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• Mixing is of course a fundamental problem in fluid mechanics

• Mixing ultimately driven by diffusive processes, so need:

(I) Strong Gradients (high flux)

(II)“Filamentation” (high contact area so high transport) 

• Classic picture of Eckart (1948)/Welander (1955): Stirring                     mixing

• Beautiful work on stirring: Rhines & Young, Aref, Ottino, Mezic, Doering, Thiffeault... 

• But... prescribed flow (no Navier-Stokes) and often zero diffusion (                       )

• Questions remain for real (finite Pe, coupled solutions of Navier-Stokes Eqns) flows:

• What is the “best” way to mix a freely evolving flow (Energy=mixing Aamo et al)?

• Is mixing really after stirring...what about Taylor dispersion...and how can we work it out?

Optimising Mixing
P. Welander, ‘‘Studies of the general development 
of motion in a two-dimensional, ideal fluid.’’
Tellus 7, 141 (1955). 

“A typical [line of particles] may pass close to several elliptic and 
hyperbolic fixed points… and will therefore evolve into a fantastic shape 
incorporating both whorls and tendrils… Its curlings and flailings are 
reminiscent of cream spreading on coffee, and suggest that the study of 
generic area-preserving maps of curves on a plane, or surfaces in space, 
might be a profitable way to study turbulent mixing…”

Berry et al. in “Quantum maps”
Annals of Physics 122, 26-63 (1979)
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Optimal stirring strategies for passive scalar mixing 9

2 Z. Lin, K. Bod’ová and C. R. Doering
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Figure 2. Evolution of scalar field in [0, 2⇡]2 with optimal mixing strategy (4.4) and solution
to (4.8) with fixed power and ✓0(x) = sinx.
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Flow control: new challenges for a new Renaissance

Thomas R. Bewley*

Department of MAE, UC San Diego, La Jolla, CA 92093-0411, USA

Abstract

As traditional scienti"c disciplines individually grow towards their maturity, many new opportunities for signi"cant
advances lie at their intersection. For example, remarkable developments in control theory in the last few decades have
considerably expanded the selection of available tools which may be applied to regulate physical and electrical systems.
These techniques hold great promise for several applications in #uid mechanics, including the delay of transition and the
regulation of turbulence. Such applications of control theory require a very balanced perspective, in which one considers
the relevant #ow physics when designing the control algorithms and, conversely, takes into account the requirements and
limitations of control algorithms when designing both reduced-order #ow models and the #uid}mechanical systems to be
controlled themselves. Such a balanced perspective is elusive, however, as both the research establishment in general and
universities in particular are accustomed only to the dissemination and teaching of component technologies in isolated
"elds. To advance, we must not toss substantial new interdisciplinary questions over the fence for fear of them being
`outside our areaa; rather, we must break down these very fences that limit us, and attack these challenging new questions
with a Renaissance approach. In this spirit, this paper surveys a few recent attempts at bridging the gaps between the
several scienti"c disciplines comprising the "eld of #ow control, in an attempt to clarify the author's perspective on how
recent advances in these constituent disciplines "t together in a manner that opens up signi"cant new research
opportunities. Published by Elsevier Science Ltd.
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WWGID?

(Kirby Cornell)

• Taylor-(Aris) dispersion very good way to enhance diffusive transport in shear flows

• Is it possible for the fluid flow to work out what it is good for mixing all on its own?
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U = (1� y2)ex

• Test case: Bands of zero-mean scalar   in 2D (stable) flow: 

• Natural measure of mixing variance: only changes at finite Pe!

• Sobolev norms: Mathews et al. (2005)/Lin et al.: “mix-norm”/        norm: 

• Easy to understand for FTs:  mix-norm favours large scales (cf. gradient):

• Mathews et al proved usefulness for periodic domains...but are minimised mix-norms good proxies for real mixing?

• Classic hypothesis (see e.g.  Aamo et al 2003 etc) is that perturbation energy growth is the “best” way to mix?

