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Dragoş Iftimie (Univ. Lyon)

Milton Lopes Filho (IM-UFRJ)

Edriss Titi (Weizmann Institute and Texas A & M Univ.)

Aibin Zang (Yichun University, China)

Helena J. Nussenzveig Lopes (IM-UFRJ) 2D second grade to Euler October 2nd , 2014 2 / 43



Collaborators:

A. Valentina Busuioc (Univ. Lyon)
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Introduction

The Euler-α equations are given by


∂tv + (u · ∇)v +

∑
j vj∇uj = −∇p,

div u = 0,

v = u − α2∆u.

Above, p is the (scalar) pressure and v is the (unfiltered) velocity (and
u = (I − α2∆)−1v is the filtered velocity).
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Euler-α aka LAE-α – Lagrangian Averaged Euler:

1 Euler-α is a regularization of the Euler equations;

2 Inviscid sub-grid scale model in turbulence;

3 Solutions are geodesics in space of volume-preserving
diffeomorphisms with H1

α-metric (
√
‖u‖2 + α2‖∇u‖2);

4 Zero-viscosity second-grade fluid model;

5 In 2D it gives rise to a vortex blob method.

Helena J. Nussenzveig Lopes (IM-UFRJ) 2D second grade to Euler October 2nd , 2014 4 / 43



Euler-α aka LAE-α – Lagrangian Averaged Euler:

1 Euler-α is a regularization of the Euler equations;

2 Inviscid sub-grid scale model in turbulence;

3 Solutions are geodesics in space of volume-preserving
diffeomorphisms with H1

α-metric (
√
‖u‖2 + α2‖∇u‖2);

4 Zero-viscosity second-grade fluid model;

5 In 2D it gives rise to a vortex blob method.

Helena J. Nussenzveig Lopes (IM-UFRJ) 2D second grade to Euler October 2nd , 2014 4 / 43



Euler-α aka LAE-α – Lagrangian Averaged Euler:

1 Euler-α is a regularization of the Euler equations;

2 Inviscid sub-grid scale model in turbulence;

3 Solutions are geodesics in space of volume-preserving
diffeomorphisms with H1

α-metric (
√
‖u‖2 + α2‖∇u‖2);

4 Zero-viscosity second-grade fluid model;

5 In 2D it gives rise to a vortex blob method.

Helena J. Nussenzveig Lopes (IM-UFRJ) 2D second grade to Euler October 2nd , 2014 4 / 43



Euler-α aka LAE-α – Lagrangian Averaged Euler:

1 Euler-α is a regularization of the Euler equations;

2 Inviscid sub-grid scale model in turbulence;

3 Solutions are geodesics in space of volume-preserving
diffeomorphisms with H1

α-metric (
√
‖u‖2 + α2‖∇u‖2);

4 Zero-viscosity second-grade fluid model;

5 In 2D it gives rise to a vortex blob method.

Helena J. Nussenzveig Lopes (IM-UFRJ) 2D second grade to Euler October 2nd , 2014 4 / 43



Euler-α aka LAE-α – Lagrangian Averaged Euler:

1 Euler-α is a regularization of the Euler equations;

2 Inviscid sub-grid scale model in turbulence;

3 Solutions are geodesics in space of volume-preserving
diffeomorphisms with H1

α-metric (
√
‖u‖2 + α2‖∇u‖2);

4 Zero-viscosity second-grade fluid model;

5 In 2D it gives rise to a vortex blob method.

Helena J. Nussenzveig Lopes (IM-UFRJ) 2D second grade to Euler October 2nd , 2014 4 / 43



Euler-α aka LAE-α – Lagrangian Averaged Euler:

1 Euler-α is a regularization of the Euler equations;

2 Inviscid sub-grid scale model in turbulence;

3 Solutions are geodesics in space of volume-preserving
diffeomorphisms with H1

α-metric (
√
‖u‖2 + α2‖∇u‖2);

4 Zero-viscosity second-grade fluid model;

5 In 2D it gives rise to a vortex blob method.

Helena J. Nussenzveig Lopes (IM-UFRJ) 2D second grade to Euler October 2nd , 2014 4 / 43



The second-grade fluid model is given by


∂tv + (u · ∇)v +

∑
j vj∇uj = −∇p + ν∆u,

div u = 0,

v = u − α2∆u.

