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Optimising Mixing

Mixing is of course a fundamental problem in fluid mechanics

Mixing ultimately driven by diffusive processes, so need:
(I) Strong Gradients (high flux)

(I “Filamentation” (high contact area so high transport)

Classic picture of Eckart (1948)/VWelander (1955): Stirring — (1), (Il) — mixing

® Beautiful work on stirring: Rhines & Young, Aref, Ottino, Mezic, Doering, Thiffeault...

UL

® But... prescribed flow (no Navier-Stokes) and often zero diffusion ( Pe = > OO
K

Questions remain for real (finite Pe, coupled solutions of Navier-Stokes Eqns) flows:

® What is the “best” way to mix a freely evolving flow (Energy=mixing Aamo et al)?

® [s mixing really after stirring...what about Taylor dispersion...and how can we work it out?
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Flow control: new challenges for a new Renaissance
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Abstract

As traditional scientific disciplines individually grow towards their maturity, many new opportunities for significant
advances lie at their intersection. For example, remarkable developments in control theory in the last few decades have
considerably expanded the selection of available tools which may be applied to regulate physical and electrical systems.
These techniques hold great promise for several applications in fluid mechanics, including the delay of transition and the
regulation of turbulence. Such applications of control theory require a very balanced perspective, in which one considers
the relevant flow physics when designing the control algorithms and, conversely, takes into account the requirements and
limitations of control algorithms when designing both reduced-order flow models and the fluid-mechanical systems to be
controlled themselves. Such a balanced perspective is elusive, however, as both the research establishment in general and
universities in particular are accustomed only to the dissemination and teaching of component technologies in isolated
fields. To advance, we must not toss substantial new interdisciplinary questions over the fence for fear of them being
“outside our area”; rather, we must break down these very fences that limit us, and attack these challenging new questions
with a Renaissance approach. In this spirit, this paper surveys a few recent attempts at bridging the gaps between the
several scientific disciplines comprising the field of flow control, in an attempt to clarify the author’s perspective on how
recent advances in these constituent disciplines fit together in a manner that opens up significant new research
opportunities. Published by Elsevier Science Ltd.

I’'m beginning to understand...

o)

it out?




WWGID!?

(Kirby Cornell)

® Taylor-(Aris) dispersion very good way to enhance diffusive transport in shear flows

® |s it possible for the fluid flow to work out what it is good for mixing all on its own!




Mixing in Plane Poiseuille Flow

Test case: Bands of zero-mean scalar #in 2D (stable) flow:
1 | | |

Uy, h |
0 U= (I —ye,
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Natural measure of mixing variance: only changes at finite Pe! Var 0 = — Ht9||2 = Vo 0(x, t)zdﬂ = > 7 ||6’||2 — —Pe” HV6'||22
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Sobolev norms: Mathews et al. (2005)/Lin et al.:“mix-norm”/ H™ " norm: Mix 6 = V_ HV_|9H2

= Ve Q[v—'e(x,t)] do)

Easy to understand for FTs: mix-norm favours large scales (cf. gradient): \V_I6’|2 = k_2|6’|2; \VH\Z = k2\6’|2
Mathews et al proved usefulness for periodic domains...but are minimised mix-norms good proxies for real mixing?

Classic hypothesis (see e.g. Aamo et al 2003 etc) is that perturbation energy growth is the “best” way to mix?

| —
Aim to determine “best” IC for mixing: J {11,0} = Oé/ |h(x t)||2 dt + —HV 59(x, T) H2 ;u=U-+u

o o = 0:(average) energy gain; v = |, 3 = |:mix norm; o« = |, § = 0; variance (“real” mixing)




Direct-Adjoint Looping method

e Apply direct-adjoint looping (DAL) method (Hill, Luchini, Bottaro, Schmid etc) to mixing problem

 Derive adjoint equations to describe evolution of Lagrange multipliers which impose solution of Navier-Stokes (& theta) equations

L=7{0,0}—(u", 0+ (U+a) Va+a -VU+Vp—Re 'Va)— (p',V.0)
_/pT U+1)- _ P20\ _ (1l D
(07,00 + (U + 1) - VO — Pe”'V*0) (uo,u(x, 0) uo> (b.a) —

Set ICS for u, theta at t=0
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Integrate O-T using NS + AD+
incompressibility
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If not, update u(0), theta(0) using
gradient info in E-L equations
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calculate u(T), theta(T)+ |

J

u' (x,T) = 0; HT(X, T)l: (—I)B&V_zﬁé’(x, T)

Integrate T-0 using NSad]

\_

Calculate udag(0)...
do they satisfy E-L eqn: udag=u!?

