Nonlocal turbulent cascades in nonlinear Schrödinger (Gross-Pitaevski) equation

N. Vladimirova1 and G. Falkovich2

1 University of New Mexico
2 Weizmann Institute of Science

Mathematical Analysis of Turbulence, IPAM, UCLA
September 30, 2014
"Non-local cascades" — oxymoron?
Perhaps. But we can still talk about non-local turbulence.

The spectra (two-point correlation functions) can be non-local and non-universal (dependent on forcing and dissipation scales).

- There must be a high-order correlation function which is universal.

Kolmogorov turbulence:
\[\left\langle \left(\delta v_\parallel (r, \ell) \right)^3 \right\rangle = -\frac{4}{5} \epsilon \ell \]

NLS turbulence:
???
Nonlinear Schrödinger (Gross-Pitaevski) equation as a model for wave turbulence

References cited in this talk are incomplete and subjective.
Formulation in terms of surface elevation $\eta(r, t)$ and velocity potential on the surface, $\Phi = \phi(r, \eta, t)$, where $v = \nabla \phi$.

Hamiltonian is expanded in powers of steepness, $\mu = \sqrt{|\nabla \eta|^2}$.

Complex canonical (normal) variables a_k are introduced instead of real $\Phi(r, t)$ and $\eta(r, t)$.

a_k is an elementary excitation (plane wave). Inverse cascade of $|a_k|^2$ is studied.

A. Korotkevich <alexkor@math.unm.edu>, private communications (2014)
Mid-range forcing and small-scale damping result in establishing of direct and inverse cascades and accumulation of wave action at small k.

A. Korotkevich <alexkor@math.unm.edu>, private communications (2014)
Nonlinear Schrödinger (Gross-Pitaevskii) equation

\[i\psi_t + \nabla^2 \psi \pm |\psi|^2 \psi = 0 \]

universal model
narrow wave packet
envelope of waves

Benney & Newell (1967) — general settings
Zakharov (1968) — deep water waves
Hasegawa & Tappert (1973) — optical fibers
Why universal?

Linear wave:

\[\frac{\partial a}{\partial t} + \nu \frac{\partial a}{\partial x} = 0 \]
\[\frac{\partial a_k}{\partial t} + i\omega a_k = 0 \]
\[\frac{\partial a_k}{\partial t} = -i \frac{\partial H_2}{\partial a_k^*} \]
\[H_2 = \int \omega_k |a_k|^2 dk \]

Nonlinearity:

\[k_1 + k_2 = k_3 + k_4 \]
\[k = k_0 + q_k, \quad q_k \ll k_0 \]
\[H_4 = \ldots \]

\[H = H_2 + H_4 = H_2 + \int T_{1234} a_1 a_2 a_3^* a_4^* \delta(k_1 + k_2 - k_3 - k_4) dk_1 dk_2 dk_3 dk_4 \]

Rewrite \[\frac{\partial a_k}{\partial t} + i\omega a_k = -i \frac{\partial H_4}{\partial a_k^*} \] for the envelope, \[a_k(t) = e^{-i\omega_0 t} \psi(q, t), \]

\[\frac{\partial \psi_q}{\partial t} - i\omega_0 \psi_q + i\omega(q) \psi_q = -i T \int \psi_1^* \psi_2 \psi_3 \delta(q + q_1 - q_2 - q_3) dq_1 dq_2 dq_3 \]
Why universal?

\[i \frac{\partial \psi_q}{\partial t} + \omega_0 \psi_q - \omega(q) \psi_q = T \int \psi_1^* \psi_2 \psi_3 \delta(q + q_1 - q_2 - q_3) dq_1 dq_2 dq_3 \]

Assume \(\omega = \omega(k) \) and expand for small \(q \)

\[\omega(q) = \omega_0 + q_i \left(\frac{\partial \omega}{\partial k_i} \right)_0 + \frac{1}{2} q_i q_j \left(\frac{\partial^2 \omega}{\partial k_i \partial k_j} \right)_0 = \omega_0 + vq_\parallel + \frac{1}{2} \left(\omega'' q_\parallel^2 + \frac{v}{k_0} q_\perp^2 \right) \]

