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University of Virginia

IPAM, October 1, 2014
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3D Navier-Stokes equations (NSE) – describing a flow of 3D incompressible viscous
fluid – read

ut + (u · ∇)u = −∇p+ ν4u,

supplemented with the incompressibility condition divu = 0, where u is the velocity of
the fluid, p is the pressure, and ν is the viscosity

taking the curl yields the vorticity formulation,

ωt + (u · ∇)ω = (ω · ∇)u+ ν4ω,

where ω = curlu is the vorticity of the fluid
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ω = curlu → 4u = − curlω

u(x) = c

∫
∇

1

|x− y|
× ω(y) dy

∂

∂xi
uj(x) = c P.V.

∫
εjkl

∂2

∂xi∂yk

1

|x− y|
ωl(y) dy
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there is strong numerical evidence that the regions of intense vorticity organize in
coherent vortex structures, and in particular, in elongated vortex filaments, cf.

[Siggia, 1981; Ashurst, Kerstein, Kerr and Gibson, 1987; She, Jackson and Orszag,
1991; Jimenez, Wray, Saffman and Rogallo, 1993; Vincent and Meneguzzi, 1994]

an in-depth analysis of creation and dynamics of vortex tubes in 3D turbulent
incompressible flows was presented in [Constantin, Procaccia and Segel, 1995];
see also

[Galanti, Gibbon and Heritage, 1997; Gibbon, Fokas and Doering, 1999; Ohkitani,
2009; Hou, 2009]
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what is the role of coherent vortex structures in the mathematical theory of
turbulence?

a more specific question: what is the role of coherent vortex structures – and in
particular, vortex filaments – in the mathematical theory of turbulent cascades?

−→ find a mathematical framework suitable for encoding geometric information on
the flow in the theory of turbulent cascades; work in the physical space
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Zoran Grujić Turbulent transport and dissipation of vorticity in the 3D NSE



what is the role of coherent vortex structures in the mathematical theory of
turbulence?

a more specific question: what is the role of coherent vortex structures – and in
particular, vortex filaments – in the mathematical theory of turbulent cascades?

−→ find a mathematical framework suitable for encoding geometric information on
the flow in the theory of turbulent cascades; work in the physical space
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“Half a century after Kolmogorov’s work on the statistical theory of fully developed
turbulence, we still wonder how his work can be reconciled with Leonardo’s half a
millennium old drawings of eddy motion in the study for the elimination of rapids in
the river Arno.”

– U. Frisch, Turbulence, The Legacy of A.N. Kolmogorov, 1994
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geometric depletion of the nonlinearity

rigorous study of the anisotropic dissipation induced by local coherence of the vorticity
direction was pioneered by Constantin [Constantin, 1994]

based on a singular integral representation for the stretching factor in evolution of the
vorticity magnitude featuring a geometric kernel depleted by local coherence of the
vorticity direction

this was utilized in [Constantin and Fefferman, 1993] to show that as long as

| sinϕ
(
ξ(x, t), ξ(y, t)

)
| ≤ L|x− y| holds in the regions of intense vorticity, no

finite-time blow up can occur; ξ = ω
|ω|

and later in [Beirao da Veiga and Berselli, 2002] where the Lipschitz condition was
replaced by 1

2
-Hölder
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-Hölder
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localized vortex-stretching term can be written [G., 2009] as

(ω · ∇)u · φω (x) = φ
1
2 (x)

∂

∂xi
uj(x)φ

1
2 (x)ωi(x)ωj(x)

= −c P.V.
∫
B(x0,2r)

εjkl
∂2

∂xi∂yk

1

|x− y|
φ

1
2 ωl dy φ

1
2 (x)ωi(x)ωj(x) + LOT

= VST + LOT (1)

geometric cancelations in the highest order-term V ST were utilized in [G., 2009] to
obtain a spatiotemporal localization of 1

2
-Hölder coherence of the vorticity direction

regularity criterion
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and later in [G. and Guberović, 2010] to introduce a family of scaling-invariant
regularity classes featuring a balance between coherence of the vorticity direction and
the vorticity magnitude

the following regularity class – a scaling-invariant improvement of 1
2

-Hölder coherence
– is included, ∫ t0

t0−(2R)2

∫
B(x0,2R)

|ω(x, t)|2 ρ21
2
,2R

(x, t)dx dt <∞; (2)

