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Aim

Extend the theory of statistical solutions for the NSE to other eqs
I Bénard problem (velocity field coupled with temperature)
I MHD (velocity field coupled with magnetic field)
I Quasi-geostrophic equations and other geophysical models
I Other critical equations (wave eqs., dispersive eqs., reaction-di↵usion

eqs., etc.)

Develop a su�ciently general abstract framework for some main
results:

I Initial-value problem: global existence
I Initial-value problem: local uniqueness
I Long-time behavior: Stationary statistical solutions
I Long-time behavior: Ergodic properties
I Etc.
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Statistical solutions

Introduced for the study of turbulence in the Navier-Stokes equations

Describe the evolution of probability distributions of initial conditions

Related to the transport of measures by a semigroup... but without
one

Ricardo Rosa (IM-UFRJ) Abstract framework for statistical solutions October 3, 2014 3 / 1



Evolution of solutions and probability distributions

Example: x 0 = �x(x � 1)(x + 1).

Individual solutions:

t

X

Associated with the transport of the measure by the system
System is deterministic, not stochastic
System might not be globally well-posed
In the conventional theory of turbulence:

Z

X
�(u) dµt(u) =

1

N

N
X

j=1

�(u(j)(t)).
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Evolution of solutions and probability distributions

Example: x 0 = �x(x � 1)(x + 1).

Individual solutions with an initial probability measure:

t

X

R

Associated with the transport of the measure by the system
System is deterministic, not stochastic
System might not be globally well-posed
In the conventional theory of turbulence:
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X
�(u) dµt(u) =

1

N

N
X

j=1

�(u(j)(t)).
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Evolution of solutions and probability distributions

Example: x 0 = �x(x � 1)(x + 1).

Individual solutions and the evolution of the initial measure:

t
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R
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Evolution of probability distributions in well-posed systems

Di↵. eq. with phase space X , and trajectory space X :

du

dt
= F(u), u(t) 2 X , u 2 X .

If well-posed, µt = S(t)µ0 (i.e. µt(E ) = µ0(S(t)�1E )).

t

X

R
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Evolution of probability distributions in well-posed systems

Di↵. eq. with phase space X , and trajectory space X :
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Motivation for statistical solutions

Evolution of a probability distribution of initial conditions for
equations without global well-posedness

To make rigorous the notion of ensemble average in the conventional
theory of turbulence.

“The theory of statistical solutions is to ensemble averages as the theory
of weak solutions is to individual solutions.”
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Results

Pioneering formulations for NSE:

Foias and Prodi (early 1970’s)

Vishik and Fursikov (mid 1970’s)

Recent reformulation for NSE:

Foias, Manley, Rosa, and Temam (2001)

Foias, Rosa, and Temam (2011, 2013)

Abstract formulation and applications:

Bronzi, Mondaini and Rosa (2014)

Bronzi, Mondaini and Rosa (in preparation)
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Statistical solutions in phase space and trajectory space

Statistical solution in phase space (Foias-Prodi 1972): Family {µt}t
of Borel probability measures on X with

d

dt

Z

X
�(u) dµt(u) =

Z

X
hF(u),�0(u)i dµt , 8�.

X

t

{µt}t

Statistical solution in trajectory space (Vishik-Fursikov 1977): Borel
Probability measure ⇢ on X with

⇢(U) = 1, where U = { the set of all weak solutions }.
X

t

⇢
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Incompressible 3D Navier-Stokes equations

8

<

:

@u

@t
+ (u ·r)u+rp = ⌫�u+ f,

r · u = 0.

u = (u1, u2, u3) = velocity field,

x = (x1, x2, x3) = space variables,

t = time variable,

p = kinematic pressure,

f = (f1, f2, f3) = density of volume forces,

⌫ = kinematic viscosity.
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Functional setting

Basic function spaces

H = {L2 vector fields, r · u = 0, boundary cond};
V = {H1 vector fields, r · u = 0, boundary cond};
V 0 = dual of V (with V ⇢ H = H 0 ⇢ V 0);

D(As) = domain of powers of the Stokes operator, s 2 R;
H
w

= H endowed with weak topology.