Back to \(r \)-space \((k_0 || \hat{z})\):

\[i \left(\frac{\partial \psi}{\partial t} + v \frac{\partial \psi}{\partial z} \right) + \frac{\omega''}{2} \frac{\partial^2 \psi}{\partial z^2} + \frac{v}{2k_0} \nabla_\perp^2 \psi = T |\psi|^2 \psi \]

- \(\frac{\partial \psi}{\partial t} \) in moving frame
- dispersion
- diffraction
- nonlinearity

Rescale \(\psi \) and spatial coordinates:

\[i \psi_t + \nabla^2 \psi \pm |\psi|^2 \psi = 0 \]
Connection to nonlinear optics

\[
\frac{1}{c^2} \left(\epsilon E \right)_{tt} - \nabla^2 E = 0
\]

Stationary envelope: \(E = \frac{1}{2} \psi(x, y, z)e^{ikz-i\omega t} \), with \(\omega = \frac{kc}{\sqrt{\epsilon_0}} \).

Kerr nonlinearity: \(\epsilon = \epsilon_0 + \epsilon_2 |E|^2 = \epsilon_0 + \epsilon_2 |\psi|^2 \).

\[
\frac{1}{c^2} (i\omega)^2 (\epsilon_0 + \epsilon_2 |\psi|^2) \psi - \left[\nabla^2 \psi + 2ik\psi_z - k^2 \psi \right] = 0
\]

Neglecting \(\frac{\partial^2 \psi}{\partial z^2} \) and using \(kx \rightarrow x, \frac{1}{2} kz \rightarrow z \), and \(\psi|_{\frac{\epsilon_2}{k\epsilon_0}^{\frac{1}{2}}} \rightarrow \psi \),

\[
i\psi_z + \nabla_{\perp}^2 \psi - T|\psi|^2 \psi = 0, \quad \text{with} \quad T = \pm 1
\]
Connection to hydrodynamics

\[i\psi_t + \nabla^2 \psi - T|\psi|^2\psi = 0 \]

Change of variables: \(\psi = Ae^{i\phi} , \quad \rho = A^2 , \quad \mathbf{v} = 2\nabla \phi . \)

\[\mathbf{v}_t + \nabla \left(\frac{|\mathbf{v}|^2}{2} \right) = -\frac{1}{\rho} \nabla \rho \]

\[\rho_t + \nabla (\rho \mathbf{v}) = 0 \]

“Equation of state”: \[\frac{1}{\rho} \nabla \rho = \nabla \left[2T\rho - \frac{1}{\sqrt{\rho}} \nabla^2 \sqrt{\rho} \right] \]
Collapses in focusing NSE

\[i\psi_t + \nabla^2 \psi + |\psi|^2 \psi = 0 \]

Integrals of motion

\[N = \int |\psi|^2 \, d^D r \]
\[\mathcal{H} = \int \left(|\nabla \psi|^2 - \frac{1}{2} |\psi|^4 \right) \, d^D r \]

Within the packet

\[|\psi|^2 \sim \frac{N}{L^D} \]
\[\mathcal{H} \sim NL^{-2} - N^2 L^{-D} \]

\(Zakharov & Kuznetsov (1986) \)
Cascades of turbulence

\[\mathcal{H} = \int \omega_k |a_k|^2 \, dk \]

\[N = \int |a_k|^2 \, dk \]

\[N_1 + N_3 = N_2 \]

\[\omega_1 N_1 + \omega_3 N_3 = \omega_2 N_2 \]

\[N_1 = N_2 \frac{\omega_3 - \omega_2}{\omega_3 - \omega_1} \approx N_2 \]

\[N_3 = N_2 \frac{\omega_2 - \omega_1}{\omega_3 - \omega_1} \ll N_2 \]

\[\omega_1 N_1 \ll \omega_2 N_2 \]

\[\omega_3 N_3 \approx \omega_2 N_2 \]

Dyachenko, Newell, Pushkarev, & Zakharov (1992)
Modulational instability

\[i\psi_t = -\frac{1}{2}\omega'' \nabla^2 \psi + T|\psi|^2\psi \]

Exact solution (condensate):

\[\psi = \sqrt{N_0} e^{-iT_0 t} \]

