JOHNS HOPKINS

KRIEGER SCHOOL
of ARTS & SCIENCES

Satellite SST day 1




JOHNS HOPKINS

KRIEGER SCHOOL
of ARTS & SCIENCES

Piagnosing sea-surface temperature dynawmics
from stochastically-forced fluctuations

* 8, A. Jeffress and T. W, N. Haine, Correlated signals and causal
transport in ocean circulation, Q. J. R. Meteorol. Soc. (2014)
101002/4j.2313

* 8, A. Jeffress and T. W, N. Haine, Estimating sea-surface temperature
transport fields from stochastically-forced fluctuations, New Journal
of Physics 16 (2014) 10.1088/1367-2630/16/10/105001

* 8, A. Jeffress and T. W. N. Haine, The Transport of North Atlantic Sea
Surface Temperature Anowmalies from a Fluctuation-Dissipation Based
Inverse Method, J. Climate, in prep.




Latitude

65°N | _JI 9

SSON | -
— 16
45°N [l = B
(12
vear | ’lto
35°N — Y J
&
o. £ ’ 6
250N Advective propagation, at 1.7em/s,

of sea surface temperature

‘. anomalies. Numbers indicate the

15oN | year which had the highest time-
= lagged correlation with the year-0

area.

BO*W 60w 40°W
Longitude

Sutton & Allen, Nature, 1997



How should ’rime—lagged correlation functions be
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*When does correlation imply causation?

XHow is SST transport information extracted from
SST data?




Outline

*When does correlation imply causation?

XHow is SST transport information extracted from
SST data?

* Two-point lagged covariance analysis
* Global covariance information analysis
* Application to SST data

* Discussion/Conelusion




Governing equation:

d * Theory |

Ec(t) - A(t)c(t) T q(t) Two-point lagged covariance



Satellite SST day 1

Governing equation:

e(t) = Alt)e(t) + alt)




Satellite SST Anomaly day 1

Governing equation:

Ce(t) = A(t)e(t) + a(t

Time-averaged equation:

—c/(t) = Ac(t) + f'(¢)



Satellite SST Anomaly day 1

Governing equation:

e(t) = Alt)e(t) +a(t

Time-averaged equation: Time averaging:

’ '(t) = Ac/(t) + f/(t) A(t) = A+ A'(1)
£'(t) = A'(t)c(t) — A/ (t)c'(t) + q (1)

:‘)[f A(t)dt




Governing equation:

Ce(t) = A(t)e(t) + a(t

Time-averaged equation:

d/_—/ /
—-c/(t) = Ac(t) + /(1

Solution with Green’s tn:

c'(t) = /(f G(t — "' (t")dt

Satellite SST Anomaly day 1

Time averaging:

A(t) = A+ A'(t)
£/(t) = A'(t)e(t) — A(t)c'(t) + o (t)




Governing equation:

Ce(t) = A(t)e(t) + a(t

Time-averaged equation:

d/_—/ /
—-c/(t) = Ac(t) + /(1

Solution with Green’s tn:

c'(t) = /(f G(t — "' (t")dt

Satellite SST Anomaly day 1

Time averaging:

A(t) = A+ A'(t)
(1) = Al (t)e(t) — A1) + d' (1)

Green's th equation:



Forcing covariance:

Se(7) = (£'(7)f'(0)")



Forcing covariance:

Se(7) = (£'(7)f'(0)")

Field/forcing covariance:

See(7) = (/(T)f'(0) ")



Forcing covariance:

Se(7) = (£'(7)f'(0)")

Field/forcing covariance: Propagation:

Set (1) = (</(T)f'(0)") Scr(T) = / G(t —t")Sg(t")dt’



Forcing covariance:

See (1) = (F(7)f'(0) ")
Field/forcing covariance: Propagation:

Set (1) = (</(T)f'(0)") Scr(T) = / G(t —t")Sg(t")dt’
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Forcing covariance:

See () = (f'(7)f'(0) ")
Field/forcing covariance: Propagation:

Set(7) = (¢/(7)E(0)T) Sop(7) = / G(r — t)Sg(t)dt’

[Ser(T]i = D / Gir(T — 1) [Spr ()], dt’

k

field point i

forcing point j




Forcing covariance:

See () = (£'(7)f'(0)")

Field point i/forcing point j
time-lagged covariance fn.

Field/forcing covariance: Propagation:
Set () = (¢/(1)F(0)") Sep(7) = / G(r — )Se(t)dt
5.7y =30 [ Gunlr =€) (845(¢),
k’ — OO
field point | Gij smoothed over space/time

foreing covariance
forcing point j at source point j




Forcing covariance:

See () = (£'(7)f'(0)")

Field point i/forcing point j
time-lagged covariance fn.