Consider no-slip boundary conditions on a smooth, bounded domain or
space-periodic conditions with zero average.

f 2 L1(0,1;H), or even f 2 L2
loc

(0,1;V 0)
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Foias (1972)

Definition (of time-dependent Foias-Prodi statistical solution)

It is a family {µt}t�0 of Borel prob. measures on H satisfying

t 7!
R

H '(u) dµt(u) measurable on t � 0, 8' 2 Cbdd(H)

t 7!
R

H kuk2L2 dµt(u) in L1(0,1)

t 7!
R

H kr⌦ uk2L2 dµt(u) in L1
loc

(0,1)
R

H '(kuk
2
L2) dµt(u) is continuous at t = 0

Mean energy inequality for all smooth  � 0, 0   0(r)  c

1

2

d

dt

Z

H
 (kuk2L2) dµt(u) + ⌫

Z

H
 0(kuk2L2)kr⌦ uk2L2 dµt(u)


Z

H
 0(kuk2L2)(f,u)L2 dµt(u),

Satisfies Statistical NSE for “cylindrical” test functions:
d

dt

Z

H
�(u) dµt(u) =

Z

H

�

F(u),�0(u)
�

L2
dµt(u)
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Cylindrical test functions

Definition (of cylindrical test functions)

A cylindrical test function is a continuous function � : H ! R of the form

�(u) =  ((u, v1)H , . . . , (u, vn)H),

where  2 C1
c

(Rn), n 2 N, v1, . . . , vn 2 V . Such a function is Fréchet
diferentiable �0(u) 2 V , for all u 2 H, given by

�0(u) =
n

X

k=1

@k ((u, v1)H , . . . , (u, vn)H)vk .

Each � 2 C
b

(H
w

);

Stone-Weierstrass theorem implies {�|BH(R)} is dense in C(BH(R)w).
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Vishik and Fursikov (1979)

Work in a “trajectory space”

X = L2
loc

([0,1),H) \ C
loc

([0,1),D(A�s/2)), s � 2.

Definition (of trajectory statistical solution of Vishik-Fursikov)

Borel probability measure ⇢ on X such that

9W ⇢ {weak solutions not necessarily of Leray-Hopf type};
⇢(W ) = 1,

W is closed in the space

L̃ =
�

u 2 L1(0,1;H) \ L2
loc

(0,1;V );

u

0 2 L
4/3
loc

((0,1),D(A�s/2))
o

;

Z

X

⇣

|u(t)|2L2 + kuk2L̃
⌘

d⇢(u)  C

✓

Z

X
|u(0)|2L2 d⇢(u) + 1

◆

,

Ricardo Rosa (IM-UFRJ) Abstract framework for statistical solutions October 3, 2014 13 / 1



Functional approach

Spaces:

FP use (in the proof) X = H and X = L1(0,T ;H).

VF use X = L2
loc

([0,1),H) \ C
loc

([0,1),D(A�s/2)), s � 2.

FRT use X = H
w

and X = C
loc

([0,1),H
w

).

Existence of statistical solutions in trajectory space X
FP and VF use convergence of Galerkin approximations

FRT use convergence of convex combination of Dirac measures

Projections:

FP use a complicate representation of the dual of L1(0,T ;H) to
project the operator at each time.

VF do not project

FRT project using the continuity of the operator

⇧t : X = C
loc

([0,1),X ) ! X , ⇧tu = u(t), 8t � 0
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FRT (2010)

Work in the “trajectory space” X = C
loc

([0,1),H
w

) and consider

U = {u 2 C
loc

([0,1),H
w

); u = weak solutions on [0,1)}

U ] = {u 2 C
loc

([0,1),H
w

); u = weak solution on (0,1)}

Have characterization U = {u 2 U ];u = strongly continuous at t = 0}.