‘/

e Variations of L wrt direct variables: J;u' -+ (ﬁ + 1)

r

Relate u(T), theta(T) to udag(T),
thetadag(T) using E-L egns

~N

00"+ (U+1) VO +Pe 'V =0, Vu' =0, u=U+1

* Adjoint equations have a similar form, and “forced” by direct variables (and nonlinear in direct variables...nontrivial optimisation)

Vul —ul - (V[T +a))" + Vp +Re™ ' V2ul = 01v0 — (1 - 0) 1
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Normalisation, rotation and optimisation...

e Fix initial energy of perturbation to be finite amplitude but small: Eg = 1072 =

I
2
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3 _
80

® Could impose as a further constraint, but introduces ambiguity..much better to enforce directly using V g,/ when not parallel to U

A

Plane perpendicular

Circle of:

update

G

X
X X~
\Q{ _.>® New X
“““ )

® Project Vg,,J onto hyperplane orthogonal to U, 0 and tangent to hypersphere (U0, Uy0) = 2Ep

e Restrict updated guess Un+| 0to rotations along intersection of hypersphere with hyperplane defined by scaled projected gradient and Uy 0
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Optimal energy G(T)

Results for T=2,5,10,20,30
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® Mix-norm and variance simi

ar/small with early gain...very different from energy, converge to same behaviour & most mixing done by T=10
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Results for T=5: Energy:Vorticity & Scalar

t = 0.000000
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Results for T=5: Mix-norm:Vorticity & Scalar
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5:Variance:Vorticity & Scalar

Results for T

t = 0.000000




Results for T=30: Energy:Vorticity & Scalar
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Results for T=30: Mix-norm:Vorticity & Scalar
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Results for T=30:Variance:Vorticity & Scalar
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Results for T=30

® Energy much larger scale

t = 0.000000

o
e . . _ Vorticity ® Strong vortices perturb interface
0 2 4 6 8 10 12 Energ)l
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Scalar

® Effect dies out with little mixing...

0 2 4 6 8 10 12
{ = 0.000000 ® ...unlike Mix-norm & variance:

0 ‘ | ‘

SNamamaaEsaaasaaaiaaaaas ° imi '
NSNS NS NSNS Vorticity very similar evolution

2 4 6 8 10 12 M|X
| Scal
calar ® much smaller scale and 3 stage:
’ 2 4 6 8 N N |. Transient perturbation Transport
t = 0.000000

1K - - — — — —
= = = ). (Mean flow) Taylor Dispersi
T A A A AL : ean flow) laylor Dispersion
1 AN SN ST S S S S Vorticity

0 2 4 6 8 10 12 Vamance

' Scalar 3. Relaxation by diffusion

® No clear separation of stirring & mixing




Scalar Gradients: I =30 Variance

L9 91,2 = /ve.v(a+ﬁ).vedn_pe—' |20
Q2

Scalar gradients evolution involves i 2 dt‘

| L
Pﬁ(y,t):—[/O Vo - Vi - VOdx

P (y, t) ———/ Vo - VU - VOdx U = (I —yz)ex

| L
Paly,t) = — - /O VO dx

P:Pﬁ—FPﬁ—l—Pd

0 5 10 15 20 , , . , e ..
¢ Due to Taylor dispersion, “mixing” occurs while the mean flow is “stirring’...




17

—

t = 0.000000

—

ol
— SN S -
T 2 4\6 \

12

—

1
|

Conclusions

® Nonlinear Direct-Adjoint-Looping method works for mixing
® Mix-norm is an excellent proxy for (real) mixing
® Energy gain not related to “best” mixing...but maybe @ higher Re?
® Not stirring THEN mixing for this flow but timing is crucial:
Transport - Dispersion - Relaxation
® DAL Optimisation technique very general:
® Also used to optimise wall-forcing (Foures et al 2014 JFM 748)
® 3D/other flows straightforward but...
® What happens when flow is:
® unstable!?

® turbulent..a minimal mixing seed?
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3D Results for T=2,5,10,20,30

) Il () _ vl V()= 1

M(t) =
G(t) = —2° : (1) ||V_'9dH22 164ll,

® [ate times ~5% better than 2D...quite different initial structure, and finite scale in 3D as time increases...




Optimal energy G(T)
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3D:Variance T=10

T=00

X-Y plane
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