ργ,r(x, t) = sup
y∈B(x,r),y 6=x

| sinϕ
(
ξ(x, t), ξ(y, t)

)
|

|x− y|γ

a corresponding a priori bound had been previously obtained in [Constantin, 1990],∫ T

0

∫
R3
|ω(x, t)||∇ξ(x, t)|2 dx dt ≤

1

2

∫
R3
|u0(x)|2 dx

(see also [Constantin, Procaccia and Segel, 1995].)
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a different approach to localization of the vorticity direction regularity criteria was
introduced in [Chae, Kang and Lee, 2007]; in particular, this includes a localization of
the mixed geometric-analytic regularity criteria obtained in [Chae, 2007]

the studies of the coherence of the vorticity direction up to the boundary-regularity
criteria (for slip boundary conditions) were presented in [Beirao da Veiga and Berselli,
2002] and [Beirao da Veiga, 2013]

* * *

essentially, the unhappy scenario is ‘crossing of the vortex lines’ – the vorticity
direction becomes discontinuous (in some sense) – as we approach the singularity
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physical scales

utilize a spatial multi-scale averaging method designed to detect sign fluctuations of a
quantity of interest across a range of physical scales

introduced in a series of papers on the study of existence and scale-locality of the
energy and enstrophy cascades in 3D unforced turbulence

[Dascaliuc and G., Comm. Math. Phys. 2011, 2012, 2013; C. R. Math. Acad. Sci.
Paris 2012]

an adaptation to the study of forced turbulence → Radu’s talk today
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let B(0, 2R0) be the spatial macro-scale domain

x0 in B(0, R0)

0 < R ≤ R0

f = a locally integrable function (density) on B(x0, 2R)

spatial cut-offs

ψ = ψx0,R(x) ∈ D(B(x0, 2R)) satisfying

0 ≤ ψ ≤ 1, ψ = 1 on B(x0, R),
|∇ψ|
ψρ2

≤
C

R
,

|4ψ|
ψ2ρ2−1

≤
C

R2
, (3)

for some 1
2
< ρ1, ρ2 < 1
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a local physical scale R – associated to the point x0 – is realized via bounds on
distributional derivatives of f ,

|(Dαf, ψ)| ≤
∫
B(x0,2R)

|f ||Dαψ| ≤
(
c(α)

1

R|α|
|f |, ψδ(α)

)

for some c(α) > 0 and δ(α) in (0, 1)
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a physical scale R, 0 < R ≤ R0 – associated to macro-scale domain B(0, 2R0) – is
realized via suitable ensemble averaging of the localized quantities with respect to

‘(K1,K2)-covers at scale R’

let K1 and K2 be two positive integers, and 0 < R ≤ R0; a cover {B(xi, R)}ni=1 of
B(0, R0) is a (K1,K2)-cover at scale R if(

R0

R

)3

≤ n ≤ K1

(
R0

R

)3

,

and any point x in B(0, R0) is covered by at most K2 balls B(xi, 2R)

the parameters K1 and K2 represent the maximal global and local multiplicities,
respectively
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Zoran Grujić Turbulent transport and dissipation of vorticity in the 3D NSE



a physical scale R, 0 < R ≤ R0 – associated to macro-scale domain B(0, 2R0) – is
realized via suitable ensemble averaging of the localized quantities with respect to

‘(K1,K2)-covers at scale R’

let K1 and K2 be two positive integers, and 0 < R ≤ R0; a cover {B(xi, R)}ni=1 of
B(0, R0) is a (K1,K2)-cover at scale R if(

R0

R

)3

≤ n ≤ K1

(
R0

R

)3

,

and any point x in B(0, R0) is covered by at most K2 balls B(xi, 2R)

the parameters K1 and K2 represent the maximal global and local multiplicities,
respectively
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denote by ψ0 a cut-off corresponding to the macro-scale domain, i.e., to the case
x0 = 0 and R = R0

for x0 near the boundary of the macro-scale domain, S(0, R0), we need some
compatibility conditions between ψ and ψ0

0 ≤ ψ ≤ ψ0 (4)

and, if B(x0, R) is not included in B(0, R0), then ψ ∈ D(B(0, 2R0)) with
ψ = 1 on B(x0, R) ∩B(0, R0) satisfying, in addition to (3), the following:

ψ = ψ0 on the part of the cone centered at zero and passing through

S(0, R0) ∩B(x0, R) between S(0, R0) and S(0, 2R0)
(5)

and
ψ = 0 on B(0, R0) \B(x0, 2R) and outside the part of the cone

centered at zero and passing through S(0, R0) ∩B(x0, 2R)

between S(0, R0) and S(0, 2R0)

(6)
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Zoran Grujić Turbulent transport and dissipation of vorticity in the 3D NSE



for a physical density of interest f , consider – localized to the cover elements B(xi, R)

(per unit mass) – local quantities f̂xi,R,

f̂xi,R =
1

R3

∫
B(xi,2R)

f(x)ψδxi,R(x) dx

for some 0 < δ ≤ 1

denote by 〈F 〉R the ensemble average given by

〈F 〉R =
1

n

n∑
i=1

f̂xi,R

. . .
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f̂xi,R =
1

R3

∫
B(xi,2R)

f(x)ψδxi,R(x) dx

for some 0 < δ ≤ 1

denote by 〈F 〉R the ensemble average given by

〈F 〉R =
1

n

n∑
i=1

f̂xi,R

. . .
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the key feature of {〈F 〉R}0<R≤R0
is that 〈F 〉R being stable – i.e., nearly-independent

on a particular choice of the cover (with the fixed local multiplicity K2) – indicates
there are no significant sign fluctuations at scales comparable or greater than R

on the other hand, if f does exhibit significant sign fluctuations at scales comparable
or greater than R, suitable rearrangements of the cover elements up to the maximal
multiplicity – emphasizing first the positive and then the negative parts of f – will
result in 〈F 〉R experiencing a wide range of values, from positive through zero to
negative, respectively (the larger K2, the finer detection..)
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for a non-negative density f , the ensemble averages are all comparable to each other
throughout the full range of scales, 0 < R ≤ R0; in particular, they are all comparable
to the simple average over the macro scale domain

1

K1
F0 ≤ 〈F 〉R ≤ K2F0 (7)

for all 0 < R ≤ R0, where

F0 =
1

R3
0

∫
f(x)φδ0(x) dx
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spatiotemporal cut-offs on B(x0, 2R)× (0, T )

φ = φx0,R,T = ψ η on B(x0, 2R)× (0, T )

where η = ηT (t) ∈ C∞(0, T ), such that

0 ≤ η ≤ 1, η = 0 on (0, T/3), η = 1 on (2T/3, T ),
|η′|
ηρ1
≤
C

T
(8)
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let R be a bounded region with smooth boundary. the inward enstrophy flux through
the boundary of the region is given by

−
∫
∂R

1

2
|ω|2(u · n) dσ = −

∫
R

(u · ∇)ω · ω dx

where n denotes the outward normal

localization of the transport term to cylinder B(x0, 2R)× (0, T ) leads to the following
version of the enstrophy flux,∫

1

2
|ω|2(u · ∇φ) dx = −

∫
(u · ∇)ω · φω dx (9)

since ∇φ = (∇ψ)η, and ψ can be constructed such that ∇ψ points inward, (9)
represents local, inward enstrophy flux, at scale R (more precisely, through the layer
S(x0, R, 2R)) around the point x0

Zoran Grujić Turbulent transport and dissipation of vorticity in the 3D NSE



let R be a bounded region with smooth boundary. the inward enstrophy flux through
the boundary of the region is given by

−
∫
∂R

1

2
|ω|2(u · n) dσ = −

∫
R

(u · ∇)ω · ω dx

where n denotes the outward normal

localization of the transport term to cylinder B(x0, 2R)× (0, T ) leads to the following
version of the enstrophy flux,∫

1

2
|ω|2(u · ∇φ) dx = −

∫
(u · ∇)ω · φω dx (9)

since ∇φ = (∇ψ)η, and ψ can be constructed such that ∇ψ points inward, (9)
represents local, inward enstrophy flux, at scale R (more precisely, through the layer
S(x0, R, 2R)) around the point x0
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considering a (K1,K2)-cover {B(xi, R)}ni=1 at scale R, for some 0 < R ≤ R0, local
inward enstrophy fluxes at scale R – associated to the cover elements B(xi, R) – are
then given by ∫

1

2
|ω|2(u · ∇φi) dx, (10)

for 1 ≤ i ≤ n
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assuming smoothness on (0, T ), localizing the enstrophy dynamics to
B(xi, 2R)× (0, T ) yields the following expression for time-integrated local fluxes,

