problem of combinatorics which has received much attention9–11;
the answer to this problem, theMaximumEntropymethod, has had
considerable success in astronomy and medical physics fields and
this is the approach that I adopt here.
Properties of this method are well-known; it is frequently used in

radio-astronomy to reconstruct images with high dynamic ranges.
The results from certain dynamo simulations12 show that it is
possible for dynamo action to concentrate magnetic field into
localized flux lines or ‘ropes’ in which Br is strong and relatively
weak elsewhere; this is a scenario where conventional quadratic
regularization methods will produce poor images, because they bias
strong localizations heavily towards zero. A method based on
maximizing the entropy S of both Bþ

r and B2
r where:

SðxiÞ ¼
i

X
xi 2mi 2 xilogðxi=miÞ

and where x i is an intensity in either Bþ
r or B2

r with ‘default’ value
mi is much less likely to do this; indeed, synthetic tests on radial
magnetic fields from numerical dynamo models confirm this
property.
I apply the method to two high-quality data sets. The first is a

selection of Magsat data from 1980, the first three-component
magnetometry mission. The second is from the satellite Oersted,
which was launched in February 1999 and is still collecting data; the
selection of data is from December 1999–January 2000. The
representation of the core magnetic field is in the form of the
“spherical triangle tesselation”13 whereby the core is tessellated into
P ¼ 1,442 almost equally-spaced nodes and 2,880 spherical tri-
angles. The node structure is based on the subdivision of the regular
icosahedron14. Each of the P nodes specifies the core magnetic field
by two positive numbers bþi and b2i :Making the assumption that the
mantle is an insulator, a valid assumption considering the frequencies
present in the core spectrum, the forward problem is a convolution of
the core field with a known kernel13. This kernel, the equivalent of
the point-spread function in astronomical imaging, is very wide and
therefore the deconvolution problem is quite severe.

Figure 1 Comparison of the radial magnetic field for epochs 1980 and 2000 on Aitoff
equal-area projection. Red colours represent magnetic flux out of the core, while blue

colours represent magnetic flux entering the core; each colour bar represents an interval

of 100mT. The continental outlines are for orientation. The labels A–D and 1–5 define the

flux spots referred to in the text; the high-latitude spots are E and e. In calculating the

models the Magsat data are assigned errors of 10 nT, commensurate with previous

studies. The Oersted data have lower errors and are treated using the anisotropic error

model of Holme and Bloxham21; we use j ¼ 2.25 nT, and errors of 10 00 and 60 00 for the

two pointing angle errors w and x (ref. 22). The sensitivity of the data to the model is

computed using the analytic solutions to the Neumann problem for Laplace’s equation

and a numerical integration over the five or six triangles adjacent to a node that have non-

zero contribution to the sensitivity matrix13. The unsigned flux of the two models differs by

less than 0.5%.

Table 1 Model comparison

Model No. of data Misfit¼
ffiffiffiffiffiffiffiffiffiffiffi
x2=N

p
a S (mT)

.............................................................................................................................................................................

1980 1,600 (Z) 1.00 3.82 £ 1022 2873 £ 103

2000 3,684 (X,Y,Z) 1.00 2.50 £ 1022 2865 £ 103
.............................................................................................................................................................................

Data, misfit, trade-off parameter a and entropy S for the 1980 and 2000 models. X, Y, Z are the
north, east and down components of themagnetic field. A ‘default’ value ofmi ¼ 10 mT has been
used; this small value does not unduly penalize large-amplitude features.
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Figure 5. Snapshots from (a): DMFI movie 1 of model C and (b): movie 2 of model T. Left-hand panels: top view. Right-hand panels: side view. The inner
(ICB) and outer (CMB) boundaries of the model are colour-coded with the radial magnetic field (a red patch denotes outwards oriented field). In addition, the
outer boundary is made selectively transparent, with a transparency level that is inversely proportional to the local radial magnetic field. Field lines are also
colour-coded in order to indicate ez-parallel (red) and antiparallel (blue) direction. The radial magnetic field as seen from the Earth’s surface is represented in
the upper-right inserts, in order to keep track of the current orientation and strength of the large-scale magnetic dipole. Colour maps for (a): ICB field from
−0.12 (blue) to 0.12 (red), in units of (ρµ)1/2"D, CMB field from −0.03 to 0.03, Earth’s surface field from −2 10−4 to 2 10−4. For (b): ICB field from −0.72
to 0.72, CMB field from −0.36 to 0.36, Earth’s surface field from −1.8 10−3 to 1.8 10−3.