Field/forcing covariance: Propagation:
Set () = (¢/(1)F(0)") Sop(7) = / G(r — )Sg(t)dt’
[Scf(T)]ij — Gij (7) For white noise forcing
field point i

forcing point j




Forcing covariance:

Se(7) = (£'(7)f'(0)")

Field/forcing covariance: Propagation:

Set (1) = (</(T)f'(0)") Scr(T) = / G(t —t")Sg(t")dt’

Field covariance:



Forcing covariance:

Se(7) = (£'(7)f'(0)")

Field/forcing covariance: Propagation:
See(7) = (</(T)F'(0)T) Sef(T) = / G(r —t)Sg(t)dt
Field covariance: Propagation:

Sce(T) = <c’(7)c’(O)T>

Sece(T) = / / G(t)Sg(t —t +t")G' (t")dt'dt"
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* lllustrative
Example

Leaky pipe model of advective flow
exchanging with stagnant reservoir:
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* lllustrative
Example

Green’s function
— — — Field-forcing corr.
------- Field—field corr.
Advective time

o Time-lagged field/forcing covariance fn.
is an unbiased estimate of the Green’s fn.
smoothed by the foreing covariance.
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Gaussian in time with scale O+




* lllustrative
Example

o Time-lagged field/forcing covariance fn.
is an unbiased estimate of the Green’s fn.
smoothed by the forcing covariance.

o Not true for field/field covariance in general.
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Forcing covariance is white in space,
Gaussian in time with scale O

Green’s function / Correlation function

Green’s function / Correlation function

x 10

7 _
Green’s function
6 — — = Field—forcing corr.
------- Field—field corr.

5l Advective time
4+
3 »
2 =
1F or=1yr

0 5 10 15 20 25 30

Transit time / Lag time (years)

Green’s function
— — = Field—forcing corr.
------- Field-field corr.
Advective time

0 5 10

15 20 25 30
Transit time / Lag time (years)



* lllustrative
Example

o Time-lagged field/forcing covariance fn.
is an unbiased estimate of the Green’s fn.
smoothed by the forcing covariance.

o Not true for field/field covariance in general.

o Time-lagged field/forcing covariance fn.
contains useful information for all lags:
width reflects pathway wixing.

1 72
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T

Forcing covariance is white in space,
Gaussian in time with scale O

Advective time is 10x
shorter than modal time
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How does this apply to SST data?

W Unbiased
Field/ forcing covariance
Sect(T) = /G(T — t")Sg(t)dt’

But Unavailable

Latitude

Biased

l Field/field covariance
See(r) = / / G()Se(r — ' + "G (" )dt dt"

Available!




Time-averaged equation:

L ] * Theory Il
EC’ (t) = Ac'(t) + f'(t) Global covariance information



Time-averaged equation:

d _
—c/(t) = Ad(t) + /(1)
dt
Transporf esﬁmafe; forcing decorrelation time

A — <%c’(t)c’T(t _ Tf)> <c'(t)c'T(t _ »rf)>_1 <f’(t)c’T(t _ Tf)> By

2 At Assumes f'(t) forcing
G(t) = e is stochastic




Time-averaged equation:

d _
—c/(t) = Ad(t) + /(1)
dt
Transporf esﬁmafg; forcing decorrelation time

A — <%c'(t)c’T(1‘ _ Tf)> <c'(t)c'T(t _ Tf)>_1 <f’(t)c’T(t _ Tf)> _ 0

2 At Assumes f'i) forcing
G(t) = e is stochastic

Can also split response function into anti-symwmetric, symmetric, and diagonal parts

advective diffusive relaxing



* lllustrative
Example
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< 4000 km, Az =100 km >
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Response estimates for imperfect
covariance estimates: no hias.
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o Exploiting sparsity in A is essential (local method but
global data).
o Response function error is smallest.
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NOAA Optimum Interpolation 1/4 Degree Daily SST Analysis (Reynolds et al., 2007)

Satellite SST Anomaly day 1




NOAA Optimum Interpolation 1/4 Degree Daily SST Analysis (Reynolds et al., 2007)

Local inversion algorithwm is quick, parallel, and scales linearly with data size.

Satellite SST Anomaly day 1
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Relaxation dominates and truncates diffusive response function tfails




* Application to SST data
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* Application to SST da’ra

Zonal speed (Cm/s)
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Zonal speed (cm/s) °N Meridional speed (cm/s)

Well-converged relaxation rate
estimate with interesting structure |
and large dynamic range (why?!)
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o Global anowmaly inversion is an example of fluctuation-dissipation
theorem

® Framework is generic and applies to any linear system

o Numerical models with weak stochastic forcing lor hardware) give the
response fn. (and adjoint) for free!

o Response fn. quantifies cauvsality in linear systewms: correlation implies
causation under certain circumstances