For small perturbation \(\psi := \Psi + \psi \),

\[i\psi_t = -\frac{1}{2}\omega'' \nabla^2 \psi + 2TN_0 \psi + T\psi^2 \psi^* + O(|\psi|^2). \]

In \(k \)-space, using \((\psi^*)_k = \psi^*_{-k} \),

\[
\begin{align*}
i \frac{d}{dt} \psi_k &= \left(\frac{1}{2} \omega'' k^2 + 2TN_0 \right) \psi_k + T\psi^2 \psi^*_{-k}, \\
-i \frac{d}{dt} \psi^*_{-k} &= \left(\frac{1}{2} \omega'' k^2 + 2TN_0 \right) \psi^*_{-k} + T\psi^2 \psi_k.
\end{align*}
\]
Modulational instability

Looking for the solution in the form

$$\psi_k = \alpha e^{-i(TN_0 + \Omega_k)t} \quad \text{and} \quad \psi^*_k = \beta e^{i(TN_0 - \Omega_k)t},$$

rewrite the system as

$$\begin{pmatrix}
\frac{1}{2} \omega''' k^2 + TN_0 - \Omega_k \\
T \psi^*^2
\end{pmatrix}
\begin{pmatrix}
T \psi^2 \\
\frac{1}{2} \omega'' k^2 + TN_0 + \Omega_k
\end{pmatrix}
\begin{pmatrix}
\alpha e^{-iTN_0 t} \\
\beta e^{iTN_0 t}
\end{pmatrix} = 0$$

Bogoliubov dispersion relation:

$$\Omega^2_k = \omega'' TN_0 k^2 + \frac{1}{4} \omega''^2 k^4$$

Instability: $\omega'' T < 0$ (focusing nonlinearity).

Bogoliubov (1947)
Why turbulence?

- Wide energy spectra; cascades
- Statistical description
- High probability of extreme events (intermittency)
- Coherent structures — condensate or collapses
- Steady (with damping/forcing) or decaying
Direct and inverse cascades in 2D NLS equation with defocusing nonlinearity before onset of the condensate
“Non-local cascades” — oxymoron?
Perhaps. But we can still talk about non-local turbulence.

- The spectra (two-point correlation functions) can be non-local and non-universal (dependent on forcing and dissipation scales).
- There must be a high-order correlation function which is universal.

Kolmogorov turbulence:
\[
\langle (\delta \nu_{\parallel}(r, \ell))^3 \rangle = -\frac{4}{5} \epsilon \ell
\]

NLS turbulence:

???
Defocusing nonlinearity, forcing in k-space:

$$i\psi_t + \nabla^2 \psi - |\psi|^2 \psi = i\hat{f}_k \psi + i\hat{g}_k.$$

Pumping: $g_k = |g_k|e^{i\phi_k}$, $|g_k| \propto \sqrt{(k^2 - k_i^2)(k_f^2 - k^2)}$, random ϕ_k, $k_i < k < k_f$. Deposition rate $\alpha = \dot{N} \equiv |\psi|^2$.

Small-scale damping: $f_k = -\beta(k/k_d)^4(k/k_d - 1)^2$, $k > k_d$.

Large-scale friction: $f_k = -(1, 1, \frac{1}{\sqrt{2}}) \gamma$ for $k = (0, 1, \sqrt{2})k_{\text{min}}$.

\begin{align*}
\text{Numerical setup} & \\

k_{\text{min}} &= 2\pi/L \quad \text{friction} \\
 k_f &= 1.5k_{\text{min}} \quad \text{pumping} \\
 k_i &< k < k_r \quad \text{damping} \quad k_{\text{d}} = 256 \quad k_{\text{max}} = 512
\end{align*}
Inverse Cascade

Evolution of spectra in simulations without friction
Spectra stabilized by friction
Comparison to nonlinear theory
Inverse cascade: time evolution of non-stabilized spectra

Early stage: Equipartitioned distribution of wave action.
Intermediate stage: Thermal quasi-equilibrium with chemical potential.
Late stage: Nonlinearity effects, moving pile-up at low k.
Thermal equilibrium with chemical potential $\mu = k^2_{\mu}$

Assumption of $T(t) \to \text{const}$ leads to $k_{\mu} = Ae^{-\alpha t}$.