Compare with LANS-α: ν∆u on right-hand-side, instead of ν∆v .

Second grade fluids: special case of differential type of model for
viscoelastic fluids.

Model subject to controversy in rheology. Nevertheless it is simple
model, mathematically interesting.
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Second grade equations can be written as


∂tu + u · ∇u = divS,

div u = 0,
u(0) = u0,

(1)

where S is the stress tensor.

S→ memory (elastic effect) only infinitesimal past.

S = −pI + νA− α2A2 + α2(∂tA + u · ∇A + (∇u)tA + A∇u), (2)

A = A(u) = ∇u + (∇u)t .

ν is viscosity; α2 is material parameter, encodes elastic response.

OBS. The term u · ∇A contains second-order derivative of u.
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Question addressed here: is solution to Euler approximated by Euler-α
solutions, as α→ 0? By second grade flows, as ν → 0? "OK" in full
space/full plane.

Interested in boundary effects. Study second grade/Euler-α in a
bounded domain Ω ⊂ R2 or R3.

Study two different kinds of boundary condition for second grade:

(1) Wall slip i.e. Navier boundary condition This will be baseline result.

(2) No slip i.e. u = 0 on ∂Ω.

No physically meaningful boundary condition for Euler-α. Consider
same boundary condition as for second grade – mathematically
interesting.

For Euler, non-penetration u · n̂ = 0 on ∂Ω.

Motivation: inviscid limit for Navier-Stokes, bounded domain.
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Some background

Early results Well-posedness (local/large data, global/small data) for
second grade:

Cioranescu & Ouazar, 1984, bounded domain, no slip.
Also Galdi & Grobbelaar-Van Dalsen & Sauer, 1993, Cioranescu &
Girault, 1997, Galdi & Sequeira, 1994, Busuioc, 2002, 2004.

Busuioc, 2002 Vanishing viscosity, fixed α, second grade to Euler-α.
Full space.

Busuioc-Ratiu, 2003 Well-posedness for second grade and Euler-α,
bounded domain, Navier slip conditions.

Iftimie, 2002 Convergence, fixed ν > 0, α→ 0, of second grade fluid to
NS. H1 data, convergence is weak in L2. Full space.
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Bardos-Linshiz-Titi, 2008 Global existence, 2D, Euler-α with vortex
sheet initial data. Full plane. No Kelvin-Helmholtz.

Bardos-Linshiz-Titi, 2009 Convergence, α→ 0, Euler-α with vortex
sheet data (Birkhoff-Rott-α).

Jiu-Niu-Titi-Xin, 2009 Global existence for Euler-α, axisymmetric no
swirl, 1

r curl v0 Radon measure. Uniqueness 1
r curl v0 ∈ Lp

c(R3) with
p > 3/2. Full space.

Linshiz-Titi, 2010 Convergence and rate-of-convergence, α→ 0, full
space. Data (v0) in H3.
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Bounded domain flow, Navier conditions

Joint work with A. V. Busuioc (Univ. Lyon), D. Iftimie (Univ. Lyon) and
M. C. Lopes Filho (IM-UFRJ).

Our context: flow in bounded domain Ω, smooth boundary ∂Ω.

Boundary condition: Navier (friction) boundary condition.

Tangential velocity proportional to surface shear stress at boundary,
i.e.,

(Sn̂ + γu)tan = 0, (3)

Above, γ = friction coefficient and n̂ is unit normal to boundary.
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Special case: γ = 0 = perfect slip.

Too complicated to deal with this Navier condition.

Better to work with Newtonian (linear) Navier condition:

(An̂)tan = 0. (4)

Background: previous work used this simpler Navier condition.
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Relation between physical and simpler Navier conditions needs to be
established.

Subtle issue, because physical one has memory.

Theorem (Busuioc, Iftimie, Lopes Filho, NL, 2010)

Let u ∈ C∞([0,T ]; Ω) div–free, sth u · n̂ = 0 on [0,T ]× ∂Ω.