∫ t

0

∫
1

2
|ω|2(u · ∇φi) dx ds =

∫
1

2
|ω(x, t)|2ψi(x) dx+

∫ t

0

∫
|∇ω|2φi dx ds

−
∫ t

0

∫
1

2
|ω|2

(
(φi)s +4φi

)
dx ds

−
∫ t

0

∫
(ω · ∇)u · φi ω dx ds, (11)

for any t in (2T/3, T ) and 1 ≤ i ≤ n
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denoting the time-averaged local fluxes per unit mass associated to the cover element
B(xi, R) by Φ̂xi,R,

Φ̂xi,R =
1

t

∫ t

0

1

R3

∫
1

2
|ω|2(u · ∇φi) dx, (12)

the quantity of interest is the ensemble average of {Φ̂xi,R}ni=1,

〈Φ〉R =
1

n

n∑
i=1

Φ̂xi,R (13)

the goal is to formulate a set of physically reasonable conditions on the flow in
B(0, 2R0)× (0, T ) implying the strict positivity and stability of 〈Φ〉R across a suitable
range of scales – existence of the enstrophy cascade
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(A1) Coherence

assume that there exist positive constants M and C1 such that

| sinϕ
(
ξ(x, t), ξ(y, t)

)
| ≤ C1|x− y|

1
2

for any (x, y, t) in
(
B(0, 2R0)×B(0, 2R0 +R

2
3
0 )× (0, T )

)
∩ {|∇u| > M}
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(A2) Modified Kraichnan scale is a small scale

denote by E0 time-averaged enstrophy per unit mass associated with the macro-scale
domain B(0, 2R0)× (0, T ),

E0 =
1

T

∫
1

R3
0

∫
1

2
|ω|2φ2ρ−1

0 dx dt,

by P0 a modified time-averaged palinstrophy per unit mass,

P0 =
1

T

∫
1

R3
0

∫
|∇ω|2φ0 dx dt+

1

T

1

R3
0

∫
1

2
|ω(x, T )|2ψ0(x) dx,

and by σ0 a corresponding modified Kraichnan scale, σ0 =

(
E0

P0

) 1
2

(A2) is a requirement that the modified Kraichnan scale associated with the
macro-scale domain B(0, 2R0)× (0, T ) be dominated by the macro scale,

σ0 < βR0,

for a suitable constant β = β
(
ρ,K1,K2,M,C1, supt∈(0,T ) ‖ω(t)‖L1

)
(0 < β < 1)
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(A3) Localization and modulation

the general set up considered is one of the Leray solutions satisfying (A1). (A1)
implies smoothness – however, the control on regularity-type norms is only local

on the other hand, the energy inequality implies

∫ T

0

∫
R3
|ω|2 dx dt <∞; localization

of the macro-scale domain will be determined by the condition∫ T

0

∫
B(0,2R0+R

2
3
0 )
|ω|2 dx dt ≤

1

C2
,

for a suitable constant C2 > 1

the modulation assumption on the evolution of local enstrophy on (0, T ) – consistent
with the choice of the temporal cut-off η – reads∫

|ω(x, T )|2ψ0(x) dx ≥
1

2
sup

t∈(0,T )

∫
|ω(x, t)|2ψ0(x) dx
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the following result holds [Dascaliuc and G. , Comm. Math. Phys. 2013]

Theorem (existence of 3D enstrophy cascade)

Let u be a Leray solution on R3 × (0, T ) satisfying (A1)-(A3) on the spatiotemporal

macro-scale domain B(0, 2R0 +R
2
3
0 )× (0, T ), and suppose that ω0 is in L1(R3).

Then,
1

4K∗
P0 ≤ 〈Φ〉R ≤ 4K∗ P0

for all R, 1
β
σ0 ≤ R ≤ R0.
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it is indeed possible to remove the localization of B(0, 2R0)× (0, T ) assumption in
the theorem [Leitmeyer, 2014]

let S be a set, and denote by Mp.q(S) the restricted Morrey space of functions f such
that

sup
y∈R3,R>0

1

R3(1−p/q)

∫
B(y,R)∩S

|f |p dx <∞

then, one can replace (A3)-localization with ω ∈ L2(0, T ;M2.qB(0, 2R0)) for some
q > 2, and

σ
1−2/q
0 ‖ω‖M2,q(B(0,2R0)