From balance of wave action, $T(k_{\mu}) \propto (t - a)/(t - b)$.

Deviation is due to non-linear effects, not due to limited domain size.
Non-linear effects in large boxes

\[n_k = \frac{T(1 + c_1 c_2 k^2 \ln k)}{k_{\mu}^2 + k^2 + c_2 k^4}, \]

Three intervals: equipartitioned, DNPZ-1992, \(n_k \propto k^{-2} \ln k \).
Hump location moves as \(t^{-1} \), amplitude grows as \(t^{3/2} \) (bottleneck?)
Pumping at lower rate \(\alpha \) reduces piling-up and extends the spectrum.
Stabilized spectra: effect of forcing and friction

- Deviation from $n_k \sim k^{-2}$ is small.
- Weak turbulence, four-wave interactions are dominant, resulting in $n_k \sim \alpha^{1/3}$ scaling.
- Too high or too low γ leads to the distortion of spectrum at small k.
Stabilized spectra with high nonlinearities

- At large k, deviation from $n_k \sim k^{-2}$ is small; unlike at weak nonlinearity, compensated spectra have negative slopes.

- Strong turbulence, three-wave interactions are dominant, resulting in $n_k \sim \alpha^{1/2}$ scaling.

- Nonlinearity makes equipartitioned part of the spectrum wider.
Stabilized spectra: effect of domain size

Can we extend the universal part of the spectrum by reducing k_{min}?

- For given α, domain size does not affect k^{-2} part of the spectrum.
- Pushing $k_{\text{min}} \to 0$ widens equipartitioned part, with $k_\mu = \text{const}$.
- Adjustment of friction does not extend universal part.
- Longer spectrum is expected for lower pumping rate α.
Stabilized Spectra of Direct Cascade
Comparison to Weakly-Nonlinear Theory
Three-wave interactions are dominant, $n_k \sim \alpha^{1/2}$.

Spectra at larger scales are distorted due to nonlinearity and sensitive to friction, γ.

Spectra at small scales are universal and well-described by Malkin’s theory (1996).
Comparison to weakly-nonlinear theory (Malkin, 1996)

Implicit description in terms of the fraction of wave action contained within a sphere of radius k, N_k/N, and energy flux P,

$$\frac{n_k k^2}{k_{\min}^2} = \frac{C}{2\pi} \left[\ln \frac{N}{N_k} \right]^\frac{1}{3}, \quad \frac{C}{N} \ln \frac{k_d}{k} = p\left(\frac{N_k}{N}\right).$$

Here, $p(m) = \int_m^1 \left[\ln y^{-1} \right]^{-\frac{1}{3}} dy$ and $C \propto P^{\frac{1}{3}}$. We show that $C \propto \alpha^{\frac{1}{2}}$.
Comparison to weakly-nonlinear theory (Malkin, 1996)

The parametric representation does not provide explicit expression for $n_k(k)$. Using approximation $p_{\text{approx}}(m) = \frac{3}{2}(1 - m)^{\frac{2}{3}}$, we obtain

$$\frac{n_k k^2}{k_{\text{min}}^2} = \frac{C}{2\pi} \ln^{\frac{1}{3}} \left[1 - \left(\frac{2C}{3N} \ln \frac{k_d}{k} \right)^{\frac{3}{2}} \right].$$

Low pumping rates (smaller nonlinearity) might extent the range of applicability.
Fluxes of Wave Action and Energy
Flux of wave action

\[N = \langle |\psi|^2 \rangle \] grows in time and long modes appear, but

\[\langle |\psi_1 - \psi_2|^2 \rangle = \text{const} \]

\[\langle |\psi_1 - \psi_2|^2 \rangle = \int |\psi_k|^2 (1 - \cos kr) dk \]

\[\langle |\psi_1 - \psi_2|^2 \rangle \sim \int_{1/r}^{\infty} |\psi_k|^2 dk = \text{const} \]

Take time derivative of \[\langle |\psi_1 - \psi_2|^2 \rangle = 2N - \langle \psi_1 \psi_2^* + \psi_1^* \psi_2 \rangle \] to obtain,

\[Q(r) \equiv 2 \text{Im} \langle \psi_1^* |\psi_2|^2 \psi_2 \rangle = -\dot{N} \]

\[Q(r) \] does not depend on distance between two points, \(r \).