vortices into columns elongated along the ez axis of rotation, due to
the Proudman–Taylor constraint. The sparse character of the mag-
netic energy distribution results from the tendency of field lines
to cluster at the edges of flow vortices due to magnetic field ex-
pulsion (Weiss 1966; Galloway & Weiss 1981). Since magnetic
field lines correlate well with the flow structures in our models,
we will subsequently visualize the magnetic field structure alone.
The supporting movies of this paper (see Fig. 1 for time window
and Figs 5–9 for extracts) present DMFI field lines, together with
radial magnetic flux patches at the inner boundary (which we will
refer to as ICB) and the selectively transparent outer boundary
(CMB). We will first introduce the concept of a magnetic vortex,
which is defined as a field line structure resulting from the inter-
action with a flow vortex. By providing illustrations of magnetic
cyclones and anticyclones, DMFI provides a dynamic, field-line
based visual confirmation of previously published dynamo mech-
anisms (Kageyama & Sato 1997; Olson et al. 1999; Sakuraba &
Kono 1999; Ishihara & Kida 2002), and allows the extension of
such descriptions to time-dependent, spatially complex dynamo
regimes.

3.1.1 Magnetic cyclones

A strong axial flow cyclone (red isosurface in Fig. 4) winds and
stretches field lines to form a magnetic cyclone. Fig. 6 relates DMFI
visualizations of magnetic cyclones, as displayed in Figs 4 and 5,
with a schematic view inspired by Olson et al. (1999). A mag-
netic cyclone can be identified by the anticlockwise motion of field
lines clustered close to the equator, moving jointly with fairly stable
high-latitude CMB flux patches concentrated above and below the
centre of the field line cluster. Model C (movie 1, Fig. 5a) exhibits
very large-scale magnetic cyclones (times 4.3617, 4.3811), which
suggest an axial vorticity distribution biased towards flow cyclones.
Inside these vortices, the uneven distribution of buoyancy along ez

creates a thermal wind secondary circulation (Olson et al. 1999),
which is represented in red on Fig. 6. This secondary circulation
concentrates CMB flux at high latitudes, giving rise to relatively
long-lived (several vortex turnovers) flux patches similar to those
found in geomagnetic field models. Simultaneously, close to the
equatorial plane, the secondary circulation concentrates field lines
into bundles and also pushes them towards the outer boundary, where
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Simple motions, such as differential rotation (as in an elec-
trical generator), are unable to drive a homogeneous
dynamo, and flow patterns of a certain complexity are
required. Until late into the twentieth century, dynamo the-
ory has been concerned mainly with the conceptual under-
standing of how, in principle, a magnetic field can be
generated in such an environment. Starting with models
by Glatzmaier and Roberts (1995), Kageyama and Sato
(1995) and Kuang and Bloxham (1997), realistic self-
consistent numerical simulations of the geodynamo became
available and have been successful in reproducing many
of the observed properties of the geomagnetic field. The
more fundamental aspects of the geodynamo are discussed
elsewhere (see Geomagnetic Field, Theory). Here, the pro-
gress in understanding the geodynamo based on numerical
modeling and comparing its results with specific properties
of the geomagnetic field is addressed.

Dynamo model concept and equations
Model setup
In contrast to earlier kinematic dynamo models, where the
flow is prescribed, modern geodynamo models aim at
a fully self-consistent treatment of fluid flow and magnetic
field generation in the Earth’s outer core. There are some
basic requirements for a realistic model: (1) The mecha-
nism for driving flow by thermal or compositional
buoyancy must be part of the model. (2) Because an
axisymmetric field cannot be generated by a dynamo
(Cowling’s theorem), the model must be fully three-dimen-
sional. (3) The model must be rotating because Coriolis
forces are important to generate a flowpattern that is condu-
cive for the dynamoprocess. The basic setup of geodynamo
models is that of a rotating spherical shell of outer radius ro
and inner radius ri, filled with a fluid of uniform conductiv-
ity, which represents Earth’s outer core (Figure 1). For this

system, the coupled equations for convection-driven flow
and electromagnetic induction are solved. A detailed
account on fundamental aspects of convection in rotating
spheres is given in Jones (2007), and modeling aspects
and the commonly employed numerical schemes are
discussed in Christensen and Wicht (2007).