• Aim to determine “best” IC for mixing:

•          : (average) energy gain;                       : mix norm;                       ; variance (“real” mixing)  

Mixing in Plane Poiseuille Flow 
�
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H�1

� = 1, � = 1

10



Direct-Adjoint Looping method
• Apply direct-adjoint looping (DAL) method (Hill, Luchini, Bottaro, Schmid etc) to mixing problem 

• Derive adjoint equations to describe evolution of Lagrange multipliers which impose solution of Navier-Stokes (& theta) equations

• Variations of L wrt direct variables:

• Adjoint equations have a similar form, and “forced” by direct variables (and nonlinear in direct variables...nontrivial optimisation)

Set ICS for u, theta at t=0
Integrate 0-T using NS + AD+ 

incompressibility calculate u(T), theta(T)+ J

Relate u(T), theta(T) to udag(T),  
thetadag(T) using E-L eqns

Integrate T-0 using NSadj

Calculate udag(0)...
do they satisfy E-L eqn: udag=u?

If not, update u(0), theta(0) using 
gradient info in E-L equations
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• Fix initial energy of perturbation to be finite amplitude but small: 

• Could impose as a further constraint, but introduces ambiguity...much better to enforce directly using            when not parallel to  

• Project                onto hyperplane orthogonal to        and tangent to hypersphere    

• Restrict updated guess           to rotations along intersection of hypersphere with hyperplane defined by scaled projected gradient and  

Normalisation, rotation and optimisation...

CHAPTER 3. ∞-NORM OPTIMISATION 113

(a)

0

New X

(b)

Figure 3.12: Sketch representing the procedure used to update the vector position from
Xn to Xn+1 for a problem of dimension d = 3. (a) Full sphere constraint: we project the
gradient ∇XJ = X̃ onto the plane perpendicular to X. The corresponding scaled vector
is denoted by G and is used to perform the update Xn → Xn+1 via a one-dimensional
rotation, as shown in (b).

search as well as a sequence of previously chosen directions in the optimisation
process to converge to an optimum. Starting with the first descent direction (de-
noted L) given by the true gradient of the cost functional

L0 = G0, (3.39)

we obtain for all subsequent steps

Ln = Gn + βnL⊥
n−1, (3.40)

where L⊥
n−1 is the descent direction from the previous iteration, projected onto the

hyperplane tangent to the hypersphere at the position Xn (the current location).
The coefficients βn are given by the Polak-Ribière formula (Polak (1971)):

βn =
G⊤

n (Gn − Gn−1)
G⊤

n−1Gn−1
. (3.41)

The conjugate gradient update is then simply given by

Xn+1 = Xn cos α +
Ln

∥Ln∥2

sin α. (3.42)

We use this procedure, which yields a stable and robust optimisation algorithm for

û0

E0 = 10�2 =
1
2
(û0, û0) =

3
80

E

�û0J

�ûn,0J ûn,0 (ûn,0, ûn,0) = 2E0

ûn,0ûn+1,0

X � ûn,0

X̃ � �ûn,0J

12



Results for T=2,5,10,20,30

• Mix-norm and variance similar/small with early gain...very different from energy, converge to same behaviour & most mixing done by T=10
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Figure 7. Time-evolution of the several considered measures G(t) (black), M(t) (blue) and V (t) (red) corresponding to the various identified optima
(as defined in (5.1), (5.2) and (5.2) ). The first, second and third columns correspond respectively to the optimisation of the time-averaged energy
G(T ), the mix-norm M(T ) and the variance V (T ). For each series of optimisations, 5 different horizon times were considered: T ∈ [2; 5; 10; 20; 30]. The
dots on each curve indicate the optimisation times. The figures located on the diagonal correspond to the time-evolution of the optimised quantities.
Therefore, we can define from these diagonal plots, the optimal envelopes Gopt(T ), Mopt(T ) and Vopt(T ) (obtained by cubic interpolation of the 5
computed optima). These optimal envelopes are plotted with dashed lines on the plots of each row.
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Results for T=5: Energy: Vorticity & Scalar
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Results for T=5: Mix-norm: Vorticity & Scalar
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Results for T=5: Variance: Vorticity & Scalar
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Results for T=30: Energy: Vorticity & Scalar
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Results for T=30: Mix-norm: Vorticity & Scalar
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Results for T=30: Variance: Vorticity & Scalar
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Results for T=30
• Energy much larger scale

• Strong vortices perturb interface

• Effect dies out with little mixing...

• ... unlike Mix-norm & variance:

• very similar evolution

• much smaller scale and 3 stage:

1. Transient perturbation Transport

2. (Mean flow) Taylor Dispersion

3. Relaxation by diffusion 

• No clear separation of stirring & mixing

Vorticity
Energy
Scalar

Vorticity
Mix

Scalar

Vorticity
Variance
Scalar
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• Scalar gradients evolution involves  

•                                                                                          Due to Taylor dispersion, “mixing” occurs while the mean flow is “stirring”...