Definition (of Vishik-Fursikov measure)

A measure ⇢ on C
loc

([0,1),H
w

) satisfying

(i) ⇢ is carried by the closure U ] of U in C
loc

([0,1),H
w

);

(ii) t 7!
Z

U]
|u(t)|2L2 d⇢(u) 2 L1

loc

(0,1);

(iii) t 7!
Z

U]
 
�

|u(t)|2L2
�

d⇢(u) is continuous at t = 0 for every smooth

 � 0,  0 � 0,  0 bounded.
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FRT (2010) - Equivalent definition

Work in the “trajectory space” X = C
loc

([0,1),H
w

) and consider

U = {u 2 C
loc

([0,1),H
w

); u = weak solutions on [0,1)}

Definition (of Vishik-Fursikov measure)

A measure ⇢ on C
loc

([0,1),H
w

) satisfying

(i) ⇢(U) = 1;

(ii) t 7!
Z

U
|u(t)|2L2 d⇢(u) 2 L1

loc

(0,1);
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Statistical solutions of Vishik-Fursikov type - FRT 2010

Projecting to phase space we obtain a family of measures which is a
statistical solution in the Foias-Prodi sense.

Definition (of time-dependent Vishik-Fursikov statistical solution)

A family {µt}t�0 obtained as the projection

µt = ⇧t⇢

of a Vishik-Fursikov measure ⇢, where

⇧t : C
loc

([0,1),H
w

)) 7! H
w

, ⇧tu = u(t),

µt = ⇧t⇢:
Z

H
'(v) dµt(v) =

Z

U]
'(u(t)) dµ(u), 8' 2 C

b

(H
w

).
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Abstract framework

We consider, in general:

Phase space: X = Hausdor↵ topological space;

Time interval: I = [t0,T ) or [t0,1);

The space of continuous paths with the compact-open topology:

X = C
loc

(I ,X );

Initial probability distribution:

µ0 = tight Borel probability measure on X ;

Set of “solutions/trajectories” U ⇢ X .
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Abstract trajectory statistical solution

Definition

A U -trajectory statistical solution is a Borel probability measure ⇢ on X
such that

⇢ is tight in X ; and

⇢(X \ V) = 0, for some V ⇢ U Borel.

Problem

Given µ0 tight Borel probability measure on X , find ⇢ such that

⇢ is a U -trajectory statistical solution

⇧0⇢ = µ0.
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Existence of solutions of the initial value problem

Theorem (Bronzi-Mondaini-Rosa (2015?))

Suppose U satisfies

1 ⇧t0U = X ;
2 There exists a family of sets K0(X ) ⇢ BX such that

1 Every K 2 K0(X ) is compact in X ;
2 Every tight Borel probability measure µ0 on X is inner regular with

respect to the family K0(X );
3 For every K 2 K0(X ), ⇧�1

t0 K \ U is compact in X .

Then, for any µ0 tight Borel probability measure on X , there exists
U -trajectory statistical solution with

⇧0⇢ = µ0.
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Sketch of proof - part 1

Choose (increasing) compact sets Kn 2 K0(X ) such that

µ0(X \ Kn) ! 0;

Restrict µ0 to Kn \ Kn�1, with K0 = ;;
Construct ⇢n carried by the compact set U \ ⇧�1

0 Kn with

⇧0⇢n = µ0|Kn\Kn�1
.

Sum up to find measure
⇢ =

X

n

⇢n

with
⇧0⇢ = µ0 and ⇢(V) = 0,

where
V =

[

n

(U \ ⇧�1
0 Kn) = Borel subset ⇢ U .
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Sketch of proof - part 2

When µ0 is carried by some K ⇢ K0(X )

Via Krein-Milman, approximate initial measure
PJ

j=1 ✓
n
j �un0j

wsc
* µ0

Construct time-dependent measures

⇢n =
J

X

j=1

✓nj �unj (·)

with u

n
j weak solution with u

n
j (t0) = u

n
0j .

Use compactness of U \ ⇧�1K to pass to the limit ⇢n
wsc
* ⇢

t

H

support
of µ0
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Framework for phase-space statistical solution

X = Hausdor↵ topological space

A Banach space Y ⇢ X ⇢ Y 0
w⇤ ;

The space

Z = {u 2 C
loc

(I ,X ) \W 1,1
loc

(I ,Y 0); u(t) 2 Y for almost all t 2 I}.

Assume U ⇢ Z ⇢ X .