Dynamo equations
The relevant magnetohydrodynamic equations are usually
written in non-dimensional form. A possible scheme for
scaling the equations is to use the shell thickness
D ¼ ro " ri as length scale, the viscous diffusion time
D2=n as timescale (n is kinematic viscosity), ðrO=sÞ1=2
for the scale of the magnetic field B and the imposed tem-
perature contrast DT between inner and outer boundary
for temperature T (r is density, s electrical conductivity
and O rotation rate). The Navier–Stokes equation for the
velocity u, augmented by rotational and electromagnetic
forces, is

E
@u
@t

þ u & Hu
! "

þ 2ẑ' uþ HP

¼ EH2uþ RaE
Pr

r
ro
T þ 1

Pm
ðH' BÞ ' B:

(1)

The terms on the left-hand side describe in order the
inertial force, the Coriolis force (with ẑ the unit vector
parallel to the rotation axis) and the gradient of the non-
hydrostatic pressure П. The terms on the right-hand side
stand for viscous friction, thermal buoyancy forces and
the Lorentz force.

The magnetic induction equation, obtained from Max-
well’s equations and Ohm’s law for a moving incompress-
ible conductor, is

@B
@t

þ ðu & HÞB ¼ ðB & HÞuþ 1
Pm

H2B; (2)

where the second term on the LHS describes magnetic
field advection and the terms on the RHS magnetic
field generation and diffusion, respectively. Magnetic dif-
fusion is a consequence of the ohmic resistance that
damps the electrical currents associated with the magnetic
field.

The advection–diffusion equation for temperature is

@T
@t

þ u & HT ¼ 1
Pr

H2T þ e; (3)

with a heat source term e on the RHS. For compositional
convection, an equivalent equation holds where the con-
centration of light components replaces temperature. The
set of equations is completed by the condition of
incompressibility, which seems to be justified for Earth’s
core where density differences are moderate, and the con-
dition that B is solenoidal:

H & u ¼ 0; H & B ¼ 0: (4)
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Core Dynamo, Figure 1 Columnar convection in a rotating
spherical shell. The inner core tangent cylinder is shown by
broken lines. Under Earth’s core conditions, the columns would
be thinner and more numerous. (From Christensen, 2010b,
Copyright: Cambridge University Press.)
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(a) (b) (c) (d)

Figure 17. Columnar convection for case A visualized using instantaneous streamlines near day 15,000. Streamlines are colored by the velocity component along the
rotation axis vz. Blue (yellow) tones indicate northward (southward) motion; the equatorial plane indicated by light blue. (a) View of convective core from the north.
The core is typically dominated by 4–6 prominent rolls. (b) Individual columnar cell from the roll complex. The columnar motion extends across the equatorial plane.
Tilting of the orbits due to the spherical boundary of the core is visible. (c) Interior view of the same roll. Many rolls in this system possess an axial flow. Such flows
freely cross the equatorial plane as seen here. (d) Rendering of that roll along with a neighboring roll. Axial flows tend to link neighboring rolls near the edge of the
convective core.
(A color version of this figure is available in the online journal.)

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 18. Sampling the evolving flow streamlines (a)–(d) and accompanying ME (e)–(h) close to the equatorial plane in four time instants each separated by about
50 days (starting at day 9000). Violet tones indicate positive motions in the y-direction, and yellow tones negative motions. Regions of strong ME are shown in
yellow/green tones.
(A color version of this figure is available in the online journal.)

more readily. The net effects of diffusion in the regions of
generation is thus to destroy FTE and FPE. Beyond the region of
overshooting, however, diffusive processes serve to carry energy
from the outer edge of the convective core into the radiative zone
where generation of a magnetic field is minimal.

11. MULTIPOLAR EXTERNAL FIELDS

We have thus far investigated the effects of an external field
involving only a dipolar (ℓ = 1) magnetic field. However,
measurements of magnetic fields in Ap stars suggest that the
surface fields of these stars involve multipolar components with
spherical harmonic degrees greater than ℓ = 1. It is appropriate
to examine the effects of more complex magnetic topologies on
the system. Does the scale of the imposed magnetic flux matter,
and if so, how? We have thus examined two additional external
field configurations, with ℓ = 2,m = 0, and ℓ = 4,m = 0.

