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Introduction

The Basic Problem

The 3D incompressible Euler equations are given by

ut + u · ∇u = −∇p, ∇ · u = 0,

with initial condition u(x,0) = u0.

Define vorticity ω = ∇× u, then ω is governed by

ωt + (u · ∇)ω = ∇u · ω.

Note that ∇u is related to ω by a Riesz operator K of degree zero:
∇u = K (ω), and we have ‖ω‖Lp ≤ ‖∇u‖Lp ≤ C‖ω‖Lp for 1 < p <∞.

Thus the vortex stretching term ∇u · ω is formally of the order ω2.
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Introduction

Previous Work

On the theoretical side:
Kato (1972): local well-posedness
Beale-Kato-Majda (1984): necessary and sufficient blowup criterion
Constantin-Fefferman-Majda (1996): geometric constraints for
blowup
Deng-Hou-Yu (2005): Lagrangian localized geometric constraints

Other related work:
Constantin-Majda-Tabak (1994): 2D surface quasi-geostrophic
(SQG) equations as a model for 3D Euler
Cordoba (1998): no blowup of 2D SQG near a hyperbolic saddle
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Introduction

Previous Work (Cont’d)

On the numerical search for singularity:
Grauer and Sideris (1991): first numerical study of axisymmetric
flows with swirl; blowup reported away from the axis
Pumir and Siggia (1992): axisymmetric flows with swirl; blowup
reported away from the axis
Kerr (1993): antiparallel vortex tubes; blowup reported
E and Shu (1994): 2D Boussinesq; no blowup observed
Boratav and Pelz (1994): viscous simulations using Kida’s
high-symmetry initial condition; blowup reported
Grauer et al. (1998): perturbed vortex tube; blowup reported
Hou and Li (2006): use Kerr’s two anti-parallel vortex tube initial
data with higher resolution; no blowup observed
Orlandi and Carnevale (2007): Lamb dipoles; blowup reported

Evidence for blowup is inconclusive and problem remains open
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Introduction

The role of convection in 3D Euler and Navier-Stokes

In [CPAM 08], Hou and Li studied the role of convection for 3D
axisymmetric flow and introduced the following new variables:

u1 = uθ/r , ω1 = ωθ/r , ψ1 = ψθ/r , (1)

and derived the following equivalent system that governs the dynamics
of u1, ω1 and ψ1 as follows:





∂tu1 + ur∂r u1 + uz∂zu1 = ν
(
∂2

r + 3
r ∂r + ∂2

z
)
u1 + 2u1ψ1z ,

∂tω1 + ur∂rω1 + uz∂zω1 = ν
(
∂2

r + 3
r ∂r + ∂2

z
)
ω1 +

(
u2

1
)

z ,

−
(
∂2

r + 3
r ∂r + ∂2

z
)
ψ1 = ω1,

(2)

where ur = −rψ1z , uz = 2ψ1 + rψ1r .

Liu and Wang [SINUM07] showed that if u is a smooth velocity field,
then uθ, ωθ and ψθ must satisfy: uθ

∣∣
r=0 = ωθ

∣∣
r=0 = ψθ

∣∣
r=0 = 0. Thus

u1, ψ1 and ω1 are well defiend.
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Introduction

An exact 1D model for 3D Euler/Navier-Stokes

In [Hou-Li, CPAM, 61 (2008), no. 5, 661–697], we derived an excact
1D model along the z-axis for the Navier-Stokes equations:

(u1)t + 2ψ1 (u1)z = ν(u1)zz + 2 (ψ1)z u1, (3)

(ω1)t + 2ψ1 (ω1)z = ν(ω1)zz +
(

u2
1

)
z
, (4)

−(ψ1)zz = ω1. (5)

Let ũ = u1, ṽ = −(ψ1)z , and ψ̃ = ψ1. The above system becomes

(ũ)t + 2ψ̃(ũ)z = ν(ũ)zz − 2ṽ ũ, (6)
(ṽ)t + 2ψ̃(ṽ)z = ν(ṽ)zz + (ũ)2 − (ṽ)2 + c(t), (7)

where ṽ = −(ψ̃)z , ṽz = ω̃, and c(t) is an integration constant to
enforce the mean of ṽ equal to zero.
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Introduction

The 1D model is exact!

A surprising result is that the above 1D model is exact.

Theorem 1. Let u1, ψ1 and ω1 be the solution of the 1D model
(3)-(5) and define

uθ(r , z, t) = ru1(z, t), ωθ(r , z, t) = rω1(z, t), ψθ(r , z, t) = rψ1(z, t).

Then (uθ(r , z, t), ωθ(r , z, t), ψθ(r , z, t)) is an exact solution of the
3D Navier-Stokes equations.