< c(β)
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the second result concerns locality of the flux

according to turbulence phenomenology, the average flux at scale R – throughout the
inertial range – is supposed to be well-correlated only with the average fluxes at
nearby scales

denoting the time-averaged local fluxes associated to the cover element B(xi, R) by

Ψ̂xi,R,

Ψ̂xi,R =
1

T

∫ T

0

∫
1

2
|ω|2(u · ∇φi) dx, (14)

the (time and ensemble) averaged flux is given by

〈Ψ〉R =
1

n

n∑
i=1

Ψ̂xi,R = R3 〈Φ〉R (15)

the following locality result is a straightforward consequence of the universality of the
cascade of the time and ensemble-averaged local fluxes per unit mass 〈Φ〉R presented
in the previous result
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Theorem (locality of 3D enstrophy cascade)

Let u be a Leray solution on R3 × (0, T ) satisfying (A1)-(A3) on the spatiotemporal

macro-scale domain B(0, 2R0 +R
2
3
0 )× (0, T ), and suppose that ω0 is in L1(R3). Let

R and r be two scales within the inertial range delineated in the previous theorem.
Then

1

16K2
∗

(
r

R

)3

≤
〈Ψ〉r
〈Ψ〉R

≤ 16K2
∗

(
r

R

)3

.

In particular, if r = 2kR for some integer k, i.e., through the dyadic scale,

1

16K2
∗

23k ≤
〈Ψ〉2kR
〈Ψ〉R

≤ 16K2
∗ 23k.

previous locality results include locality of the filtered flux – via coarse graining
approach – presented in [Eyink, 2005] and [Eyink and Aluie, 2009], and locality of the
flux in the Littlewood-Paley setting obtained in [Cheskidov, Constantin, Friedlander
and Shvydkoy, 2008]
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an effect of coherence of the vorticity direction on the energy cascade −→ Mike’s talk
on Friday
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another look at turbulent transport/concentration of 3D vorticity

vortex-stretching has been viewed as the principal physical mechanism responsible for
the vigorous creation of small scales in turbulent flows

this goes back at least to G.I. Taylor’s paper

Production and dissipation of vorticity in a turbulent fluid, Proc. Roy. Soc., A164
(1937), 15–23

the production part is relatively well-understood; amplification of the vorticity via the
process of vortex stretching is essentially a consequence of the conservation of the
angular momentum in the incompressible flows..
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let us consider a flow that is smooth on (0, T ), and think about T as being either the
first (possible) singular time, or a regular time at which the vorticity field exhibits high
magnitude and high spatial complexity (in the sense that ‖ω(T )‖∞ is ‘very large’ and
σ0 is ‘very small’)

denote by Ωτ (M) the vorticity super-level set at time τ – more precisely –

Ωτ (M) = {x ∈ R3 : |ω(x, τ)| > M}

and define the region of intense vorticity at time s < T to be the region in which the
vorticity magnitude exceeds a fraction of ‖ω(s)‖∞, i.e., the set

Ωs
( 1

c1
‖ω(s)‖∞

)
for some c1 > 1
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denote by Ωτ (M) the vorticity super-level set at time τ – more precisely –

Ωτ (M) = {x ∈ R3 : |ω(x, τ)| > M}

and define the region of intense vorticity at time s < T to be the region in which the
vorticity magnitude exceeds a fraction of ‖ω(s)‖∞, i.e., the set

Ωs
( 1

c1
‖ω(s)‖∞

)
for some c1 > 1
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the picture painted by numerical simulations indicates that the region of intense
vorticity comprises – in statistically significant significant sense/in time-average – of
vortex filaments with the lengths comparable to the suitable macro-scale R0 (e.g., the
spatial period L)

in what follows, let us think in terms of the macro-scale long vortex filaments. a
natural micro-scale is then the length scale associated with the diameters of the
cross-sections; this can then be estimated indirectly, by estimating the rate of the

decrease of the total volume of the region of intense vorticity Ωs(t)

( 1

c1
‖ω(t)‖∞

)
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taking the initial vorticity to be in L1, a desired estimate on the volume of the region
of intense vorticity follows simply from the a priori L1-bound and the Tchebyshev
inequality,

Vol

(
Ωs(t)

( 1

c1
‖ω(t)‖∞

))
≤

c02
‖ω(t)‖∞

(c02 > 1)

this implies the decrease of the diameters of the cross-section of at least

λ(t) =
c03

‖ω(t)‖
1
2∞

for a constant (initial data,T) c03 > 1

−→ 2 questions

1. is it possible to obtain a mathematical evidence of creation and persistence (in
average) of R0-long vortex filaments?