Discussion

Imaging with
ambient noise

Roel Snieder and Kees Wapenaar

Whether noise is a nuisance or a signal depends on how it's processed.
By cross-correlating noise recorded at two sensors, researchers can
retrieve the waves that propagate between them and exiract details

| about the intervening medium.

ir Wave Phenomena at the
‘echnology in Delft, the

o Global anowmaly inversion is an example of fluctuation-dissipation

theorem

e Framework is generic and applies to any linear system

o Nuwerical models with weak stochastic forcing (or hardware) give the
response fn. (and adjoint) for free!
o Response fn. quantifies causality in linear systewms: correlation implies

causation under certain circumstances
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Figure 1. (a) At an oll-production facllity In Canada, a layer
of heavy oil (pink) is liquefied by the injection of steam
through a series of underground wells (gray), as depicted in
the schematic. Noise (red star) from industrial pumps and
other equipment is generated at the surface and recorded
along a vertical array of geophones (blue dots). (b) As the
noise signal propagates down the array, geophones A and B
record the wave motion at the shallowest and deepest sites.
(c) Each of the eight traces is the result of cross-correlating

one day of noise recorded by geophone B with noise recorded by another geophone in the series. The projection of the red line
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along the time axis gives the travel time of a compressive wave propagating from A to B. (Adapted from ref. 8.)
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Imagine a dlosed system that vibrates in response to random
noise sources. Given a set of normal modes u_(x), the Green func-
tion that desaibes the impulsive response can be written

G(xX, 1) = Y u(x)u(x)os(wHH(t) , (m

where H(f) is the Heaviside function, zero for negative time and 1
for positive time, and w,_ is the angular frequency of mode n.

We outline Oleg Lobkis and Richard Weaver's derivation of
such a Green function# starting with a state of motion in which
the time derivative of pressure fluctuations is given by

v(x,t) = ) (a,sin(w f) + b, cos{a, t))ufx), )

where the modal coefficients a, and b, are random numbers
with zero mean. The modes are assumed to be excited with
equal energy and have uncorrelated exdtations. That is,

{aa)={;bb)=55_

where{ ) denotes the expectation value and S is the modes’exci-
tation energy.

Next, consider the time-averaged cross-correlation of the
field at two locations x,, and X,

and (ap_)=0, (3)

44 September 2010 Physics Today

T
Caslt) = %{(vm,f + )(xa )t @)

The length of the time integration is denoted by T, and 7 denotes
the lag time used in the correlation. Inserting the normal-mode
expansion (2) in that integral gives a double sum over modes.
After taking the expectation value, the double sum reduces to
the following single sum by virtue of the expectation values of
equation (3):

. 1,7
Cus(m) = E.S u,(xA)u,(xs)—j; [cos|aw (t + T)] cos(w ()
* +sinfa (t + 7)) sin(a, t)} dt  (5)
- ES W (x,)u (xz) cos(w ).
A comparison of this equation with the general Green

function (1) shows that when 1> 0, the last term is equal to
SGix, X, 1), and when T < 0, it is equal to SG(x, X, -1). Hence,

Cag(T) = S|G(x4, Xz, T) + G(x 5, X5 —7)] - (6)

The expectation value of the cross-correlation thus gives
the superposition of the Green function and its time-reversed
counterpart.

© 2010 Amancan Institute of Physics, S-0031-9228-1009-030.7



o Time-lagged two-point field/forcing covariance fn. is an unbiased
estimate of the response fn. smoothed by the forcing covariance.

o Not true for two-point field/field covariance (in general).

o Global field anomaly data can be (locally) inverted to estimate fransport
operator and response function.

e Transport operator can be decomposed into advective, diffusive, and
relaxation components.

o Physical interpretation of SST transport operator is just beginning...



o Time-lagged two-point field/forcing covariance fn. is an unbiased
estimate of the response fn. smoothed by the forcing covariance.

o Not true for two-point field/field covariance (in general).

o Global field anomaly data can be (locally) inverted to estimate fransport
operator and response function.

e Transport operator can be decowmposed into advective, diffusive, and
relaxation components.

o Physical interpretation of SST transport operator is just beginning...

WANTED |

>*Much more information can be extracted from the covariance than just the
wmodal transif-time.
X But you have fo look at it the right way to understand what it means.




N 5

#e ofs

|
-

e

e

.
]

20




We quantify the transport of sea surface temperature (SST) from SST fluctvations. Previous
studies have estimated the advective transport of SST from time-lag correlation of SST
anomalies. However, this approach does not consider diffusive SST transport or relaxation to
atwospheric temperatures. To quantify the transport more completely we use a response function

(Green’s function) which solves the SST continuity equation for an impulsive forcing. The response

function is estimated from SST anomalies using a fluctuation-dissipation approach. Pecomposing
the linear operator into symwmetric, anti-symwmetric, and divergent operators enables estimates of

the model’s spatially dependent velocity vector, diffusivity tensor, and relaxation rate.