Theorem 1 tells us that the 1D model (3)-(5) preserves some essential
nonlinear structure of the 3D axisymmetric Navier-Stokes equations.
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Introduction

Global Well-Posedness of the full 1D Model

Theorem 2. Assume that ũ(z,0) and ṽ(z,0) are in Cm[0,1] with m ≥ 1
and periodic with period 1. Then the solution (ũ, ṽ) of the 1D model
will be in Cm[0,1] for all times and for ν ≥ 0.

Proof. Differentiating the ũ and ṽ -equations w.r.t z, we get

(ũz)t + 2ψ̃(ũz)z − 2ṽ ũz = −2ṽ ũz − 2ũṽz + ν(ũz)zz ,

(ṽz)t + 2ψ̃(ṽz)z − 2ṽ ṽz = 2ũũz − 2ṽ ṽz + ν(ṽz)zz .

The convection term cancels one of the nonlinear terms.

(ũ2
z )t + 2ψ̃(ũ2

z )z = −4ũũz ṽz + 2νũz(ũz)zz , (8)
(ṽ2

z )t + 2ψ̃(ṽ2
z )z = 4ũũz ṽz + 2νṽz(ṽz)zz . (9)

Another cancelltion occurs, which gives rise to
(

ũ2
z + ṽ2

z

)
t

+ 2ψ̃
(

ũ2
z + ṽ2

z

)
z

= ν
(

ũ2
z + ṽ2

z

)
zz
− 2ν

[
(ũzz)2 + (ṽzz)2

]
.
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Introduction

Construction of a family of globally smooth solutions

Theorem 3. Let φ(r) be a smooth cut-off function and u1, ω1 and ψ1 be
the solution of the 1D model. Define

uθ(r , z, t) = ru1(z, t)φ(r) + ũ(r , z, t),
ωθ(r , z, t) = rω1(z, t)φ(r) + ω̃(r , z, t),
ψθ(r , z, t) = rψ1(z, t)φ(r) + ψ̃(r , z, t).

Then there exists a family of globally smooth functioons ũ, ω̃ and ψ̃
such that uθ, ωθ and ψθ are globally smooth solutions of the 3D
Navier-Stokes equations with finite energy.
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Introduction

Potential singularity for 3D Euler equation

Inspired by the previous study, we discover a class of initial data
that lead to potentially singular solutions of 3D Euler equations.
Main features of our study:

the singularity occurs at a stagnation point where the effect of
convection is minimized.

strong symmetry (axisymmetry plus odd/even symmetry in z)

devises highly effective algorithms for adequate resolution

employs rigorous criteria for confirmation of singularity
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Introduction

Vorticity Kinematics

z = 0

z =
1

4
L

z = −

1

4
L

Figure : Vorticity kinematics of the 3D Euler singularity; solid: vortex lines;
straight dashed lines: axial flow; curved dash lines: vortical circulation.
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Introduction

Local Flow Field

r_l 1
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z_r
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ũ = (ur, uz) near q̃0 on 10242 mesh, t = 0.003505

zr = 2.09 × 10−12

rl = 1 − 5.99 × 10−12

Figure : The 2D flow field ũ = (ur ,uz)T near the maximum vorticity.
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Numerical Method Overview
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Numerical Method Overview

3D Axisymmetric Euler Equations

Equations being solved: the 3D axisymmetric Euler (Hou-Li, 2008)

u1,t + ur u1,r + uzu1,z = 2u1ψ1,z ,

ω1,t + urω1,r + uzω1,z = (u2
1)z ,

−
[
∂2

r + 3
r ∂r + ∂2

z
]
ψ1 = ω1,

where u1 = uθ/r , ω1 = ωθ/r , ψ1 = ψθ/r .
ur = −rψ1,z , uz = 2ψ1 + rψ1,r : the radial/axial velocity components.

Initial condition:
u1(r , z,0) = 100e−30(1−r2)4

sin
( 2πz

L

)
, ω1(r , z,0) = ψ1(r , z,0) = 0.

No flow boundary condition ψ1 = 0 at r = 1 and periodic BC in z.
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Numerical Method Overview

Outline of the Method

Discretization in space: a hybrid 6th-order Galerkin and 6th-order
finite difference method, on an adaptive (moving) mesh that is
dynamically adjusted to the evolving solution
Discretization in time: an explicit 4th-order Runge-Kutta method,
with an adaptively chosen time step
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Numerical Method The Adaptive (Moving) Mesh Algorithm
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Numerical Method The Adaptive (Moving) Mesh Algorithm