Then

(An̂)tan = 0 on [0,T ]× ∂Ω =⇒ (Sn̂)tan = 0 on [0,T ]× ∂Ω.

If [A(u0)n̂]tan = 0 on ∂Ω, where u0 = u(0, x), then

(Sn̂)tan = 0 on [0,T ]× ∂Ω =⇒ (An̂)tan = 0 on [0,T ]× ∂Ω.
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Idea of proof:

First statement.

Decompose An̂ = βn̂ + w , with w tangent to boundary.

If (An̂)tan = 0 on the boundary then can show

(Sn̂)tan = α2(u · ∇A + (∇u)tA + A∇u)n̂).

. . . many calculations later . . . (Sn̂)tan = 0.
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Converse.

As before, An̂ = βn̂ + w .

Deduce equation for w :

∂tw + C(ν, α)w + [u · ∇w + (∇u)tw ]tan = 0.

Energy estimates give: w0 = 0 =⇒ w(t , ·) = 0,
as desired.

Remark. Known existence results are for simpler Navier boundary
condition. Theorem provides dictionary, but for well-prepared data.
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IBVP
The initial-boundary-value-problem we solve is:



∂tv + u · ∇v +
∑

j vj∇uj = −∇p + ν∆u, in (0,T )× Ω,

div u = 0, in [0,T ]× Ω

(Sn̂)tan = 0, on [0,T ]× ∂Ω,

v = u − α2∆u, in [0,T ]× Ω,

u(0, ·) = u0(·), at {t = 0}.

(5)

Assume (A(u0)n̂)tan = 0. Also, notice there are three derivatives on u
→ ∇∆u.
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Let ϕ be a smooth (in x and t), div-free vector field, tangent to ∂Ω.
Multiply (5) by ϕ, integrate by parts, use the boundary condition
(An̂)tan = 0 and the symmetry of S, to get:

−
∫ t

0

∫
Ω

[
u · ∂tφ+

α2

2
A : ∂tA(φ)

]
+

∫
Ω

[
u(t) · φ(t) +

α2

2
A(t) · A(φ(t))

]

−
∫

Ω

[
u0 · φ0 +

α2

2
A(u0) · A(φ0)

]
+

∫ t

0

∫
Ω

u · ∇u · φ+
ν

2

∫ t

0

∫
Ω

A : A(φ)

−α
2

2

∫ t

0

∫
Ω

A2 : A(φ)− α2

2

∫ t

0

∫
Ω

u · ∇A(φ) : A

+
α2

2

∫ t

0

∫
Ω

[
(∇u)tA + A∇u

]
: A(φ) = 0, (∗)

for all times t .
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Weak H1 formulation

Definition
We say that u is a weak H1 solution of the second grade fluid
equations with perfect slip Navier boundary conditions on the time
interval [0,T ] if and only if

1 u ∈ C0
w ([0,T ]; H1(Ω));

2 u is divergence free and tangent to the boundary;
3 relation (∗) holds true for all vector fields
φ ∈ C0([0,T ]; H2(Ω)) ∩ C1([0,T ]; H1(Ω)) which are divergence
free and tangent to the boundary;

4 the following energy inequality holds true∫
Ω

(
|u|2 +

α2

2
|A|2

)
(t)+ν

∫ t

0

∫
Ω
|A|2 ≤

∫
Ω
|u0|2 +

α2

2
|A(u0)|2, (6)

∀t ∈ [0,T ].
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Our convergence result is stated below.

Theorem (Busuioc, Iftimie, Lopes Filho, NL, 2010)

Let u0 ∈ H3(Ω) be div-free, tangent to ∂Ω and assume (A(u0)n̂)tan = 0.
Let T > 0 be sth uE ∈ C0([0,T ]; H3) ∩ C1((0,T ); H2) is Euler solution,
initial data u0.
Suppose, additionally, there exists an H1 weak solution uν,α of (5),up
to time T . Then

lim
ν,α→0

‖uν,α − uE‖L∞(0,T ;L2(Ω)) = 0.

OBS. Note that limits in ν → 0 and α→ 0 taken independently.
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Idea of proof:

Write w = uν,α − uE . Formal PDE for w is:

∂tw + (w · ∇)w + (w · ∇)uE + (uE · ∇)w = div(S) +∇p.