2. is λ a dissipation scale?
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one way to identify the range of (axial) scales at which the dynamics of creation and
persistence of vortex filaments takes place is to identify the range of scales of
positivity of Sω · ω

denote the time-averaged localized vortex-stretching terms per unit mass associated to
the cover element B(xi, R) by V STxi,R,t,

V STxi,R,t =
1

t

∫ t

0

1

R3

∫
(ω · ∇)u · ω φi dx ds (16)

the quantity of interest is the ensemble average of {V STxi,R,t}ni=1,

〈V ST 〉R,t =
1

n

n∑
i=1

V STxi,R,t (17)
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B(xi, R)-localized enstrophy level dynamics is as folows

∫ t

0

∫
(ω · ∇)u · φi ω dx ds =

∫
1

2
|ω(x, t)|2ψi(x) dx+

∫ t

0

∫
|∇ω|2φi dx ds

−
∫ t

0

∫
1

2
|ω|2

(
(φi)s +4φi

)
dx ds

−
∫ t

0

∫
1

2
|ω|2(u · ∇φi) dx ds, (18)

for any t in (2T/3, T ), and 1 ≤ i ≤ n
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denote by E0,t time-averaged enstrophy per unit mass associated with the macro scale
domain B(0, 2R0)× (0, t),

E0,t =
1

t

∫ t

0

1

R3
0

∫
1

2
|ω|2φ1/20 dx ds,

by P0,t a modified time-averaged palinstrophy per unit mass,

P0,t =
1

t

∫ t

0

1

R3
0

∫
|∇ω|2φ0 dx ds+

1

t

1

R3
0

∫
1

2
|ω(x, t)|2ψ0(x) dx

and by σ0,t a corresponding modified Kraichnan scale,

σ0,t =

(
E0,t

P0,t

) 1
2
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then the following holds [Dascaliuc and G., J. Math. Phys. 2012]

Theorem (vortex stretching)

Let u be a global-in-time local Leray solution on R3 × (0,∞), regular on (0, T ).
Suppose that, for some t ∈ (2T/3, T ),

C max{M
1
2
0 , R

1
2
0 }σ

1
2
0,t < R0 (19)

where M0 = sup
t

∫
B(0,2R0)

|u|2 <∞, and C > 1 a suitable constant depending only

on the cover parameters.
Then,

1

C
P0,t ≤ 〈V ST 〉R,t ≤ C P0,t (20)

for all R satisfying

C max{M
1
2
0 , R

1
2
0 }σ

1
2
0,t ≤ R ≤ R0. (21)
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local anisotropic diffusion

Definition

Let x0 be a point in R3, r > 0, S an open subset of R3 and δ in (0, 1).

The set S is linearly δ-sparse around x0 at scale r in weak sense if there exists a unit
vector d in S2 such that

|S ∩ (x0 − rd, x0 + rd)|
2r

≤ δ.

recall that Ωt(M) denotes the vorticity super-level set at time t,

Ωt(M) = {x ∈ R3 : |ω(x, t)| > M}
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the following result holds [G., Nonlinearity 2013]

Theorem (local anisotropic diffusion)

Suppose that a solution u is regular on an interval (0, T ∗).

Assume that either

(i) there exists t in (0, T ∗) such that t+
1

d20‖ω(t)‖
≥ T ∗, or

(ii) t+
1

d20‖ω(t)‖
< T ∗ for all t in (0, T ∗), and there exists ε in (0, T ∗) such that for

any t in (T ∗ − ε, T ∗), there exists s = s(t) in
[
t+ 1

4d20‖ω(t)‖
, t+ 1

d20‖ω(t)‖

]
with the

property that for any spatial point x0, there exists a scale r = r(x0),
0 < r ≤ 1

2d20‖ω(t)‖
1
2∞

, such that the super-level set Ωs(M) is linearly δ-sparse around

x0 at scale r in weak sense; here, δ = δ(x0) is an arbitrary value in (0, 1),

h = h(δ) = 2
π

arcsin 1−δ2
1+δ2

, α = α(δ) ≥ 1−h
h

, and M = M(δ) = 1
dα0
‖ω(t)‖∞.