Adaptive Methods for Singularity Detection

Existing methods for computing (self-similar) singularities:
dynamic rescaling (McLaughlin et al. 1986: nonlinear
Schrödinger)
adaptive mesh refinement (Berger and Kohn 1988: semilinear
heat)
moving mesh method (Budd et al. 1996: semilinear heat; Budd et
al. 1999: nonlinear Schrödinger)

However, these methods require knowledge of the singularity
discrete approximation of mesh mapping functions can result in
significant loss of accuracy
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Numerical Method The Adaptive (Moving) Mesh Algorithm

Our Approach: Defining the Adaptive Mesh

We observe that vorticity tends to concentrate at a single point in
the rz-plane.
This motivates the development of the following special mesh
adaptation strategy.
The adaptive mesh covering the computational domain is
constructed from a pair of analytic mesh mapping functions:

r = r(ρ), z = z(η),

where each mesh mapping function contains a small number of
parameters, which are dynamically adjusted so that along each
dimension a certain fraction (e.g. 50%) of the mesh points is placed in
a small neighborhood of the singularity
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Numerical Method The Adaptive (Moving) Mesh Algorithm

Advancing the Solution

The Poisson equation for ψ1 is solved in the ρη-space using a 6th
order B-spline based Galerkin method.
The evolutionary equations for u1 and ω1 are semi-discretized in
the ρη-space, where

the space derivatives are expressed in the ρη-coordinates and are
approximated using 6th-order centered difference scheme, e.g.

vr ,ij =
vρ,ij
rρ,j
≈ 1

rρ,j
(D6

ρ,0vi )j

the resulting system of ODEs is integrated in time using an explicit
4th-order Runge-Kutta method
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Numerical Results Effectiveness of the Adaptive Mesh

Outline

1 Introduction

2 Numerical Method
Overview
The Adaptive (Moving) Mesh Algorithm

3 Numerical Results
Effectiveness of the Adaptive Mesh
First Sign of Singularity
Confirming the Singularity I: Maximum Vorticity
Confirming the Singularity IV: Local Self-Similarity

Thomas Y. Hou (ACM, Caltech) Finite-Time Singularity of 3D Euler IPAM, 2014 20 / 72



Numerical Results Effectiveness of the Adaptive Mesh

Effectiveness of the Adaptive Mesh
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Figure : The vorticity function |ω| on the 1024× 1024 mesh at t = 0.003505;
plot shown in rz-coordinates with 1 : 10 sub-sampling in each dimension.
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Numerical Results Effectiveness of the Adaptive Mesh

Effectiveness of the Adaptive Mesh (Cont’d)
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Figure : The vorticity function |ω| on the 1024× 1024 mesh at t = 0.003505;
plot shown in ρη-coordinates with 1 : 10 sub-sampling in each dimension.
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Numerical Results Effectiveness of the Adaptive Mesh

Effective Mesh Resolutions

Table : Effective mesh resolutions M∞, N∞ near the maximum vorticity at
selected time t .

t = 0.003505
Mesh size

M∞ N∞

1024× 1024 1.9923× 1012 1.6708× 1012

1280× 1280 2.4999× 1012 2.0844× 1012

1536× 1536 2.9866× 1012 2.5079× 1012

1792× 1792 3.4951× 1012 2.9288× 1012

2048× 2048 3.9942× 1012 3.3444× 1012
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Numerical Results Effectiveness of the Adaptive Mesh

Backward Error Analysis of the Linear Solve

Table : Backward errors of the linear solve Ax = b associated with the elliptic
equation for ψ1 at t = 0.003505.

t = 0.003505
Mesh size

ω1 κω1 ω2 κω2 ‖δx‖∞/‖x‖∞

512 5.9× 10−15 1247.3 1.9× 10−23 2.3× 107 7.3× 10−12

768 1.1× 10−15 1788.84 2.1× 10−23 5.2× 107 1.9× 10−12

1024 1.5× 10−15 6748.83 6.4× 10−23 9.3× 107 9.9× 10−12

The linear system is solved using a parallel sparse direct solver called
PaStiX package. Here ω1, ω2 are the componentwise backward errors
of first and second kind, and κω1 , κω2 are the componentwise condition
numbers of first and second kind. It can be shown that (Arioli 1989)
‖δx‖∞
‖x‖∞ ≤ ω1κω1 + ω2κω2 .
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Numerical Results First Sign of Singularity
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Numerical Results First Sign of Singularity

Maximum Vorticity

Table : Maximum vorticity ‖ω‖∞ = ‖∇ × u‖∞ at selected time t .