Cannot multiply by w and integrate – w only H1, not enough regularity
(problem with term wS).

Instead: we start from the energy inequality in the Definition of weak
solution, together with energy estimates for the limit equation.
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Observe: PDE(w) = PDE(uν,α) - PDE(uE ).

Hence

w · PDE(w) = (uν,α − uE ) · (PDE(uν,α)− PDE(uE ))

= uν,α · PDE(uν,α)− uν,α · PDE(uE )− uE · PDE(uν,α) + uE · PDE(uE ).

We use this idea, substituting uν,α ·PDE(uν,α) by energy inequality. Let
H1
α be H1 with the norm

‖w‖2H1
α(Ω) =

∫
Ω

(
|w |2 +

α2

2
|A(w)|2

)
.
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The procedure above yields the estimate:

‖w(t)‖2H1
α(Ω) ≤Cα2(‖uE‖2L∞(0,T ;H1(Ω)) + ‖u0‖2H1(Ω))

+CαT‖u0‖H1(Ω)‖uE‖C1([0,T ];H1(Ω))

+CνT‖uE‖2L∞(0,T ;H1(Ω))

+Cα2T‖uE‖3L∞(0,T ;H3(Ω))

+C‖uE‖L∞(0,T ;H3(Ω))

∫ t

0
‖w‖2H1

α(Ω)

≡ C1(T ,uE ,u0)(α2 + α + ν) + C2(T ,uE )

∫ t

0
‖w‖2H1

α(Ω).
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By Gronwall’s Lemma we find

‖w(t)‖2H1
α
≤ (α2 + α + ν)C(T ,uE ,u0),

which implies the desired conclusion.

OBS. No need for boundary corrector.
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In 2D flow a uniform existence time has been established by
Busuioc-Ratiu (2003), independent of ν and α.

In 3D flow, we have global existence under special symmetry. We
show:

Proposition

Suppose u0 is axisymmetric, no swirl, belongs to H3, is div-free and
tangent to the boundary, and satisfies (A(u0)n̂)tan = 0. Suppose also
1
r curl(u0 − α2∆u0) ∈ L2. Then there exists a global H3 no swirl
axisymmetric solution of (5).

Work in progress: show that solutions of Euler-α, bounded domain,
Navier condition, with same initial data, exist on a time interval
independent of α. Uses co-normal spaces.
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Bounded domain, no slip, Euler-α 2D

Consider first Euler-α, bounded planar domain, with Dirichlet condition:

∂tv + (u · ∇)v +
∑

j vj∇uj = −∇p, in Ω× (0,∞),

div u = 0, in Ω× [0,∞),

v = u − α2∆u, in Ω× [0,∞),

u = 0, on [0,T ]× ∂Ω,

u(0, ·) = u0(·), at {t = 0}.
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If uα0 ∈ H3 ∩ H1
0 , div-free,

∃ ! solution of Euler-α, global in time, see
Cioranescu and Girault, 1994, Busuioc, 1999, Marsden, Ratiu and
Shkoller, 2000.

A priori estimates – 2D

Solution uα satisfies

‖uα(t)‖2L2 + α2‖∇uα(t)‖2L2 = ‖uα0 ‖2L2 + α2‖∇uα0 ‖2L2

and

‖curl uα(t)− α2 curl ∆uα(t)‖2L2 = ‖curl uα0 − α2 curl ∆uα0 ‖2L2 .
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Let u0 ∈ H3(Ω), div-free, u0 · n̂ = 0 on ∂Ω.

Introduce suitable
approximation:

1 uα0 vanishes on ∂Ω,

2 uα0 → u0, as α→ 0, in L2(Ω),

3 ‖∇uα0 ‖L2 = o(α−1), as α→ 0, and
4 ‖uα0 ‖H3 = O(α−3), as α→ 0.

Note. For any u0 ∈ H3(Ω), div-free, u0 · n̂ = 0 on ∂Ω can construct
family of suitable approximations.

For suitable approximations get:

‖uα(t)‖H3 ≤
C
α3 and ‖∇uα(t)‖L2 ≤

C
α
.
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With this setup, have the following result, vanishing α limit.

