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Dispersion 

Passive scalar 
released in a flow: a 
classical problem with 
numerous industrial 
and environmental 
applications. 

C(x, t)
∂tC + u.∇C = κ∇2C

u(x, t) ∇.u = 0

Concentration            satisfies the advection-diffusion 
equation                                      with given velocity 
field             obeying constraint                .  
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Dispersion 
With the initial condition                          ,              is the 
pdf of the position of a particle at position       moving 
according to 

where         is white noise.  

C(x, 0) = δ(x) C(x, t)
X

dX = u(X, t) +
√
2κ dW

dW

For  large times the combined effect of advection and 
diffusion can often be modelled by effective diffusivity  

•                          . 
•                                    : Gaussian distribution 

In simple flows          can be calculated explicitly. 

κeff

�X2� ∼ 2κefft
C � exp(−x2/4κefft)

κeff
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Dispersion: Shear Flows 

Dye released in a 
pipe flow spreads 
along the pipe   

Taylor (1953) showed that the dispersion is diffusive, with 
κeff ∝ κ−1

Physically: sampling of velocity profile          with 
correlation time 

U(y)
∝ κ−1

Several techniques provide        : e.g. homogenisation  κeff

C(x, y, t) = C0(�x, �
2t) + �C1(�x, y, �

2t) + . . .
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Dispersion: Cellular Flows 
      can be computed for cellular flows: 
spatially periodic, time-independent 
flows. 

Simplest example:  

κeff

ψ = sinx sin y

Use homogenisation 
•       varies on the large scale      only . 
•       solves a linear ‘cell problem’ – a 2D elliptic equation. 
•        is deduced from the cell-problem solution. 
Main result: (Shraiman, Rosenbluth et al, Childress, 
Soward, …) for            (large      ),  boundary-layer analysis 
yields                        ,                                  .      

κ � 1 Pe

C = C0(�
2t, �x) + �C1(�

2t, �x,x) + . . .
C0 �x
C1

κeff

κeff = 2νκ1/2 ν = 0.532740705 . . .
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Large deviations:  

Gaussian approximation (and homogenisation) are 
restricted to                          as             .  
More generally            has the large-deviation form  

where        is the rate function or Cramer function. 
This holds for                      as             . 

(The Gaussian approximation typically fails to predict 
the tails of the distribution. Information on the tails is 
provided by       .) 

C(x, t)

C(x, t) � exp[−tg(x/t)]

g(.)
|x|/t ∼ O(1) t → ∞

|x|/t1/2 ∼ O(1) t → ∞

g(.)
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Large deviations: this talk  

• general approach to compute        . 

• explicit form of        for cellular flows for           . 

g(.)

g(.) κ � 1

Motivation 

• Small concentrations are important: e.g. highly toxic 
chemicals, 
• Unification of previous  ‘improvements’ to homogenisation 
for Taylor dispersion (Mercer & Roberts, Young & Jones), 
• Novel application of extreme-event statistics. 

(For application to chemical reactions see Tzella talk.) 



15 October 2014 

Large deviations: analysis 

Start with the advection-diffusion equation 
                                        with                    . 

Introduce                                              , with               and 
neglect             terms to obtain 

Let                 and                              to give 

Eigenvalue problem: solve to find         for a range of    . 
Deduce        by Legendre transform.                           

∂tC + Peu.∇C = ∇2C Pe = UL/κ

C(x, t) ∼ φ(x, t) exp[−tg(ξ)] ξ = x/t

O(1/t)
(ξ.∇ξg − g)φ = ∇2φ− (Peu+ 2∇ξ).∇φ+ (Peu.∇ξg + |∇ξ|2)φ

q = ∇ξg f(q) = q.ξ − g(ξ)

∇2φ− (Peu+ 2q).∇φ+ (Peu.q+ |q|2)φ = f(q)φ

f(q) q
g(.)
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Large deviations:  
• Interpretation of          :  cumulant generating function 

(Gartner-Ellis theorem).         can be estimated directly 
by Monte Carlo (with pruning/cloning importance 
sampling).  

• Small-      limit:  

corresponding to the effective diffusivity 

• Cell problem of homogenisation is recovered when 
solving the eigenvalue for         in the limit           .   

f(q)

�eq.X� � etf(q)

f(q)

f(q) = 1
2q.Hf .q+O(|q|3)

g(ξ) ∼ 1
2ξ.H

−1
f .ξ

κeff = Hf/2

f(q) q → 0

|q|
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Shear flows  

u = (U(y), 0)

Pe � 1

φ�� + qU(y)φ = f(q)φ

−1 ≤ y ≤ 1

φ�(±1) = 0

In shear flow                       ,                     1-D eigenvalue 
problem with form for               

                                        ,                    . 