F : I ⇥ Y ! Y 0 such that

ut = F (t, u), a.e. in I , 8u 2 U .
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Abstract phase-space statistical solution

Definition

Family of Borel measures {⇢t}t on X is a (phase-space) statistical

solution of ut = F (t, u) if

t 7!
R

X '(u)d⇢t(u) is continuous, 8' 2 Cb(X );

⇢t(Y ) = 1 for a.e. t 2 I ;

u 7! F (t, u) is ⇢t-integrable and t 7!
R

X kF (t, u)kY 0d⇢t(u) is L1
loc

(I );

For any cylindrical test function � and all t 0, t 2 I :

Z

X
�(u)d⇢t(u) =

Z

X
�(u)d⇢t0(u)+

Z t

t0

Z

X
hF (s, u),�0(u)iY 0,Y d⇢s(u)ds

Definition

A projected statistical solution is a phase-space statistical solution {⇢t}t
such that ⇢t = ⇧t⇢, for a trajectory statistical solution ⇢.
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Projection of trajectory statistical solutions

Theorem (Bronzi-Mondaini-Rosa (2015?))

Suppose

1 B(Y ) ⇢ B(X );

2 ⇢ is a U -trajectory statistical solution; ⇢(V) = 1, V ⇢ U Borel in X ;

3 F : I ⇥ Y ! Y 0 is an (L(I )⌦B(Y ),B(Y 0))-measurable function
such that

t 7!
Z

V
kF (t, u(t))kY 0d⇢(u) 2 L1loc(I ),

Then, {⇢t}t is a projected statistical solution, where ⇢t = ⇧t⇢.

Remark: I second countable ) B(I ⇥ V) = B(I )⌦B(V) ) Nemytskii
operator (t, u) 7! F̃ (t, u) = F (t, u(t)) is (L(I )⌦ V ,B(Y 0))-measurable
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Existence of a projected trajectory statistical solutions

Theorem (Bronzi-Mondaini-Rosa (2015?))

Suppose

1 B(Y ) ⇢ B(X );

2 F : I ⇥ Y ! Y 0 is an (L(I )⌦B(Y ),B(Y 0))-measurable function
such that

Z t

t0

kF (s, u(s))kY 0ds  �(t, u(t0)), 8t 2 I , 8u 2 U ,

for some (L(I )⇥B(X ))-measurable function � : I ⇥ X ! R;
3 µ0 is a tight Borel probability measure with

Z

X
�(t, u0) dµ0(u0) < 1.

Then, 9 projected statistical solution {⇢t}t of ut = F (t, u) with ⇢t0 = µ0.
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Energy inequalities

Theorem (Bronzi-Mondaini-Rosa (2015?))

Suppose ↵ : I ⇥ X ! R and � : I ⇥ Y ! R satisfy

1 (t, u) 7! ↵(t, u(t)) 2 L1(J ⇥ V ,�⇥ ⇢), 8J ⇢ I compact;

2 (t, u) 7! �(t, u(t)) 2 L1(J ⇥ V ,�⇥ ⇢), 8J ⇢ I compact;

3 For ⇢-almost every u 2 V and for all ' 2 C1
c (I ,R), ' � 0,

d

dt
↵(t, u(t)) + �(t, u(t))  0,

in the sense of distributions on I .

Then,
d

dt

Z

V
↵(t, u(t)) d⇢(u) +

Z

V
�(t, u(t)) d⇢(u)  0,

in the sense of distributions on I .
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Incompressible 3D Navier-Stokes equations

8

<

:

@u

@t
+ (u ·r)u+rp = ⌫�u+ f,

r · u = 0.

No-slip boundary conditions on a smooth, bounded domain or
space-periodic conditions with zero average.