Theorem (L2, Titi and Zang, 2014)

Fix T > 0. Let u0 ∈ H3, div-free, u0 · n̂ = 0 on ∂Ω. Let {uα0 }α ⊂ H3 be
suitable approximations. Set uα ∈ C([0,T ]; H3) solution to Euler-α with
initial data uα0 . Set uE ∈ C([0,T ]; H3) ∩ C1([0,T ]; H2) the unique
smooth solution to Euler, initial data u0. Then:

sup
t∈[0,T ]

(‖uα(t)− uE (t)‖2L2 + α2‖∇uα‖2L2) −−−→
α→0

0. (7)
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Proof in the spirit of Kato criterion for vanishing viscosity limit of
Navier-Stokes.

Introduce Wα = uα − uE . Write equation for W , multiply by W ,
integrate in Ω, then on (0,T ).
Obtain:

1
2
‖Wα(t)‖2 =

1
2
‖Wα(0)‖2 −

∫ t

0

∫
Ω

[(Wα · ∇)uE ] ·Wα dx ds

+

∫ t

0

∫
Ω

divσα ·Wα dx ds,

where

divσα = α2∂t ∆uα + α2(uα · ∇)∆uα + α2
2∑

j=1

(∆uαj )∇uαj .
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Using the fact that

α2
∫ t

0

∫
Ω

[(uα ·∇)∆uα] ·uα dx ds +α2
∫ t

0

∫
Ω

∆uα · [(uα ·∇)uα] dx ds = 0,

we find∫ t

0

∫
Ω

divσα ·Wα dx ds = α2
∫ t

0

∫
Ω
∂s∆uα ·Wα dx ds

− α2
∫ t

0

∫
Ω

[(uα · ∇)∆uα] · uE dx ds

− α2
∫ t

0

∫
Ω

2∑
j=1

(∆uαj )∇uαj · uE dx ds

=: I1(t) + I2(t) + I3(t).
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Summarizing, we have:

1
2
‖Wα(t)‖2 =

1
2
‖Wα(0)‖2−

∫ t

0

∫
Ω

[(Wα · ∇)uE ] ·Wα dx ds

+I1(t) + I2(t) + I3(t).

Easy estimates:

−
∫ t

0

∫
Ω

[(Wα · ∇)uE ] ·Wα dx ds ≤ K
∫ t

0
‖Wα‖2 ds.

Integration by parts + Ladyzhenskaya inequality yield

I2(t) + I3(t) ≤ Kα2
(∫ t

0
‖∇uα‖2 ds + T

)
.

Left with I1(t).

Helena J. Nussenzveig Lopes (IM-UFRJ) 2D second grade to Euler October 2nd , 2014 30 / 43



Summarizing, we have:

1
2
‖Wα(t)‖2 =

1
2
‖Wα(0)‖2−

∫ t

0

∫
Ω

[(Wα · ∇)uE ] ·Wα dx ds

+I1(t) + I2(t) + I3(t).

Easy estimates:

−
∫ t

0

∫
Ω

[(Wα · ∇)uE ] ·Wα dx ds ≤ K
∫ t

0
‖Wα‖2 ds.

Integration by parts + Ladyzhenskaya inequality yield

I2(t) + I3(t) ≤ Kα2
(∫ t

0
‖∇uα‖2 ds + T

)
.

Left with I1(t).

Helena J. Nussenzveig Lopes (IM-UFRJ) 2D second grade to Euler October 2nd , 2014 30 / 43



Summarizing, we have:

1
2
‖Wα(t)‖2 =

1
2
‖Wα(0)‖2−

∫ t

0

∫
Ω

[(Wα · ∇)uE ] ·Wα dx ds

+I1(t) + I2(t) + I3(t).

Easy estimates:

−
∫ t

0

∫
Ω

[(Wα · ∇)uE ] ·Wα dx ds ≤ K
∫ t

0
‖Wα‖2 ds.

Integration by parts + Ladyzhenskaya inequality yield

I2(t) + I3(t) ≤ Kα2
(∫ t

0
‖∇uα‖2 ds + T

)
.

Left with I1(t).