Then, there exists γ > 0 such that ω is in L∞
(

(T ∗ − ε, T ∗ + γ);L∞
)

, i.e., T ∗ is not

a singular time. (d0 is a suitable absolute constant.)
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main ingredients in the proof

(i) a local-in-time lower bound on the radius of spatial analyticity in L∞

(ii) translational and rotational symmetries

(iii) a consequence of the general harmonic measure majorization principle:

let D be open and K closed in C, f analytic in D \K, |f | ≤M , and |f | ≤ m on K.

then
|f(z)| ≤ mθM1−θ

for any z in D \K, where θ = h(z,D,K) is the harmonic measure of K with respect
to D evaluated at z

(iv) a result on extremal properties of the harmonic measure in the unit disk D
[Solynin, 1999]
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a couple of remarks

– it suffices to assume the sparseness condition at (suitably chosen) finitely many times

– the harmonic measure argument is completely local; however the lower bound on the
radius of spatial analyticity of solutions utilized in the proof is not

there is a recent work on localization of spatial analyticity properties of solutions to
the 3D NSE −→ Igor’s talk tomorrow
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recall the upper bound on the diameters of the vortex filaments,

λ(t) =
c03

‖ω(t)‖
1
2∞

on the other hand, the theorem produced a local (anisotropic) dissipation scale

d(t) =
1

c04

1

‖ω(t)‖
1
2∞

(c03, c
0
4 > 1)

−→ try to get a uniform-in-time estimate on∫
ψw logw dx

where w =
√

1 + |ω|2; this would – in turn – yield extra log-decay on the distribution
function of the vorticity
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for any τ in [0, T ),

I(τ) ≡
∫
ψ(x)w(x, τ) logw(x, τ) dx ≤ I(0) + c

∫ τ

0

∫
x
ω · ∇u · ψ ξ logw dx dt

+ a priori bounded

in order to take the advantage of the Coifman-Rochberg’s estimate –

‖ logMf‖BMO ≤ c(n),

for any locally integrable function f – we decompose the logarithmic factor as

logw = log
w

Mw
+ logMw
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for the second term, we have the following string of inequalities

J2 ≤ c
∫ τ

0
‖ω · ∇u‖h1‖ψ ξ logMw‖bmo dt

≤ c
∫ τ

0
‖ω · ∇u‖H1‖ψ ξ logMw‖

b̃mo
dt

≤ c
∫ τ

0
‖ω‖2‖∇u‖2

(
‖ψ ξ‖∞ + ‖ψ ξ‖

b̃mo 1
| log r|

)(
‖ logMw‖BMO + ‖ logMw‖1

)
dt

≤ c sup
t∈(0,T )

{(
1 + ‖ψ ξ‖

b̃mo 1
| log r|

)(
‖ logMw‖BMO + ‖ logMw‖1

)} ∫
t

∫
x
|∇u|2

≤ c
(

1 + sup
t∈(0,T )

‖ψ ξ‖
b̃mo 1

| log r|

) (
1 + sup

t∈(0,T )
‖ω‖1

) ∫
t

∫
x
|∇u|2

by h1 − bmo duality, the Div-Curl Lemma, the pointwise b̃mo-multiplier theorem, the
Coifman-Rochberg’s estimate, and the L1-bound on the modified maximal operator
M
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this implies the following result [Bradshaw and G., Indiana Univ. Math. J. 2014]

Theorem (broken ξ can still generate dissipation)

Let u be a Leray solution to the 3D NSE, smooth on (0, T ). Assume that the initial
vorticity ω0 is in L1 ∩ L2. Suppose that

sup
t∈(0,T )

‖(ψξ)(·, t)‖
b̃mo 1

| log r|

<∞.

Then,

sup
t∈(0,T )

∫
ψ(x)w(x, t) logw(x, t) dx <∞.
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b̃moφ contains discontinuous functions if and only if

∫ 1
2

0

φ(r)

r
dr =∞

in particular, b̃mo 1
| log r|

contains bounded functions with the singularities of, say,

sin log | log( something algebraic )|-type

ξ can (as it approaches T ) oscillate among infinitely many points on the unit sphere –

ξ(singx, T ) ∼

– and still yield extra log-decay of the distribution function of ω
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Zoran Grujić Turbulent transport and dissipation of vorticity in the 3D NSE
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