‖ω‖∞
Mesh size

t = 0 t = 0.0034 t = 0.003505

1024× 1024 3.7699× 103 4.3127× 106 1.2416× 1012

1280× 1280 3.7699× 103 4.3127× 106 1.2407× 1012

1536× 1536 3.7699× 103 4.3127× 106 1.2403× 1012

1792× 1792 3.7699× 103 4.3127× 106 1.2401× 1012

2048× 2048 3.7699× 103 4.3127× 106 1.2401× 1012
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Numerical Results First Sign of Singularity

Maximum Vorticity (Cont’d)
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Figure : The double logarithm of the maximum vorticity, log(log‖ω‖∞),
computed on the 1024× 1024 and the 2048× 2048 mesh.
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Numerical Results First Sign of Singularity

Resolution Study on Primitive Variables

Table : Sup-norm relative error and numerical order of convergence of the
transformed primitive variables u1 at selected time t .

t = 0.003505
Mesh size

Error Order

1024× 1024 9.4615× 10−6 −
1280× 1280 3.6556× 10−6 4.2618
1536× 1536 1.5939× 10−6 4.5526
1792× 1792 7.5561× 10−7 4.8423

Sup-norm 1.0000× 102 −
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Numerical Results First Sign of Singularity

Resolution Study on Primitive Variables (Cont’d)

Table : Sup-norm relative error and numerical order of convergence of the
transformed primitive variables ω1 at selected time t .

t = 0.003505
Mesh size

Error Order

1024× 1024 6.4354× 10−4 −
1280× 1280 2.4201× 10−4 4.3829
1536× 1536 1.1800× 10−4 3.9396
1792× 1792 6.4388× 10−5 3.9297

Sup-norm 1.0877× 106 −
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Numerical Results First Sign of Singularity

Resolution Study on Primitive Variables (Cont’d)

Table : Sup-norm relative error and numerical order of convergence of the
transformed primitive variables ψ1 at selected time t .

t = 0.003505
Mesh size

Error Order

1024× 1024 2.8180× 10−10 −
1280× 1280 4.7546× 10−11 7.9746
1536× 1536 1.0873× 10−11 8.0925
1792× 1792 2.9518× 10−12 8.4583

Sup-norm 2.1610× 10−1 −
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Numerical Results First Sign of Singularity

Resolution Study on Conserved Quantities

Table : Kinetic energy E , minimum circulation Γ1, maximum circulation Γ2 and
their maximum (relative) change over [0,0.003505].

t = 0.003505
Mesh size

‖δE‖∞,t ‖δΓ1‖∞,t ‖δΓ2‖∞,t
1024× 1024 1.53× 10−11 4.35× 10−17 1.25× 10−14

1280× 1280 4.17× 10−12 3.30× 10−17 7.78× 10−15

1536× 1536 2.08× 10−12 3.13× 10−17 9.95× 10−15

1792× 1792 6.47× 10−13 2.77× 10−17 2.14× 10−14

2048× 2048 6.66× 10−13 2.53× 10−17 3.49× 10−14

Init. value 55.93 0.00 628.32
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Numerical Results Confirming the Singularity I: Maximum Vorticity
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Numerical Results Confirming the Singularity I: Maximum Vorticity

The Beale-Kato-Majda (BKM) Criterion

The main tool for studying blowup/non-blowup: the
Beale-Kato-Majda (BKM) criterion (Beale et al. 1984)

Theorem
Let u be a solution of the 3D Euler equations, and suppose there is a
time ts such that the solution cannot be continued in the class

u ∈ C([0, t ]; Hm) ∩ C1([0, t ]; Hm−1), m ≥ 3

to t = ts. Assume that ts is the first such time. Then
∫ ts

0
‖ω(·, t)‖∞ dt =∞, ω = ∇× u.
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Numerical Results Confirming the Singularity I: Maximum Vorticity

Applying the BKM Criterion

The “standard” approach to singularity detection:
1 assume the existence of an inverse power-law

‖ω(·, t)‖∞ ∼ c(ts − t)−γ , c, γ > 0

2 estimate ts and γ using a line fitting:

[
d
dt

log‖ω(·, t)‖∞
]−1

∼ 1
γ

(ts − t)

3 estimate c using another line fitting:

log‖ω(·, t)‖∞ ∼ −γ log(̂ts − t) + log c,

where t̂s is the singularity time estimated in step 2
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Numerical Results Confirming the Singularity I: Maximum Vorticity

Our Criteria

Our criteria for choosing the fitting interval [τ1, τ2]:
τ2 is the last time at which the solution is still “accurate”

choose the fitting interval [τ1, τ2] in the asymptotic regime.