Helena J. Nussenzveig Lopes (IM-UFRJ) 2D second grade to Euler October 2nd , 2014 30 / 43



Summarizing, we have:

1
2
‖Wα(t)‖2 =

1
2
‖Wα(0)‖2−

∫ t

0

∫
Ω

[(Wα · ∇)uE ] ·Wα dx ds

+I1(t) + I2(t) + I3(t).

Easy estimates:

−
∫ t

0

∫
Ω

[(Wα · ∇)uE ] ·Wα dx ds ≤ K
∫ t

0
‖Wα‖2 ds.

Integration by parts + Ladyzhenskaya inequality yield

I2(t) + I3(t) ≤ Kα2
(∫ t

0
‖∇uα‖2 ds + T

)
.

Left with I1(t).

Helena J. Nussenzveig Lopes (IM-UFRJ) 2D second grade to Euler October 2nd , 2014 30 / 43



Summarizing, we have:

1
2
‖Wα(t)‖2 =

1
2
‖Wα(0)‖2−

∫ t

0

∫
Ω

[(Wα · ∇)uE ] ·Wα dx ds

+I1(t) + I2(t) + I3(t).

Easy estimates:

−
∫ t

0

∫
Ω

[(Wα · ∇)uE ] ·Wα dx ds ≤ K
∫ t

0
‖Wα‖2 ds.

Integration by parts + Ladyzhenskaya inequality yield

I2(t) + I3(t) ≤ Kα2
(∫ t

0
‖∇uα‖2 ds + T

)
.

Left with I1(t).

Helena J. Nussenzveig Lopes (IM-UFRJ) 2D second grade to Euler October 2nd , 2014 30 / 43



Summarizing, we have:

1
2
‖Wα(t)‖2 =

1
2
‖Wα(0)‖2−

∫ t

0

∫
Ω

[(Wα · ∇)uE ] ·Wα dx ds

+I1(t) + I2(t) + I3(t).

Easy estimates:

−
∫ t

0

∫
Ω

[(Wα · ∇)uE ] ·Wα dx ds ≤ K
∫ t

0
‖Wα‖2 ds.

Integration by parts + Ladyzhenskaya inequality yield

I2(t) + I3(t) ≤ Kα2
(∫ t

0
‖∇uα‖2 ds + T

)
.

Left with I1(t).

Helena J. Nussenzveig Lopes (IM-UFRJ) 2D second grade to Euler October 2nd , 2014 30 / 43



Summarizing, we have:

1
2
‖Wα(t)‖2 =

1
2
‖Wα(0)‖2−

∫ t

0

∫
Ω

[(Wα · ∇)uE ] ·Wα dx ds

+I1(t) + I2(t) + I3(t).

Easy estimates:

−
∫ t

0

∫
Ω

[(Wα · ∇)uE ] ·Wα dx ds ≤ K
∫ t

0
‖Wα‖2 ds.

Integration by parts + Ladyzhenskaya inequality yield

I2(t) + I3(t) ≤ Kα2
(∫ t

0
‖∇uα‖2 ds + T

)
.

Left with I1(t).

Helena J. Nussenzveig Lopes (IM-UFRJ) 2D second grade to Euler October 2nd , 2014 30 / 43



Summarizing, we have:

1
2
‖Wα(t)‖2 =

1
2
‖Wα(0)‖2−

∫ t

0

∫
Ω

[(Wα · ∇)uE ] ·Wα dx ds

+I1(t) + I2(t) + I3(t).

Easy estimates:

−
∫ t

0

∫
Ω

[(Wα · ∇)uE ] ·Wα dx ds ≤ K
∫ t

0
‖Wα‖2 ds.

Integration by parts + Ladyzhenskaya inequality yield

I2(t) + I3(t) ≤ Kα2
(∫ t

0
‖∇uα‖2 ds + T

)
.

Left with I1(t).

Helena J. Nussenzveig Lopes (IM-UFRJ) 2D second grade to Euler October 2nd , 2014 30 / 43



Summarizing, we have:

1
2
‖Wα(t)‖2 =

1
2
‖Wα(0)‖2−

∫ t

0

∫
Ω

[(Wα · ∇)uE ] ·Wα dx ds

+I1(t) + I2(t) + I3(t).