H = {L2 vector fields, r · u = 0, boundary cond};
V = {H1 vector fields, r · u = 0, boundary cond};
V 0 = dual of V (with V ⇢ H = H 0 ⇢ V 0);

D(As) = domain of powers of the Stokes operator, s 2 R;
H
w

= H endowed with weak topology.

f 2 L2
loc

(0,1;V 0)
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Framework for NSE

I = [0,1), X = H
w

, Y = V , Y 0 = V 0

U = { weak solutions of the NSE on [0,1)}
F (t, u) = f(t)� ⌫Au� B(u,u) : Y ! Y 0

K0(X ) = {K ; K strongly compact in H, n 2 N}

Conditions for existence of trajectory statistical solution
9 global weak solutions for initial conditions in H ) ⇧0U = X .
Galerkin projection ) any tight µ0 in H is regular w.r.t. K0(X )
A priori estimates ) U \ ⇧�1

0 K is compact in U , 8K 2 K(X )
Conditions for existence of phase-space statistical solution

F : I ⇥ Y ! Y 0 is continuous, hence measurable
B(V ) = B(H) \ V ⇢ B(H)

8u 2 U , u 2 C
loc

(I ,X ) \ L2
loc

(I ;Y ), ut 2 L
4/3
loc

(I ;Y 0), thus

U ⇢ Z = {u 2 C
loc

(I ,X )\W 1,1
loc

(I ,Y 0); u(t) 2 Y for almost all t 2 I}
R t
t0
kutkV 0 dt  c

⌫3/4
ku0k2L2 + C (⌫,�1, f)

R

H ku0k2L2(⌦) dµ0(u0) < 1
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Reaction-Di↵usion equation

8

<

:

@u

@t
= �u � f (u, t) + g(t),

u|@⌦ = 0,

Domain ⌦ ⇢ Rn bounded, with smooth boundary @⌦
g 2 L2

loc

(I ;V 0), f 2 C(R⇥ R,R)
⌘|v |p � C1  f (v , s)v , some p � 2

|f (v , s)|
p

p�1  C2(|v |p + 1), some ⌘ > 0

Global weak solutions for u0 2 L2(⌦) (Chepyzhov & Vishik (2000)):
u 2 Lp

loc

(I , Lp(⌦)) \ L2
loc

(I ,H1
0 (⌦)) \ C

loc

(I ,H)
ut 2 Lq

loc

(I ,H�r (⌦)), 1/p + 1/q = 1, r � max{1, n(1/2� 1/p)}
Use

X = L2(⌦), Y = H1
0 (⌦) \ Lp(⌦)

U = {weak solutions on [0,1)}
⇧t0U = X ; U \ ⇧�1

t0 K compact for every K ⇢ X compact
R

X ku0k2L2(⌦) dµ(u0) < 1
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Nonlinear wave equation

8

<

:

@2u

@t2
��u + |u|ru = f ,

u|@⌦ = 0.

Domain ⌦ ⇢ Rn bounded, with smooth boundary @⌦
f 2 L2

loc

(I ; L2(⌦)) and r > 0 (critical value is 2/(n � 2))

Global weak solutions (Lions (1969)):
u0 2 H1

0 (⌦) \ Lp(⌦), p = r + 2, u0t 2 L2(⌦)
u 2 L1

loc

(I ,H1
0 (⌦) \ Lp(⌦)) \ C

loc

(I , (H1
0 (⌦) \ Lp(⌦))

w

)
ut 2 L

loc

(I , L2(⌦)) \ C
loc

(I , L2(⌦)
w

), 1/p + 1/q = 1
Write as a first order system for U = (u, ut) and use

X = (H1
0 (⌦) \ Lp(⌦))

w

⇥ L2(⌦)
w

Y = H1
0 (⌦) \ Lp(⌦)⇥ L2(⌦)

U = {weak solutions on [0,1)}
U \ ⇧�1

t0 K compact for every K ⇢ Y (strongly) compact
R

X ku0k2L2(⌦) dµ(u0) < 1
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Approximate statistical solutions

Alternate proof of existence: By Galerkin approximation, as the
weak-star limit of

⇤m(') =

Z

BH(R0)
'(Sm(·)u0) dµ0(u0), 8' 2 C(Y(R0)),

for µ0 restricted to BH(R0), R0 ! 1, where Y(R0) is a compact
subset of C([0,T ],BH(R)w) \ L2(0,T ;H) based on the a priori
estimates.

General idea of approximation: For any approximation with

U" ! U

in a “reasonable” sense, get

⇢"
⇤
* ⇢,

with
⇢(U) = 1.
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Thank you for your attention!
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