In each case, the strength of the fossil field was adjusted so
that the integrated unsigned magnetic flux across the convective
core boundary was identical to that in the mixed-field case A.
Unlike the mixed-field case, neither of these two cases possessed
a net flux of the magnetic field through either hemisphere.
Moreover, here there was no magnetic flux linking the northern
and southern hemispheres of the star across the equator.

We show the evolution of the energies for these two cases
in Figure 20. In each, a transition to super-equipartition is
evident. However, the growth of the ℓ = 2 case (Figure 20(a))
is faster than that of the ℓ = 4 case (Figure 20(b)). Each of
these exhibit growth that is in turn slower than the dipolar
cases. The mechanisms that cause the growth clearly have a
dependence on length scale. Magnetic energy spectra for these
cases (Figure 20(c)) are qualitatively similar to those of the
mature mixed-field case A. In both instances, larger-scale fields
have grown more than the smaller-scale fields.



The Earth’s magnetic field is generated in the fluid core of the
Earth (radius a ¼ 3,485 km) by a ‘self-exciting dynamo’ mechan-
ism. This mechanism has sustained the field from decay over most
of the lifetime of the Earth, and convective motions associated with
the dynamomechanism are responsible for the ‘secular variation’, or
the slow changes in the magnetic field over timescales of decades to
centuries which are seen on the Earth’s surface.

Smooth images of the core field can be reliably constructed back
to the 16th century using data collected on land and sea3. As in
virtually any inverse problem, the problem of reconstructing the
core magnetic field from surface observation is formally non-
unique4,5, and therefore requires some prior information in its
solution; generally a quadratic smoothness criterion is implemented
on the magnetic field at the core surface, which therefore roughly
measures magnetic energy. Such a methodology is termed regular-
ization and is common to most inverse problems5,6. There is no
reason to suppose that any quadratic property of the field should
remain constant. However, both theory and numerical simulations
of the geodynamo support the view that on the decade-to-century
timescale the approximation of the core as a perfect electrical
conductor is a good one. Thus, Alfven’s celebrated frozen-flux
theorem will be obeyed to a high degree, and indeed numerical
estimates put the level of violation at a few per cent per century7,
whereas observationally there is no evidence that requires violation.
When faced with making images of the core field at different points
in time from sometimes vastly different data sets, an appealing
method would be one based on frozen-flux: such images would

visually have similar complexity in time, while conserving a physi-
cally relevant quantity.
Bondi and Gold8 first drew attention to a consequence of Alfven’s

theorem, namely that the ‘unsigned flux N’ over the entire core
surface Q:

N ¼
ð

Q
jBrjdQ

must be invariant with time. The field must also obey the condition:
ð

Q

BrdQ¼ 0

since there are nomonopoles allowed byMaxwell’s equations. These
two equations imply that the amount of positive flux (the ‘red’ flux
in Fig. 1), which we call Bþ

r ; and the amount of negative flux (the
‘blue’ flux), which we call B2

r ; must remain constant:
ð

Q

Bþ
r dQ¼

ð

Q

B2
r dQ¼N=2¼ constant

We can define the general radial core field Br in terms of the
spatially-varying intensities Bþ

r and B2
r as Br ¼ Bþ

r 2B2
r : The

problem is to reconstruct the two positive intensities Bþ
r and B2

r
from the surface data. For fixed total fluxes this is essentially a
problem of combinatorics which has received much attention9–11;
the answer to this problem, theMaximumEntropymethod, has had
considerable success in astronomy and medical physics fields and
this is the approach that I adopt here.
Properties of this method are well-known; it is frequently used in

radio-astronomy to reconstruct images with high dynamic ranges.
The results from certain dynamo simulations12 show that it is
possible for dynamo action to concentrate magnetic field into
localized flux lines or ‘ropes’ in which Br is strong and relatively
weak elsewhere; this is a scenario where conventional quadratic
regularization methods will produce poor images, because they bias
strong localizations heavily towards zero. A method based on
maximizing the entropy S of both Bþ

r and B2
r where:

SðxiÞ ¼
i

X
xi 2mi 2 xilogðxi=miÞ

and where x i is an intensity in either Bþ
r or B2

r with ‘default’ value
mi is much less likely to do this; indeed, synthetic tests on radial
magnetic fields from numerical dynamo models confirm this
property.
I apply the method to two high-quality data sets. The first is a

selection of Magsat data from 1980, the first three-component
magnetometry mission. The second is from the satellite Oersted,
which was launched in February 1999 and is still collecting data; the
selection of data is from December 1999–January 2000. The
representation of the core magnetic field is in the form of the
“spherical triangle tesselation”13 whereby the core is tessellated into
P ¼ 1,442 almost equally-spaced nodes and 2,880 spherical tri-
angles. The node structure is based on the subdivision of the regular
icosahedron14. Each of the P nodes specifies the core magnetic field
by two positive numbers bþi and b2i :Making the assumption that the
mantle is an insulator, a valid assumption considering the frequencies
present in the core spectrum, the forward problem is a convolution of
the core field with a known kernel13. This kernel, the equivalent of
the point-spread function in astronomical imaging, is very wide and
therefore the deconvolution problem is quite severe.

Figure 1 Comparison of the radial magnetic field for epochs 1980 and 2000 on Aitoff
equal-area projection. Red colours represent magnetic flux out of the core, while blue

colours represent magnetic flux entering the core; each colour bar represents an interval

of 100mT. The continental outlines are for orientation. The labels A–D and 1–5 define the

flux spots referred to in the text; the high-latitude spots are E and e. In calculating the

models the Magsat data are assigned errors of 10 nT, commensurate with previous

studies. The Oersted data have lower errors and are treated using the anisotropic error

model of Holme and Bloxham21; we use j ¼ 2.25 nT, and errors of 10 00 and 60 00 for the

two pointing angle errors w and x (ref. 22). The sensitivity of the data to the model is

computed using the analytic solutions to the Neumann problem for Laplace’s equation

and a numerical integration over the five or six triangles adjacent to a node that have non-

zero contribution to the sensitivity matrix13. The unsigned flux of the two models differs by

less than 0.5%.

Table 1 Model comparison

Model No. of data Misfit¼
ffiffiffiffiffiffiffiffiffiffiffi
x2=N

p
a S (mT)

.............................................................................................................................................................................

1980 1,600 (Z) 1.00 3.82 £ 1022 2873 £ 103

2000 3,684 (X,Y,Z) 1.00 2.50 £ 1022 2865 £ 103
.............................................................................................................................................................................

Data, misfit, trade-off parameter a and entropy S for the 1980 and 2000 models. X, Y, Z are the
north, east and down components of themagnetic field. A ‘default’ value ofmi ¼ 10 mT has been
used; this small value does not unduly penalize large-amplitude features.
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Simple motions, such as differential rotation (as in an elec-
trical generator), are unable to drive a homogeneous
dynamo, and flow patterns of a certain complexity are
required. Until late into the twentieth century, dynamo the-
ory has been concerned mainly with the conceptual under-
standing of how, in principle, a magnetic field can be
generated in such an environment. Starting with models
by Glatzmaier and Roberts (1995), Kageyama and Sato
(1995) and Kuang and Bloxham (1997), realistic self-
consistent numerical simulations of the geodynamo became
available and have been successful in reproducing many
of the observed properties of the geomagnetic field. The
more fundamental aspects of the geodynamo are discussed
elsewhere (see Geomagnetic Field, Theory). Here, the pro-
gress in understanding the geodynamo based on numerical
modeling and comparing its results with specific properties
of the geomagnetic field is addressed.

Dynamo model concept and equations
Model setup
In contrast to earlier kinematic dynamo models, where the
flow is prescribed, modern geodynamo models aim at
a fully self-consistent treatment of fluid flow and magnetic
field generation in the Earth’s outer core. There are some
basic requirements for a realistic model: (1) The mecha-
nism for driving flow by thermal or compositional
buoyancy must be part of the model. (2) Because an
axisymmetric field cannot be generated by a dynamo
(Cowling’s theorem), the model must be fully three-dimen-
sional. (3) The model must be rotating because Coriolis
forces are important to generate a flowpattern that is condu-
cive for the dynamoprocess. The basic setup of geodynamo
models is that of a rotating spherical shell of outer radius ro
and inner radius ri, filled with a fluid of uniform conductiv-
ity, which represents Earth’s outer core (Figure 1). For this

system, the coupled equations for convection-driven flow
and electromagnetic induction are solved. A detailed
account on fundamental aspects of convection in rotating
spheres is given in Jones (2007), and modeling aspects
and the commonly employed numerical schemes are
discussed in Christensen and Wicht (2007).