Easy estimates:

−
∫ t

0

∫
Ω

[(Wα · ∇)uE ] ·Wα dx ds ≤ K
∫ t

0
‖Wα‖2 ds.

Integration by parts + Ladyzhenskaya inequality yield

I2(t) + I3(t) ≤ Kα2
(∫ t

0
‖∇uα‖2 ds + T

)
.

Left with I1(t).

Helena J. Nussenzveig Lopes (IM-UFRJ) 2D second grade to Euler October 2nd , 2014 30 / 43



Must use boundary corrector vδ –

Kato’s boundary corrector:

Choose smooth cutoff near ∂, ϕ = 1 in neighborhood of ∂. Set
ϕδ(·) = ϕ(·/δ). Let ψ be stream function for uE , uE = ∇⊥ψ,
∇⊥ = (−∂x2 , ∂x1).

Boundary corrector vδ = ∇⊥(ϕδψ).

Estimates for vδ:
‖vδ‖L∞(L∞) = O(1),

‖vδ‖L∞(L2) = O(δ1/2),

‖∇vδ‖L∞(L2)=O(δ−1/2).
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Choose smooth cutoff near ∂, ϕ = 1 in neighborhood of ∂. Set
ϕδ(·) = ϕ(·/δ). Let ψ be stream function for uE , uE = ∇⊥ψ,
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With this we can now perform the key estimate:

I1(t) = α2
∫ t

0

∫
Ω
∂s∆uα ·Wα dx ds

= α2
∫ t

0

∫
Ω
∂s∆uα · uα dx ds − α2

∫ t

0

∫
Ω
∂s∆uα · (uE − vδ) dx ds

− α2
∫ t

0

∫
Ω
∂s∆uα · vδ dx ds

≤ −α
2

4
‖∇uα(t)‖2 +

α2

2
‖∇uα0 ‖2 + Kα2

∫ t

0
‖∇uα‖2 ds

− α2
∫

Ω
∇uα0 · ∇u0 dx + Kαδ−1/2 + Kα2 + Kα2δ−1 + K δ1/2.

Choose δ = O(α). Then find

I1(t) ≤ −α
2

4
‖∇uα(t)‖2 +

α2

2
‖∇uα0 ‖2 + Kα2

∫ t

0
‖∇uα‖2 ds + o(1).
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End up with

‖W (t)‖2L2 + α2‖∇uα(t)‖2L2 ≤ K1(‖W0‖2L2 + α2‖∇uα0 ‖2L2)

+K2

∫ t

0
(‖W (s)‖2L2 + α2‖∇uα(s)‖2L2) ds + o(1).

Use Gronwall to conclude the proof.

It works!
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We call this boundary layer indifference.

Notice: mismatched boundary conditions leads to boundary layer. Can
still pass to limit. Why? Illustrative example.

Stationary, parallel Navier-Stokes flow in channel R× (0,L): must be
of the form uν = (Cy(L− y),0). Stationary, parallel Euler flow in
channel: uE = (ϕ(y),0), any ϕ.

For Euler-α have: stationary parallel Euler-α flow in channel (ϕ(y),0),
any ϕ such that ϕ(0) = ϕ(L) = 0. However, pressure is

p = −ϕ
2 − α2(ϕ′)2

2
.

Hence Euler solution approximates Euler-α solution outside of
boundary layer of arbitrary width.
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Bounded domain, second grade, 2D, no slip

Consider the second grade equations, bounded planar domain,
Dirichlet on the boundary:



∂tv + (u · ∇)v +
∑

j vj∇uj = −∇p + ν∆u, in Ω× (0,∞),

div u = 0, in Ω× [0,∞),

v = u − α2∆u, in Ω× [0,∞),

u = 0, on [0,T ]× ∂Ω,

u(0, ·) = u0(·), at {t = 0}.
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First result:

Theorem (L2, Titi and Zang, 2014)

Fix T > 0. Let u0 ∈ H3, div-free, u0 · n̂ = 0 on ∂Ω. Let {uα0 }α ⊂ H3 be a
suitable approximation. Set uν,α ∈ C([0,T ]; H3) solution to second
grade equations with initial data uα0 and assume ν = O(α2). Set
uE ∈ C([0,T ]; H3) ∩C1([0,T ]; H2) the unique smooth solution to Euler,
initial data u0. Then:

sup
t∈[0,T ]

(‖uν,α(t)− uE (t)‖2L2 + α2‖∇uν,α‖2L2) −−−→
α→0

0. (8)

OBS. Have ν → 0, α→ 0, but ν = O(α2). Not independent limits.
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Proof is a variant of Euler-α case.