Scalar Gradients: T=30 Variance
24 D.P.G. Foures, C.P. Caulfield and P.J. Schmid
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Figure 10. From top to bottom: x-integrated production of scalar gradients (as defined in
(5.4)) due to (a) the velocity perturbation (Pu), (b) the base flow velocity (Pu) and (c) to the
molecular diffusion (Pd). (d) Total x-integrated scalar gradient production term P . These plots
correspond to the T = 30 variance optimal perturbations.

5.3. Mixing through wall forcing

The variational method presented in 4.1 is formulated to accommodate both optimal
perturbations and optimal streamwise velocity boundary conditions. We study the latter
problem in this section. We focus on the problem of wall actuation because of its great
interest in engineering applications, where prescribing an initial condition, or acting
directly in the bulk of the flow is not feasible or at least difficult to realize. Therefore
we act on the fluid through its boundaries with the exterior domain, i.e. the walls. The
norm chosen for the normalisation of the initial wall forcing is no longer the L2-norm, but
instead we choose an Lp-norm with a relatively large value of p (p = 20) to approximate to
the L∞-norm and preserve the continuity of the associated unit sphere. We choose an Lp-
norm constraint to constrain the maximum value of the streamwise velocity at the wall.
If we had instead opted for a L2-norm constraint, the energy could be strongly localised
in the (x, t) space and therefore the streamwise velocity could locally be substantially
stronger than the base flow, which is a situation we wish to avoid. We set Ew = 1/2 (as
defined in (4.11)). Therefore, we ensure that the boundary velocity is never larger than
the base flow advection, i.e. |u±| ! 1, without constraining the total amount of energy
∥u±∥2

2/2 injected into the flow, which quantity we measure a posteriori. Also, the length
of the channel is reduced to L = 2π to reduce the size of optimisation space.

Due to the incompressibility condition, we can demonstrate that any gradient in the
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û + U

�
· ��d� � Pe�1 ���2�

��2
2
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Conclusions
• Nonlinear Direct-Adjoint-Looping method works for mixing

• Mix-norm is an excellent proxy for (real) mixing

• Energy gain not related to “best” mixing...but maybe @ higher Re?

• Not stirring THEN mixing for this flow but timing is crucial:

Transport - Dispersion - Relaxation 

• DAL Optimisation technique very general:

• Also used to optimise wall-forcing (Foures et al 2014 JFM 748)

• 3D/other flows straightforward but...

• What happens when flow is:

•  unstable?

• turbulent...a minimal mixing seed?

Conclusions
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Forcing to T=20

� T

0

� L

0
|u±|20 dx dt = 1

� T

0

� L

0
|u±|20 dx dt = 2

Horizontal forcing at the boundaries
Symmetry between walls
Use p-norm to constrain maximum value
Uses much more energy
Still exploit Taylor dispersion
Three stage mixing still evident...
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3D Results for T=2,5,10,20,30

• Late times ~5% better than 2D...quite different initial structure, and finite scale in 3D as time increases...
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Results for T=2,5,10,20,30

• Mix-norm and variance similar/small with early gain...very different from energy, converge to same behaviour & most mixing done by T=10
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Figure 7. Time-evolution of the several considered measures G(t) (black), M(t) (blue) and V (t) (red) corresponding to the various identified optima
(as defined in (5.1), (5.2) and (5.2) ). The first, second and third columns correspond respectively to the optimisation of the time-averaged energy
G(T ), the mix-norm M(T ) and the variance V (T ). For each series of optimisations, 5 different horizon times were considered: T ∈ [2; 5; 10; 20; 30]. The
dots on each curve indicate the optimisation times. The figures located on the diagonal correspond to the time-evolution of the optimised quantities.
Therefore, we can define from these diagonal plots, the optimal envelopes Gopt(T ), Mopt(T ) and Vopt(T ) (obtained by cubic interpolation of the 5
computed optima). These optimal envelopes are plotted with dashed lines on the plots of each row.
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3D: Variance T=10
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Conclusions
• Nonlinear Direct-Adjoint-Looping method works for mixing

• Mix-norm is an excellent proxy for (real) mixing
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Transport - Dispersion - Relaxation 
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