Dynamo equations
The relevant magnetohydrodynamic equations are usually
written in non-dimensional form. A possible scheme for
scaling the equations is to use the shell thickness
D ¼ ro " ri as length scale, the viscous diffusion time
D2=n as timescale (n is kinematic viscosity), ðrO=sÞ1=2
for the scale of the magnetic field B and the imposed tem-
perature contrast DT between inner and outer boundary
for temperature T (r is density, s electrical conductivity
and O rotation rate). The Navier–Stokes equation for the
velocity u, augmented by rotational and electromagnetic
forces, is

E
@u
@t

þ u & Hu
! "

þ 2ẑ' uþ HP

¼ EH2uþ RaE
Pr

r
ro
T þ 1

Pm
ðH' BÞ ' B:

(1)

The terms on the left-hand side describe in order the
inertial force, the Coriolis force (with ẑ the unit vector
parallel to the rotation axis) and the gradient of the non-
hydrostatic pressure П. The terms on the right-hand side
stand for viscous friction, thermal buoyancy forces and
the Lorentz force.

The magnetic induction equation, obtained from Max-
well’s equations and Ohm’s law for a moving incompress-
ible conductor, is

@B
@t

þ ðu & HÞB ¼ ðB & HÞuþ 1
Pm

H2B; (2)

where the second term on the LHS describes magnetic
field advection and the terms on the RHS magnetic
field generation and diffusion, respectively. Magnetic dif-
fusion is a consequence of the ohmic resistance that
damps the electrical currents associated with the magnetic
field.

The advection–diffusion equation for temperature is

@T
@t

þ u & HT ¼ 1
Pr

H2T þ e; (3)

with a heat source term e on the RHS. For compositional
convection, an equivalent equation holds where the con-
centration of light components replaces temperature. The
set of equations is completed by the condition of
incompressibility, which seems to be justified for Earth’s
core where density differences are moderate, and the con-
dition that B is solenoidal:

H & u ¼ 0; H & B ¼ 0: (4)
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Core Dynamo, Figure 1 Columnar convection in a rotating
spherical shell. The inner core tangent cylinder is shown by
broken lines. Under Earth’s core conditions, the columns would
be thinner and more numerous. (From Christensen, 2010b,
Copyright: Cambridge University Press.)
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prescribes a characteristic length scale

ℓ∼

 
νD
Ω

!1=3

¼ E1=3D: ð9Þ

This scaling is identical to the predicted scaling for non-axial
wavenumbers of critical modes for the onset of rapidly rotating,
non-magnetic convection (Roberts, 1968; Jones et al., 2000).

Fig. 2 shows calculations of ℓ from the dynamo models plotted
versus the Ekman number. A best fit power law regression yields
ℓ=D¼ 2:8ð70:5ÞE0:29ð7 :02Þ. If we restrict our data to simulations
with the lowest Ekman numbers, Eo10−4, this fit becomes
ℓ=D¼ 4ð72ÞE0:32ð7 :05Þ. Fixing the exponent at 1/3, misfit is mini-
mized by ℓ=D¼ 4:8E1=3, which fits all the dynamo models with a
relative standard error of 17% and is shown as a solid line in Fig. 2.
We observe that neither strong fields nor highly supercritical
convection produce fundamental changes in the viscously set
length scales.

Substituting for ℓ in the flow speed scaling (7) using (9) gives
(e.g., Aubert et al., 2001; Gillet and Jones, 2006; King et al., 2013)

Re∼C1=2E1=3: ð10Þ

Fig. 3 shows calculations of Re from the dynamo models plotted
against C1=2E1=3. The solid line shows Re¼ 0:5C1=2E1=3, which fits
the dynamo data with a relative standard error of 14%.

5. Comparison with the previous work

5.1. Non-magnetic convection

The scaling laws presented here have also been applied to
simulations of non-magnetic rotating convection (King et al.,
2013), for which the steady state balance between buoyant power
and viscous dissipation (4) holds exactly. Fig. 4 shows comparisons
between the non-magnetic simulations and the scaling laws
(9) and (10), as in Figs. 2 and 3, respectively. The dynamo
simulations and non-magnetic simulations produce flow speeds
and length scales that behave similarly. This observation suggests
that our assumption that magnetic fields are not critically impor-
tant for flow speeds and length scales within the dynamo models
is reasonable.