Our criteria for a successful line fitting:
both τ2 and the line-fitting predicted singularity time t̂s converge to
the same finite value as the mesh is refined; the convergence
should be monotone, i.e. τ2 ↑ ts, t̂s ↓ ts

τ1 converges to a finite value that is strictly less than ts as the mesh
is refined
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Numerical Results Confirming the Singularity I: Maximum Vorticity

Applying the Ideas: Computing the Line Fitting
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Figure : Inverse logarithmic time derivative
[ d

dt log‖ω‖∞
]−1 and its line fitting

γ̂−1
1 (̂ts − t), computed on the 2048× 2048 mesh.
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Numerical Results Confirming the Singularity I: Maximum Vorticity

Applying the Ideas: Computing the Line Fitting
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Figure : A zoom-in view of the line fitting γ̂−1
1 (̂ts − t).
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Numerical Results Confirming the Singularity I: Maximum Vorticity

Applying the Ideas: Computing the Line Fitting
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Figure : Maximum vorticity ‖ω‖∞ and its inverse power-law fitting ĉ(̂ts − t)−γ̂2 ,
computed on the 2048× 2048 mesh.
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Numerical Results Confirming the Singularity I: Maximum Vorticity

Applying the Ideas: the “Best” Fitting Interval

Table : The “best” fitting interval [τ1, τ2] and the estimated singularity time t̂s.

Mesh size τ1 τ2 t̂s

1024× 1024 0.003306 0.003410 0.0035070
1280× 1280 0.003407 0.003453 0.0035063
1536× 1536 0.003486 0.003505 0.0035056
1792× 1792 0.003479 0.003505 0.0035056
2048× 2048 0.003474 0.003505 0.0035056
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Numerical Results Confirming the Singularity I: Maximum Vorticity

Applying the Ideas: Results of the Line Fitting

Table : The best line fittings for ‖ω‖∞ computed on [τ1, τ2].

Mesh size γ̂†1 γ̂‡2 ĉ

1024× 1024 2.5041 2.5062 4.8293× 10−4

1280× 1280 2.4866 2.4894 5.5362× 10−4

1536× 1536 2.4544 2.4559 7.4912× 10−4

1792× 1792 2.4557 2.4566 7.4333× 10−4

2048× 2048 2.4568 2.4579 7.3273× 10−4

†: γ̂1 is computed from
[ d

dt log‖ω‖∞
]−1 ∼ γ−1(ts − t).

‡: γ̂2 is computed from log‖ω‖∞ ∼ −γ log(̂ts − t) + log c.

Conclusion: the maximum vorticity develops a singularity
‖ω‖∞ ∼ c(ts − t)−γ at ts ≈ 0.0035056 (recall te ≈ 0.00350555)
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Numerical Results Confirming the Singularity I: Maximum Vorticity

Comparison with Other Numerical Studies

Table : Comparison of our results with other numerical studies. K: Kerr
(1993); BP: Boratav and Pelz (1994); GMG: Grauer et al. (1998); OC: Orlandi
and Carnevale (2007); τ2: the last time at which the solution is deemed “well
resolved”.

Studies τ2 ts Effec. res. Vort. amp.

K 17 18.7 ≤ 5123 23
BP 1.6† 2.06 10243 180

GMG 1.32 1.355 20483 21
OC 2.72 2.75 10243 55

Ours 0.003505 0.0035056 (3× 1012)2 3× 108

†: According to Hou and Li (2008).
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Numerical Results Confirming the Singularity I: Maximum Vorticity

Nonlinear alignment of vortex stretching

The vorticity direction ξ = ω/|ω| could also play a role!
Recall the vorticity equation

|ω|t + u · ∇|ω| = α|ω|,

where α = ξ · ∇u · ξ is the vorticity amplification factor

α = ξ · ∇u · ξ = ξ · Sξ, S =
1
2
(
∇u +∇uT ),

thus the growth of α depends on the eigenstructure of S
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Numerical Results Confirming the Singularity I: Maximum Vorticity

Spectral Dynamics

Due to symmetry, S has
3 real eigenvalues {λi}3

i=1 (assuming λ1 ≥ λ2 ≥ λ3), and
a complete set of orthogonal eigenvectors {wi}3

i=1

We discover, at the location of the maximum vorticity, that:
the vorticity direction ξ is perfectly aligned with w2, i.e.

λ2 = α =
d
dt

log‖ω‖∞ ∼ c2(ts − t)−1

the largest positive/negative eigenvalues satisfy

λ1,3 ∼ ±
1
2
‖ω‖∞ ∼ ±c(ts − t)−2.457
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Numerical Results Confirming the Singularity I: Maximum Vorticity

The DHY Non-blowup Criterion

Essential ideas of DHY: no blowup if, among other things,
the divergence of ξ, ∇ · ξ, and
the curvature κ = |ξ · ∇ξ|,

along a vortex line do not grow “too fast” compared with the
“diminishing rate” of the length of the vortex line
Similar in spirit to CFM but more localized
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Numerical Results Confirming the Singularity I: Maximum Vorticity