Analog of Kolmogorov’s 4/5-law!
Flux of wave action in inverse cascade, $r \gg r_p$

![Graph](image)

$$Q(r) \equiv 2 \text{Im} \langle \psi_1^* | \psi_2 |^2 \psi_2 \rangle = -\dot{N}$$

Simulations confirm:

- $-Q(r) \propto \dot{N} = \tilde{\alpha} \approx 0.9\alpha$ for all scales.
- $Q(r) = \dot{N}$ for $r_p \lesssim r \lesssim L/16$.

$Q(r)$ is constant across the scales in inverse cascade.
Flux of energy in direct cascade, $r \ll r_p$

Simulations show:

$-Q(r) \propto \dot{N} = \tilde{\alpha} \approx 0.9\alpha$ for all scales.

$-Q''(r) = \text{const}$, therefore $P \sim Q r^{-2} = \text{const}$ for $r \ll r_p$.

$P(r)$ is constant across the scales in direct cascade.
NLS turbulence after onset of the condensate
Defocusing nonlinear Schrödinger equation

\[i\psi_t + \nabla^2 \psi - |\psi|^2 \psi = i\hat{f}\psi \]

Condensate

\[\psi = \sqrt{N_0} \exp(-iN_0 t) \]

Notation:

\[N = |\psi|^2 \]
\[N_0 = |\bar{\psi}|^2 \]
\[n = N - N_0 = \int |\psi_k|^2 d^2 k \]

We consider large condensate

\[N_0 \gg n \]

Statistically quasi-steady

\[t \sim 10^4 \gg \frac{1}{\omega} \sim 10^{-3} \]
Onset of condensate

The graph shows the onset of condensate over time, with three curves labeled N, N_0, and n. The curve N represents the total condensate, N_0 represents the condensate, and n represents the over-condensate. The horizontal axis represents time (t), and the vertical axis represents the number of condensate (N, N_0, and n).
Onset of condensate

$t = 100 : \quad N_0 = 58, \quad n = 160$

$t = 1500 : \quad N_0 = 751, \quad n = 20$
Effect of forcing

\[i\psi_t + \nabla^2 \psi - |\psi|^2 \psi = i\hat{f}\psi \]

Instability-driven force

\[i\psi_t + \nabla^2 \psi - |\psi|^2 \psi = i\hat{F} \]

Random force
Phase transitions: breakdown of symmetries

$N = 219$

$N = 771$

$N = 1166$

$N = 4202$

amplitude deviation

$10^{-3} - 10^{-2} - 1 0 1 2 3$

spectrum n_k

$10^{-16} - 10^{-10} - 10^{-4} - 10^{2}$

10^{2}

10^{6}

10^{10}

10^{16}

10^{-2}

10^{-6}

10^{-10}

10^{-16}

10^{2}

10^{6}

10^{10}

10^{16}
Phase transitions: breakdown of symmetries

Higher condensate ⇒ more ordered system
Long-range orientational, short-range positional order
What happens at even larger N?

Vladimirova, Derevyanko, & Falkovich (2012)
Small perturbations

Compare quadratic and cubic terms in Hamiltonian

\[\langle \mathcal{H}_2 \rangle = \Omega_k n = N_0^{1/2} kn \]
\[\langle \mathcal{H}_3 \rangle = \sum_{k_1, k_2, k_3} V_{123} \langle \psi_{k_1} \psi_{k_2} \psi_{k_3}^* \rangle \delta(k_1 + k_2 - k_3) \]
\[\approx \sum_{k_1, k_2, k_3} |V_{123}|^2 n_1 n_2 \delta(k_1 + k_2 - k_3) \delta(\Omega_1 + \Omega_2 - \Omega_3) \]
\[\approx \frac{|V|^2 n^2 c^2}{k^3} \frac{k}{c} \approx \frac{n^2 k}{N_0^{1/2}} \]

Effective nonlinearity parameter is small,

\[\frac{\mathcal{H}_3}{\mathcal{H}_2} \approx \frac{n}{N_0}. \]

But: weak turbulence assumes random phases.