5.2. Inertial theory: MAC balance

Two other theoretical scalings for flow speeds in convective
dynamos have been put forward and should be compared with the
results shown here. The first is based on the so-called inertial
theory beginning with Hide (1974) and Ingersoll and Pollard
(1982), and is developed further by Cardin and Olson (1994),
Aubert et al. (2001), Gillet and Jones (2006) and Christensen
and Aubert (2006). The second is proposed by Starchenko and
Jones (2002) under the assumption that the rapidly rotating
convective dynamo naturally settles into a triple balance between
Coriolis, buoyancy, and Lorentz forces, the so-called MAC balance
(for magneto-Archimedean-Coriolis). Both arguments begin with a
balance between Coriolis and buoyancy forces in the vorticity
equation, and differ in their treatment of the characteristic length
scales of convection. For a more complete review, see Christensen
(2010) and Jones (2011).

A balance between Coriolis and buoyancy terms in (8) is called
the thermal wind balance, and can be scaled to give

U∼
ρ′gD
2ρ0Ωℓ

: ð11aÞ

In dimensionless parameters, this is

Re∼Ra E Pr−1D=ℓ: ð11bÞ

Next, ρ′ is eliminated by multiplying (11a) by U and assuming that
Uρ′g ¼ urρ′g , such that

U∼

 
PD4

2ρ0Ωℓ

!1=2

or Re∼ðCED=ℓÞ1=2: ð11cÞ

This additional step is implemented primarily because estimates
for the magnitude of the convective power within natural dyna-
mos are generally better constrained than those for the typical
density anomaly.

The difference between the inertial scaling (sometimes called
the CIA scaling), the MAC scaling, and the viscous scaling pre-
sented in the previous sections (which may be called a VAC
scaling) is entirely determined by their treatment of ℓ in (11c).
The CIA scaling assumes that the TP constraint is broken by inertia,
resulting in a Rhines scale for convection (Cardin and Olson, 1994)

ℓ∼Ro1=2D: ð12Þ

Fig. 4. Calculations of ℓ and Re from the non-magnetic, plane layer rotating convection simulations of King et al. (2013). Compare panel (a) with Fig. 2 and panel (b) with
Fig. 3. The solid lines in each comparison show the scaling relation from (9) and (10).
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prescribes a characteristic length scale

ℓ∼

 
νD
Ω

!1=3

¼ E1=3D: ð9Þ
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introducing a “convective power” term for thermal convection

C¼ PD3

Aρ0ν3
¼ RaðNu−1Þ=Pr2; ð6bÞ

where Nu¼PTD=ðρ0cPκAÞ is the Nusselt number. The dissipation
based flow speed scaling (5) can now be written in a dimension-
less form as

Re∼C1=2ℓ=D; ð7Þ

where Re¼ UD=ν is the Reynolds number.
Fig. 1 shows calculations of Re from the simulations plotted

against C1=2ℓ=D. A best fit power law regression yields
Re¼ 0:21ð70:04Þ½C1=2ℓ=D%0:91ð70:05Þ, in relative agreement with (7).
Assuming proportionality, the data are the best fit by Re¼ 0:1C1=2ℓ=D,
shown as the solid line in Fig. 1, and which fits the dynamo datawith a
relative standard error of 23%. The data suggest a secondary depen-
dence on the magnetic field strength, which is represented by the
symbol sizes (sizes being proportional to Λ1=2). Smaller symbols tend
to lie above the plotted scaling law, and larger symbols below, which
indicates that dynamos with stronger fields tend to convect slightly
less vigorously. This weak Lorentz braking of convection has been
observed in other studies (e.g., Christensen and Aubert, 2006;
Soderlund et al., 2012).

4. Length scales: the vorticity equation

Interestingly, the flow speed scaling (7) shows no explicit
dependence on Ω, despite our interest in systems with Ro≪1.
Hide (1974) noted that “rotation affects U largely through its
influence on ℓ” regarding flow within Jupiter's deep atmosphere.
Below, we consider the selection of ℓ in rapidly rotating
convection.

