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Sutton & Allen, Nature, 1997

Advective propagation, at 1.7cm/s, 
of sea surface temperature 
anomalies.  Numbers indicate the 
year which had the highest time-
lagged correlation with the year-0 
area.
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How should time-lagged correlation functions be 
interpreted in terms of transport diagnostics?

Advective propagation, at 1.7cm/s, 
of sea surface temperature 
anomalies.  Numbers indicate the 
year which had the highest time-
lagged correlation with the year-0 
area.



“Correlation Implies Transport”
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Curry and McCartney, Nature, 1998

Atmospheric conditions are 
imprinted in the Labrador 
Sea and carried to Bermuda 
in six years. 

“Correlation Implies Transport”
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✴When does correlation imply causation? 
✴How is SST transport information extracted from 

SST data?
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Two-point lagged covariance analysis 
Global covariance information analysis 
Application to SST data 
Discussion/Conclusion



Governing equation:
Theory I 
Two-point lagged covariance
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Forcing covariance:

Field/forcing covariance: Propagation:

field point i

forcing point j

Gij smoothed over space/time 
forcing covariance 

at source point j

Field point i/forcing point j 
time-lagged covariance fn.
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Field/forcing covariance: Propagation:

field point i

forcing point j

For white noise forcing

Field point i/forcing point j 
time-lagged covariance fn.
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Illustrative 
Example
Leaky pipe model of advective flow 

exchanging with stagnant reservoir:

a

b



Forcing covariance is white in space, 
Gaussian in time with scale
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•Time-lagged field/forcing covariance fn. 
is an unbiased estimate of the Green’s fn. 
smoothed by the forcing covariance.

Forcing covariance is white in space, 
Gaussian in time with scale

Illustrative 
Example

Response at b from impulsive source at a, 
for perfect covariance estimates
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•Time-lagged field/forcing covariance fn. 
is an unbiased estimate of the Green’s fn. 
smoothed by the forcing covariance.

Forcing covariance is white in space, 
Gaussian in time with scale

•Not true for field/field covariance in general. 
•Time-lagged field/forcing covariance fn. 

contains useful information for all lags: 
width reflects pathway mixing. 

Advective time is 10x 
shorter than modal time

Illustrative 
Example



Field/forcing covariance

Field/field covariance

Unbiased

Biased

But Unavailable

Available!

How does this apply to SST data?



Time-averaged equation:
Theory II  
Global covariance information



Time-averaged equation:

Transport estimate: forcing decorrelation time

Assumes f’(t) forcing  
is stochastic



Time-averaged equation:

Can also split response function into anti-symmetric, symmetric, and diagonal parts

advective diffusive relaxing

forcing decorrelation timeTransport estimate:

Assumes f’(t) forcing  
is stochastic
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Illustrative 
Example

Response estimates for imperfect 
covariance estimates: no bias.



Illustrative 
Example

Decomposition into advective, diffusive, 
and relaxing components: no bias
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•Exploiting sparsity in         is essential (local method but 
global data). 

•Response function error is smallest. 
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Illustrative 
Example

•Exploiting sparsity in         is essential (local method but 
global data). 

•Response function error is smallest. 
•This example is with monthly (synthetic) SST anomalies 

100yrs <=> 1200 samples 
30 yrs daily SST fields <=> 1200 samples 



Application to SST data
NOAA Optimum Interpolation 1/4 Degree Daily SST Analysis (Reynolds et al., 2007) 
1 degree HadISST product (Rayner et al., 2003) 
1 degree GFDL-CM2.1 coupled climate model (Delworth et al., 2006) 
3 degree GFDL-ESM2Mc global coupled climate model (also SSS, SSH, color…) 



Application to SST data
NOAA Optimum Interpolation 1/4 Degree Daily SST Analysis (Reynolds et al., 2007) 
1 degree HadISST product (Rayner et al., 2003) 
1 degree GFDL-CM2.1 coupled climate model (Delworth et al., 2006) 
3 degree GFDL-ESM2Mc global coupled climate model (also SSS, SSH, color…) 

Local inversion algorithm is quick, parallel, and scales linearly with data size.



Application to SST data Sample response function

Relaxation dominates and truncates diffusive response function tails



Application to SST data

Familiar velocity fields, but small 
amplitudes (why?)



Application to SST data

Reasonable diffusivity amplitudes, with 
non-trivial structure (why?)



Application to SST data

Well-converged relaxation rate 
estimate with interesting structure 

and large dynamic range (why?!)



Discussion

•Global anomaly inversion is an example of fluctuation-dissipation 
theorem 

•Framework is generic and applies to any linear system 
•Numerical models with weak stochastic forcing (or hardware) give the 

response fn. (and adjoint) for free! 
•Response fn. quantifies causality in linear systems: correlation implies 

causation under certain circumstances
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Conclusions

•Time-lagged two-point field/forcing covariance fn. is an unbiased 
estimate of the response fn. smoothed by the forcing covariance. 

•Not true for two-point field/field covariance (in general). 
•Global field anomaly data can be (locally) inverted to estimate transport 

operator and response function. 
•Transport operator can be decomposed into advective, diffusive, and 

relaxation components. 
•Physical interpretation of SST transport operator is just beginning…



•Time-lagged two-point field/forcing covariance fn. is an unbiased 
estimate of the response fn. smoothed by the forcing covariance. 

•Not true for two-point field/field covariance (in general). 
•Global field anomaly data can be (locally) inverted to estimate transport 

operator and response function. 
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•Physical interpretation of SST transport operator is just beginning…

Conclusions

✴Much more information can be extracted from the covariance than just the 
modal transit-time. 

✴But you have to look at it the right way to understand what it means.





!

We quantify the transport of sea surface temperature (SST) from SST fluctuations. Previous 
studies have estimated the advective transport of SST from time-lag correlation of SST 
anomalies. However, this approach does not consider diffusive SST transport or relaxation to 
atmospheric temperatures. To quantify the transport more completely we use a response function 
(Greenʼs function) which solves the SST continuity equation for an impulsive forcing. The response 
function is estimated from SST anomalies using a fluctuation-dissipation approach. Decomposing 
the linear operator into symmetric, anti-symmetric, and divergent operators enables estimates of 
the modelʼs spatially dependent velocity vector, diffusivity tensor, and relaxation rate.  