Angle of interaction: \(k/c \sim k/\sqrt{N_0}, \) where \(c = \sqrt{2N_0}. \)
Angle of interaction

Arch grows in k-space from the condensate to a preset mode, k_0. Arch equation:

\[
\omega(k_0) = \omega(k) + \omega(|k_0 - k|)
\]

\[
\omega^2(k) = 2N_0 k^2 + k^4
\]

Angle of interaction:

\[
\phi_{\text{max}} \approx \frac{k}{\sqrt{3N_0/2}} \sim \frac{k}{c}
\]
Condensate-turbulence oscillations

- The system periodically oscillates around a steady state.
- Turbulence and condensate exchange a small fraction of waves.
- Predator-prey model?
Phase coherence

\[n_k \quad \theta_k = 2\phi_0 - \phi_k - \phi_{-k} \]

\[2\phi_0 - \phi_k - \phi_{-k} = \pi \]
Three-wave model

Consider condensate interacting with two waves

\[\psi_{\pm k} = \sqrt{n} \exp(\pm ikx + iN_0 t + i\phi_{\pm k}) \]

with \(\theta = 2\phi_0 - \phi_k - \phi_{-k} \).

Hamiltonian:

\[H = 2k^2 n + \frac{1}{2} N^2 + 2n(N - 2n)(1 + \cos \theta) + n^2 \]

Equations of motion:

\[\dot{n} = 2n(N - 2n) \sin \theta \]
\[\dot{\theta} = 2k^2 + 2(N - 3n) + 2(N - 4n) \cos \theta \]

Stability points:

\[\theta = \pi, \quad n = -\frac{1}{2} k^2 \quad \Rightarrow \quad \text{unphysical} \]
\[\theta = 0, \quad n = \frac{(4N + k^2)}{14} \quad \Rightarrow \quad \text{too high} \ n \]

Falkovich (2011), Miller, Vladimirova & Falkovich (2013)
Predictions of three-wave model

\[\dot{n} = 2n(N - 2n) \sin \theta \]
\[\dot{\theta} = 2k^2 + 2(N - 3n) + 2(N - 4n) \cos \theta \]

For \(n \ll N \):

- the system spends most of its time around \(\theta = \pi \) state
- the frequency of oscillations \(2\Omega \approx 2\sqrt{2Nk^2 + k^4} \)
- the amplitude \(a \equiv \sqrt{n(t)} \) exhibits complicated cusped shape
Individual modes in turbulence

In turbulence, $n \ll N$ condition is well satisfied.

As predicted:

- the system spends most of its time around $\theta = \pi$ state
- the frequency of oscillations approaches $2\Omega = 2\sqrt{2Nk^2 + k^4}$
- the amplitude $a = \sqrt{n(t)}$ exhibits complicated cusped shape

However:

The 3-wave model cannot grasp closed trajectories with $\theta \approx \pi$.
Collective oscillations

- The system periodically oscillates around a steady state.
- Turbulence and condensate exchange a small fraction of waves.
- The condensate imposes the phase coherence between the pairs of counter-propagating waves (anomalous correlation).
- Collective oscillations are not of a predator-prey type; they are due to phase coherence and anomalous correlations.
Conclusions - I

- When the driving term corresponds to an instability (but not a random force) high levels of condensate lead to a phase transitions — spontaneous breakdown of symmetries of small-scale over-condensate fluctuations: from the 2-fold to 3-fold to 4-fold.

- Collective oscillations are not of a predator-prey type; they are due to phase coherence, imposed by condensate, and anomalous correlations.

Wave spectra (second-order moments) are close to slightly (logarithmically) distorted thermal equilibrium in both cascades.

Correction by Dyachenko, Newell, Pushkarev, Zakharov (1992) for inverse cascade spectra works for intermediate k.

Correction by Malkin (1996) for direct cascade spectra works.

Analog of Kolmogorov’s 4/5 law:

$$Q(r) \equiv 2 \text{Im} \langle \psi_1^* | \psi_2 | ^2 \psi_2 \rangle = - \dot{N} \quad \text{for} \quad r > r_p;$$

the flux of wave action is independent of scale in inverse cascade, while the flux of energy is independent of scale in direct cascade.