Checking Against the DHY Criterion
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of the maximum vorticity.
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Numerical Results Confirming the Singularity I: Maximum Vorticity

Geometry of the Vorticity Direction (Cont’d)
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Figure : The z-component ξz of the vorticity direction ξ near the maximum
vorticity. Note the rapid variation of ξz in z.
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Numerical Results Confirming the Singularity IV: Local Self-Similarity

Outline
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Numerical Results Confirming the Singularity IV: Local Self-Similarity

Locally Self-Similar Solutions

Solutions of the 3D Euler equations in R3 have special scaling
properties:

u(x , t) −→ λαu(λx , λα+1t), λ > 0, α ∈ R

Can this give rise to a (locally) self-similar blowup?

∇u(x , t) ∼ 1
ts − t

∇U
(

x − x0

[ts − t ]β

)
, x ∈ R3

Recent results by D. Chae (2007,2010,2011) seem to give a
negative answer under some strong (exponential) decay
assumption on the self-similar profile ∇U.
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Numerical Results Confirming the Singularity IV: Local Self-Similarity

Self-Similar Solutions with Axis-Symmetry

In axisymmetric flows, self-similar solutions naturally take the form

u1(x̃ , t) ∼ (ts − t)γu U
(

x̃ − x̃0

`(t)

)
,

ω1(x̃ , t) ∼ (ts − t)γωΩ

(
x̃ − x̃0

`(t)

)
,

ψ1(x̃ , t) ∼ (ts − t)γψΨ

(
x̃ − x̃0

`(t)

)
, x̃ → x̃0, t → t−s ,

where x̃ = (r , z)T and `(t) ∼ [δ−1(ts − t)]γ` is a length scale, and
the exponents satisfy

γω = −1, γψ = −1 + 2γ`, γu = −1 +
1
2
γ`.

This would give rise to ‖∇u(·, t)‖∞ ∼ c(ts − t)γu−γ` .
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Numerical Results Confirming the Singularity IV: Local Self-Similarity

Identifying a Self-Similar Solution

We remark that the recent result of Chae-Tsai on non-existence of
self-similar solutions of 3D axisymmetric Euler does not apply to
our solution since they assume |U(ξ)| → 0 as |ξ| → ∞.

In our case, we found that U(0) = Ψ(0) = Ω(0) = 0, and
|U(ξ)| ≈ c0|ξ|β for some 0 < β < 1 as |ξ| → ∞, where β satisfies
γu = γ`β with γu > 0 and γ` > 0. This gives u(1, z, ts) ≈ c0zβ at
the singularity time.

To identify a “self-similar neighborhood”, consider

C∞(t) =
{

(r , z) ∈ D : |ω(r , z, t)| = 1
2‖ω(·, t)‖∞

}
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Numerical Results Confirming the Singularity IV: Local Self-Similarity

Existence of Self-Similar Neighborhood
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Numerical Results Confirming the Singularity IV: Local Self-Similarity

Existence of Self-Similar Neighborhood (Cont’d)
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Numerical Results Confirming the Singularity IV: Local Self-Similarity

Existence of Self-Similar Neighborhood (Cont’d)
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Numerical Results Confirming the Singularity IV: Local Self-Similarity

Indication of Self-Similarity in 2D

r

z

contour plot of ω1 on 10242 mesh, t = 0.0034

0.9994 0.9995 0.9996 0.9997 0.9998 0.9999 1
0

0.5

1

1.5

2

2.5

3

3.5

x 10
−5

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

z = 3.59 × 10−5

Figure : The contour plot of ω1 near the maximum vorticity at t = 0.0034.
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Numerical Results Confirming the Singularity IV: Local Self-Similarity

Indication of Self-Similarity in 2D (Cont’d)
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Numerical Results Confirming the Singularity IV: Local Self-Similarity

Indication of Self-Similarity in 2D (Cont’d)
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Numerical Results Confirming the Singularity IV: Local Self-Similarity

The Scaling Exponents

Table : Scaling exponents of `, u1, ω1, and ψ1.

Mesh size γ̂` γ̂u γ̂ω γ̂ψ

1024× 1024 2.7359 0.4614 −0.9478 4.7399
1280× 1280 2.9059 0.4629 −0.9952 4.8683
1536× 1536 2.9108 0.4600 −0.9964 4.8280
1792× 1792 2.9116 0.4602 −0.9966 4.8294
2048× 2048 2.9133 0.4604 −0.9972 4.8322

γ` ≥ 1: consistent with the a posteriori bound ‖u‖∞ ≤ C
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Numerical Results Confirming the Singularity IV: Local Self-Similarity

Consistency Check

Table : Consistency check for the scaling exponents.