• solve numerically 
• for             , recover Taylor dispersion 
• for             ,                     , equivalently                  as     

|q| � 1
|q| � 1 f(q) ∼ U±q g(ξ) → ∞

ξ = x/t → U±
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Shear flows  
Plane Couette 
Flow 

(comparison of 
diffusive 
approximation, 
large deviation 
prediction and 
Monte Carlo) 
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U(y) = 1
3 − y2

Shear flows  

Plane Poiseuille flow 

g(ξ)

f(q)

q = −10,−5, 5, 10 Monte Carlo requires importance 
sampling (e.g. Vanneste 2010) 
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Shear flows  

Pipe Poiseuille flow 

g(ξ)

f(q)

U(r) = 1
2 − r2

Gaussian solution 
underpredicts ‘near tail’. 
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Cellular flow  
ψ = sinx sin yConsider the flow                           for arbitrary     

including              . 
Pe

Pe � 1

t = 0.5 t = 1

t = 3 t = 5

Pe = 103

[movie] 
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Cellular flow  
Numerical solution of eigenvalue problem vs 
Monte Carlo estimation of  f(q)

No axisymmetry for                . 
Faster transport along diagonal.  

q = O(1)

g(ξ)

Pe = 1
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Pe = 1Cellular flow  

logχ(x, t)

t = 250 t = 500

q = (0.5, 0.5) q = (1, 1) q = (5, 5)

φ(x;q)
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Cellular flow:  Pe � 1

Solve eigenvalue problem asymptotically: 
non uniformity in      with 3 regimes. q

1.                           : non-trivial concentration field in 
cell interior + matching across boundary layers. 

2.                  : concentration confined to boundary 
layers with corner interactions crucial. 

3.                    : see Tzella and Vanneste. 

|q| = O(Pe
−1/4)

|q| = O(1)

|q| = O(Pe)

f(q) = O(Pe/ logPe)

f(q) = O(Pe
2)

f(q) = F (Pe1/2|q2|)
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Cellular flow: 1.                         ,   |q| = O(Pe
−1/4) |ξ| = O(Pe

1/4)

d

dψ
(a(ψ)

dφ

dψ
) = f(q)b(ψ)φ

• Cell interior: average eigenvalue equation along 
streamlines, 

which determines          on separatrices in terms of         .   
• Boundary layers: Soward (1987) W-H solution of 
Childress (1979) problem gives                                        . 

• Combining two gives                                . 

• Recover homogenisation for                      .                                       

φ�/φ

φ�/φ = −π2νPe1/2|q|2/4

f(q)

f(q) = F (Pe1/4|q|)

Pe1/4|q| � 1
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Cellular flow: 1.                         ,   |q| = O(Pe
−1/4) |ξ| = O(Pe

1/4)

Pe = 500

Pe = 5000

+ 

x  
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Cellular flow: 2.                ,   |ξ| = O(Pe/ logPe)|q| = O(1)

•             in cell interior 
•       satisfies heat equation in boundary layer 
• use Childress (1979) coordinates 

                       ,                           (corners at                    ). 

                                                  (with               ).  

•                              gives                          . 

•  analysis of corner regions, for                     , 
                                                                    . 

φ = 0
φ

ζ = ∓Pe1/2ψ σ =

� l

0
|∇ψ| dl σ = 0, 2, 4, 6

∂2
ζζφ− ∂σφ+

u.q

|u|2φ =
f

|u|2φ
f = Pe f

φ = eq.x+fH(σ)ϕ ∂2
ζζϕ− ∂σϕ = 0

lim
σ→k+

ϕ(σ, ζ) = (16Pe)−f/2ζf lim
σ→k−

ϕ(σ, ζ)
k = 0, 2, 4, 6
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Cellular flow: 2.                ,   |ξ| = O(Pe/ logPe)|q| = O(1)

(16Pe)f/2ϕ = L(q, f)ϕ

Eigenvalue problem  

L(q, f)           is 8x8 matrix of 
linear integral operators 
with principal 
eigenvalue            .  µ(q, f)
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Cellular flow: 2.                ,   |ξ| = O(Pe/ logPe)|q| = O(1)

•  Heuristic solution                                                               . 

•  For             ,                                            corresponding to 
discrete-time random walk on lattice of stagnation points.  

f(q) = Pef(q) ∼ 2Pe

log(16Pe)
logµ(q, 0)

|q| � 1 f ∼ πPe

log(16Pe)
(|q1|+ |q2|)

f(q) g(ξ)
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Cellular flow  

φ(x;q)

t = 2 t = 4

q = (0.1, 0.1) q = (0.25, 0.25) q = (1, 1)

logχ(x, t)

Pe = 250
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Summary  
• Large deviation theory for dispersion: beyond central limit 
theorem,                           generalises to                        .                 
describes tails of distribution. 
• Rate function        found by solving eigenvalue problem for      
Legendre transform        . (‘generalised cell problem’). 

           gives spatial structure at given    .  
• Shear flows: large deviation generalises Taylor dispersion. 
• Cellular flow: complete theory for           , explicit analytical 
results for different      regimes. 
• ?Random (in time and space) flows.?  

exp(−x2/4κefft) exp(−tg(x/t))

f(q)

g(ξ)

g(ξ)

κ � 1

∇2φ− (Peu+ 2q).∇φ+ (Peu.q+ |q|2)φ = f(q)φ

|q|

φ ξ
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Extension to wider class of flows?  

Emma Boland PhD 
thesis 2012: numerical 
simulation of DIMES 
tracer release 

Long-range dispersion clear in individual realisations – 
can statistics of long-range dispersion be deduced from 
statistics of velocity field?  