It is generally thought that the leading order force balance in
the Earth's core is geostrophic. Geostrophic flows are constrained
to two dimensions by the Taylor–Proudman theorem, which
dictates that flows be invariant in the axial (ẑ) direction. However,
neither mean heat transport nor dynamo action can be accom-
plished by geostrophic flow in a closed system. The Taylor–Proud-
man (TP) constraint must be broken, and the ensuing flow must be
ageostrophic at second order. In order to isolate ageostrophic flow,

the pressure gradient is eliminated from (2) by taking its curl,
producing the vorticity equation

∂ω
∂t

þ ∇' ðu (∇uÞ þ 2Ω ( ∇u¼
1
ρ0

∇' ðρ′gÞ

þ
1
ρ0

∇' ðJ ' BÞ þ ν∇2ω: ð8aÞ

For flows in which inertial effects and Lorentz forces are
negligible, the radial component of the vorticity equation requires
that

2Ω
ν

∂ur

∂z
¼ r̂ ( ∇2ω: ð8bÞ

In the limit of vanishing viscosity, (8b) defines the Taylor–Proud-
man theorem. Assuming that viscous effects are not negligible, we
scale this balance in the following way. Vorticity is again taken to
scale as ω∼U=ℓ, and spatial derivatives as ∇∼1=ℓ, except for the axial
gradient, where the prevailing geostrophic balance suggests
that ∂=∂z∼1=D. A viscously broken TP constraint (8b) therefore

Fig. 1. Calculations of Re from the dynamo simulations are plotted versus C1=2ℓ=D to
test (7). Symbol shapes depict Ekman numbers, and symbol sizes are proportional
to non-dimensional magnetic field strength, Λ1=2, with minimum and maximum at
Λ1=2 ¼ 0:17 and Λ1=2 ¼ 17. The solid line shows Re¼ 0:1R1=2

f ℓ=D.

Fig. 2. Calculations of ℓ from the dynamo simulations are plotted versus E to test (9).
Symbol shapes depict E as in Fig. 1. Symbol sizes are proportional to non-dimensional
magnetic field strength, Λ1=2. The solid line shows ℓ¼ 4:8E1=3D.

Fig. 3. Calculations of Re from the dynamo simulations are plotted versus C1=2E1=3 to
test (10). Symbol shapes depict E as in Fig. 1. Symbol sizes are proportional to non-
dimensional magnetic field strength, Λ1=2. The solid line shows Re¼ 0:5C1=2E1=3.
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Models: 

E ~ 1e-4; lc ~ 0.1

Earth’s Core: 

E ~ 1e-15; lc ~ 1e-5
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Ineffective Columns
Model E1/3 columns: large-scale, Rml > 1

Thus, model-style columns will not take part 
in dynamo processes in planetary cores 

Planetary Cores E1/3 columns: ~10 - 102 m 
wide; magnetically diffusive



1) Overly strong 
viscosity 

2) Lack of turbulent 
processes  

3) Inaccurate material 
properties

g

Ω

Christensen, Enc. Solid Earth Geophys. 2011

Possible Problems



1) Overly strong 
viscosity 

2) Lack of turbulent 
processes  

3) Inaccurate material 
properties

g

Ω

Christensen, Enc. Solid Earth Geophys. 2011

Possible Problems



Rotating Convection in Water

Cheng et al. GJI 2014



Cheng et al. GJI 2014

Rotating Convection in Water



Rotating Convection in Water
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Unlikely that convection is columnar in planetary 
cores 

Geostrophic convective turbulence makes more 
sense
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Magnetic field appears capable of further 
destabilizing injection scale flows in planetary 
core settings 

“Magneto-relaxation” at Elsasser ~ 1 & Ro < 1 
Need not apply at the system scale 
(Soderlund et al. 2012)
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Model-style columns 
unlikely to exist in 
turbulent (2), liquid 
metal (3) cores  
But if they do, they’re 
magnetically  
ineffective (1)
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Small-scale columns: 

Rarely extend across outer core 
No obvious magnetic signatures 

Large-scale turbulent flow structures inside and 
along TC 

But how do these scale to the core? 
Ran on 516 processors for 1.5 years...



Nick Featherstone 

Scale to ~130,000 
cores at 70%; public 
within next 6 months 

Flexible framework for 
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asymptotically-
reduced modeling 
(CU Boulder)  
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Current framework of dynamo physics 
Problems with our framework  

Present day columnar dynamos implode when 
scaled to planets (no induction / no columns) 

Towards liquid metal dynamos 
Rapidly rotating, turbulent models (E <~ 1e-7); 
robust large-scale structures (large enough?) 

Synergistic efforts will transform our understanding 
of planetary dynamo physics
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