Mesh size −1 + 1
2 γ̂` −1 + 2γ̂` γ̂u − γ̂`

1024× 1024 0.3679 4.4717 −2.2745
1280× 1280 0.4530 4.8118 −2.4430
1536× 1536 0.4554 4.8215 −2.4508
1792× 1792 0.4558 4.8232 −2.4514
2048× 2048 0.4567 4.8266 −2.4529

Ref. value γ̂u : 0.4604 γ̂ψ : 4.8322 γ̂1 : 2.4568

‖ω‖∞ ∼ c(ts − t)−2.45: consistent with Chae’s nonexistence results
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Theoretical understanding of the blow-up via a 1D model

Recent progress on the blow-up of a 1D model

One can gain important understanding of the blowup mechanism
by studying a 1D model along the boundary at r = 1.
We propose the following 1D model at r = 1 (ρ = u2

1 , u = uz):

ρt + uρz = 0, z ∈ (0,L),

ωt + uωz = ρz

where the velocity u is defined by uz(z) = Hω(z) with u(0) = 0.
This 1D model and the 3D Euler equations shares many similar
properties, including all the symmetry properties along z direction.
Recently, with Drs. K. Choi, A. Kiselev, G. Luo, V. Sverak, and Y.
Yao, we have proved the finite time blowup of the 1D model.
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Theoretical understanding of the blow-up via a 1D model

Comparison between the 1D model and the 3D Euler
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Theoretical understanding of the blow-up via a 1D model

Blow-up of the 1D model

The main blow-up result is stated in the following theorem:
Theorem 4 (Choi, Hou, Kiselev, Luo, Sverak and Yao) For any initial
data ρ0 ∈ H2, ω0 ∈ H1 such that

(i) ρ0 is even and ω0 is odd at z = 0, 1
2L,

(ii) ρ0z , ω0 ≥ 0 on [0, 1
2L], and

(iii)
∫ L/2

0

[
ρ0(z)− ρ0(0)

]2 dz > 0, then the solution of the 1D model

develops a singularity in finite time.

One can show that the solution of the 1D model satisfies:
1 ρ is even and ω, u are odd at z = 0, 1

2L for all t ≥ 0;
2 ρz , ω ≥ 0 and u ≤ 0 on [0, 1

2L] for all t ≥ 0.
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Theoretical understanding of the blow-up via a 1D model

Sketch of the proof

The analysis relies on the two lemmas, which reveal the key properties
of the “Biot-Savart” law due to the strong symmetry of the flow.
Lemma 1 Let ω ∈ H1 be odd at z = 0 and let uz = H(ω) the velocity
field. Then for any z ∈ [0,L/2],

u(z) cot(µz) = −1
π

∫ L/2

0
K (z, z ′)ω(z ′) cot(µz ′) dz ′, (10)

where µ = π/L and

K (x , y) = s log
∣∣∣∣
s + 1
s − 1

∣∣∣∣ with s = s(x , y) =
tan(µy)

tan(µx)
. (11)

Furthermore, the kernel K (x , y) has the following properties:
1 K (x , y) ≥ 0 for all x , y ∈ (0, 1

2L) with x 6= y ;
2 K (x , y) ≥ 2 and Kx (x , y) ≥ 0 for all 0 < x < y < 1

2L;
3 K (x , y) ≥ 2s2 and Kx (x , y) ≤ 0 for all 0 < y < x < 1

2L.
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Theoretical understanding of the blow-up via a 1D model

Sketch of the proof – continued

Lemma 2 Let the assumptions in Lemma 1 be satisfied and assume in
addition that ω ≥ 0 on [0, 1

2L]. Then for any a ∈ [0, 1
2L],

∫ L/2

a
ω(z)

[
u(z) cot(µz)

]
z dz ≥ 0. (12)

Now we are ready to prove the finite time blowup of the 1D model.
Consider the integral

I(t) :=

∫ L/2

0
ρ(z, t) cot(µz) dz. (13)
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Theoretical understanding of the blow-up via a 1D model

Sketch of the proof – continued

To prove the finite-time blowup of I(t), we consider

d
dt

I(t) = −
∫ L/2

0
u(x)ρx (x) cot(µx) dx

=
1
π

∫ L/2

0
ρx (x)

∫ L/2

0
ω(y) cot(µy)K (x , y) dy dx ,

where in the second step we have used the representation formula
(10) from Lemma 1.

By the assumption on the initial data, we have ρx , ω ≥ 0 on [0, 1
2L].