Need only estimate dissipative term,
use boundary corrector + interpolation; easy. Condition ν = O(α2)
natural.

Next results are criteria for convergence, like the Kato criterion.

Recall: T. Kato, 1984 proved

uν −−−−→
ν→0+

uE in L∞(L2)⇐⇒ ν

∫ T

0

∫
ΓCν

|∇uν |2 dxds −−−−→
ν→0+

0.

For second grade, have two results, one near Euler-α, the other near
Navier-Stokes.
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For second grade, close to Euler-α:

Theorem

Fix T > 0, u0 ∈ H3(Ω) ∩ H. Let {uα0 }α>0 ⊂ H3(Ω), suitable family of
approximations for u0. Let uα,ν ∈ C([0,T ]; H3) solution of second
grade, initial data uα0 . Let uE ∈ C([0,T ]; H3(Ω)) ∩ C1([0,T ]; H2(Ω))
solution of Euler with initial data u0. Assume:

lim
α→0

ν

α2 =∞, and ν = O(α6/5).

Then uα,ν converges strongly to uE in C([0,T ]; (L2(Ω))2) as α→ 0 if
and only if

lim
α→0

ν

∫ T

0

∫
Ωδ

|∇uν,α|2 dx dt = 0, (9)

where Ωδ is a δ−neighborhood of ∂Ω with δ = C
α3

ν
3
2

.
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For second grade, close to Navier-Stokes:

Theorem

Fix T > 0, u0 ∈ H3(Ω). Let {uα0 }α>0 ⊂ H3(Ω), suitable family of
approximations for u0. Let uα,ν ∈ C([0,T ]; H3) solution of second
grade with initial data uα0 . Let uE ∈ C([0,T ]; H3(Ω)) ∩ C1([0,T ]; H2(Ω))
Euler solution with initial data u0. Assume that

α = O(ν3/2) as ν → 0. (10)

Then uα,ν converges strongly to uE in C([0,T ]; (L2(Ω))2) as ν → 0 if
and only if

lim
ν→0

ν

∫ T

0

∫
ΩCν

|∇uν,α|2 dx dt = 0, (11)

where ΩCν is a Cν−neighborhood of ∂Ω.
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Schematically, we obtained:

Figure: Curve between region I and region II: ν = α2/3; between II and III:
ν = α6/5; between III and IV: ν = α2.
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Summary observations

Initial motivation:

probe relation between

inviscid limit for Navier-Stokes × α→ 0 limit for Euler-α .

Explore diverse nature of boundary layer and use second grade as
interpolant.

We found: change in behavior depending on relation ν and α. Also
found region where no equivalence criteria obtained.

Wrt inviscid limit for Navier-Stokes:

Euler-α, no-slip −−−→
α→0

Euler– nonlinear and non-compatible ∂

conditions . Similarly, in some cases, for second grade −−−−→
ν,α→0

Euler.

Why did it work???
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interpolant.
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Concluding remarks

Remark 1. Euler-α is not regularizing (in time). Similarly for second
grade! Hence, more like ODE, different from Navier-Stokes.

Remark 2. Euler and NS have special kind of nonlinearity.

Shear flow / vortex sheet + Euler nonlinearity =⇒ Kelvin-Helmholtz
instability.

Euler-α not subject to Kelvin-Helmholtz instability. Vortex sheet
problem (Birkhoff-Rott-α) well-posed for Euler-α, see Bardos, Linshiz
and Titi, 2008 and 2009.

Mismatched ∂ conditions lead to vortex sheet on boundary; this is why
absence of Kelvin-Helmholtz instability helps. Kato criterion designed
to rule out Kelvin-Helmholtz near boundary / creation (and
amplification) of small scales at boundary.
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Thank you!
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