Moreover, from Lemma 1, we have K ≥ 0 for y < x , and K ≥ 2 for
y > x . Thus, we get

d
dt

I(t) ≥ 2
π

∫ L/2

0
ρx (x)

∫ L/2

x
ω(y) cot(µy) dy dx .
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Theoretical understanding of the blow-up via a 1D model

Sketch of the proof – continued

It remains to find a lower bound for the right hand side, which involves
some delicate dynamic estimates. With some work, we can show that

d
dt

I(t) ≥ 2
π

∫ t

0

∫ L/2

0
ρy (y , s) cot(µy)

∫ ζ̃(t)

0
ρx (x , t) dx dy ds

=
2
π

∫ t

0

∫ L/2

0
(ρρy )(y , s) cot(µy) dy ds

=
µ

π

∫ t

0

∫ L/2

0
ρ2(y , s) csc2(µy) dy ds

≥ µ

π

∫ t

0

∫ L/2

0
ρ2(y , s) cot2(µy) dy ds

≥ 2µ
πL

∫ t

0

(∫ L/2

0
ρ(y , s) cot(µy) dy

)2

ds =
2
L2

∫ t

0
I2ds.
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Theoretical understanding of the blow-up via a 1D model

Self-similar Singularity of the CKY Model, joint with P.
Liu

To understand the self-similar singularity of 3D axisymmetric Euler
equations observed in our numerical simulation. We consider the 1D
CKY model defined on [0,1],





∂tω(x , t) + u(x , t)∂xω(x , t) = ρx (x , t),
∂tρ(x , t) + u(x , t)∂xρ(x , t) = 0,
u(x , t) = −x

∫ 1
x
ω(y ,t)

y dy .
(14)

This model can be viewed as a local approximation of the 3D Euler
equations on the solid boundary of the cylinder with

ω ∼ ω1, ρ ∼ u2
1 . (15)

The formation of finite-time singularity of this model under certain initial
conditions has been proved by Choi, Kiselev and Yao.
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Theoretical understanding of the blow-up via a 1D model

We consider the following self-similar ansatz:




ρ(x , t) = (T − t)cρρ
(

x
(T−t)cl

)
,

u(x , t) = (T − t)cu U
(

x
(T−t)cl

)
,

ω(x , t) = (T − t)cw W
(

x
(T−t)cl

)
.

Plug these ansatz into the equations, we get

cw = −1, cu = cl − 1, cρ = cl − 2,

and a non-linear non-local ODE system




(2− cl)ρ(ξ) + clξρ
′(ξ) + U(ξ)ρ′(ξ) = 0,

W (ξ) + clξW ′(ξ) + U(ξ)W ′(ξ)− ρ′(ξ) = 0,
U(ξ) = −ξ

∫ +∞
ξ

W (η)
η dη.
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Theoretical understanding of the blow-up via a 1D model

Summary of main findings of the CKY model

For this 1D model problem, we get the following results:

We prove the existence of a family of self-similar profiles,
corresponding to different leading order non-vanishing derivative
of ρ(s)(ξ) 6= 0 at ξ = 0.

We analyze the far-field behavior of the profiles. They are analytic
with respect to a transformed variable θ = ξ−1/cl . This result can
explain the Hölder continuity of the velocity field at singularity time
observed in numerical simulation.
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Theoretical understanding of the blow-up via a 1D model

Summary of main findings of the CKY model –
continued

The asymptotic scaling exponents and self-similar profiles we
construct agree with those obtained from direct numerical
simulation of the CKY model.

The self-similar profiles we construct have some stability property
based on our numerical simulation. For fixed initial leading order
non-vanishing derivative of ρ(s)(x ,0) 6= 0 at x = 0, the solutions
converge to the same profile for different initial conditions of ω.
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Theoretical understanding of the blow-up via a 1D model

Sketch of proof:
The Biot-Savart law for this model can be written as a local
relation with a global constraint,

(
U(ξ)

ξ

)′
=

W (ξ)

ξ
, U ′(0) +

∫ ∞

0

W (η)

η
dη = 0.

We first ignore the global constraint, and construct the local
solutions near ξ = 0 using power series.
The local solutions can be extended to the whole R+.
The global constraint in the Biot-Savart law determines the
asymptotic scaling exponent, cl , which depends on s only, where
ρ(s)(0) 6= 0.
Once cl is fixed, all other scaling exponents for u, ρ and ω can be
expressed in terms of cl .
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Summary

Summary

Main contributions of our study: discovery of potentially singular
solutions of the 3D Euler equations
Similar singularity formation also observed in 2D Boussinesq
equations for stratified flows
The singularity occurs at a stagnation point where the effect of
convection is minimized.
Strong symmetry of the solution plus the presence of the physical
boundary seem to play a crucial in generating a stable and
substainable locally self-similar blowup.
Analysis of the corresponding 1D model sheds new light to the
blowup mechanism.
Analysis of the 2D Boussinesq and 3D Euler is more challenging
and is under investigation.
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