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What is turbulence? 

Hypotheses  :  
- The fluid is supposed to be a continuous medium  

when the observation scale is much larger  
than the mean free path of molecules, 

-   The fluid flow is supposed to be incompressible, i.e., non-divergent. 

Turbulence is a state that fluid flows reach  
when they become unstable and highly fluctuating. 

  Etymology of the word ‘turbulence’ : 
turba-ae,  crowd, mob 

turbo-inis,  vortex 

    A mob of vortices interacting together     
on a wide range of temporal and spatial scales. 

Fluid flows reach the fully-developed turbulent regime 
when they become highly mixing. 



1. 

History of 
d’Alembert’s paradox	





Jean Le Rond d’Alembert 
(1717-1783)  

Leonhard Euler 
(1707-1783)  



On 16th May 1748 the Prussian Academy of Sciences, 
presided by Euler, offered a prize to the mathematician who 

could propose a: 

Mathematical Prize 1750	



'Theoria resistentiae quam patitur corpus in fluido motum, 
ex principiis omnino novis et simplissimis deducta, !

habita ratione tum velocitatis, figurae, !
et massae corporis moti, tum densitatis !

& compressionis partium fluidi'.  

    On 25th November 1749 d’Alembert sent  
a 137  pages manuscript, but Euler decided  

to postpone the prize to 1752. 

Grimberg, D’Alembert et les équations  
aux dérivées partielles en hydrodynamique,  

Thèse de Doctorat, Université de Paris VII, 1998 



D’Alembert was upset and took back his manuscript of 1749. 
He translated it into French and published it in 1752 under the title  

    ’Essai d’une nouvelle théorie de la résistance des fluides’.  

D’Alembert’s theory of fluid resistance	



1749 1752 

The prize was finally given in 1752 to Jacob Adami, 
a friend of Euler, and published by the Prussian Academy. 



Euler had already noticed the fact that potential flow 
exerts no drag on moving bodies in a work he 

published in 1745 on ‘New principles of gunnery’. 

D’Alembert’s paradox	



Darrigol, World of flows: a history of hydrodynamics  
from Bernoulli to Prandtl, Oxford university Press, 2005 

    While working on the Berlin Academy Prize,  
d’Alembert was also conscious  

of that problem and wrote: 

’It seems to me that the theory, developed in all possible 
rigor, gives, at least in several cases, a strictly vanishing 

resistance, a singular paradox which I leave to future 
geometers to elucidate.’ 



Adhémar Jean-Claude 
Barré de Saint-Venant 

(1797-1886)  

Ludwig Prandtl 
(1875-1953)  



Resolution proposed by Saint-Venant	



’But one finds another result if, instead of an inviscid fluid, 
object of the calculation of the geometers of the last century, 

one uses a real fluid, composed of a finite number of molecules 
and exerting in its state of motion unequal pressure forces 

having components tangential to the surface elements through 
which they act; components to which we refer as the !

friction of the fluid, a name which has been given to them !
since Descartes and Newton until Venturi.’ 

Saint-Venant, Résistance des fluides: considérations historiques, physique et 
pratiques relatives au problème de l’action dynamique mutuelle d’un fluide à 
un solide, dans l’état de permanence supposé acquis par leurs mouvements, 

Mémoires de l’Académie des sciences, 44, 1-280, 1888 

In 1846 he wrote a note to the ‘Société Philomatique’,  
published later by the ‘Académie des Sciences’, stating that: 



           At the 3rd ICM conference held in 1904 in Heidelberg,  
            Prandtl proposed a theory based on the hypothesis: 

        ‘The viscosity is supposed to be so small that it can be 
disregarded wherever there are no great velocity differences. 

  […] The most important aspect of the problem is the behavior  
     of the fluid on the surface of the solid body. […]  In the thin 
  transition layer, the great velocity differences will […] produce 

noticeable effects in spite of the small viscosity constants.               
           […] It is therefore possible to pass to the limit ν = 0  
                        and still retain the same flow figure.’          

Inviscid limit = Euler equation + Prandtl viscous equation 

Prandtl, NACA YM-342, 
English translation, 1927 

Resolution proposed by Prandtl	





Boundary layer theory 
•  Prandtl was aware that his approach is only valid if the 

boundary layer remains attached to the wall (left), 
    i.e., away from separation points. 
•  Separated flow regions, i.e., where the boundary layer 

detaches (right), have to be included « by hand » since 
Prandtl’s theory doesn’t predict their behavior. 



2. 

Inviscid limit of the 
Navier-Stokes equations 



What is the inviscid limit of Navier-Stokes? 

€ 

uRe(t,x)

€ 

u(t,x)

The Reynolds number Re = ULν-1 appears when  
non dimensional quantities are introduced. 

Navier-Stokes 
     solutions 

 Euler’s  
solutions 

Navier-Stokes equations with 
no-slip boundary conditions: 

Euler equations with slip b.c.: 

€ 

Re→ +∞
(NS) 

(E) 

€ 

ν → 0
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Re = +∞

€ 

ν = 0
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 Reλ 

Vassilicos, Ann. Rev. 
Fluid Mech.,47, 2015	



Dissipation 
rate 

Dissipation rate: laboratory experiments    

Fully-developed turbulence Transition 



Dissipation rate : numerical experiments   

Kaneda et al., 2003 
Phys. Fluids, 12, 21-24	



 Reλ 

20483 40963 

1200 

10243 5123 

Fully-developed turbulence 

Dissipation 
rate  

Transition 

Both laboratory experiments and 
numerical experiments of turbulent flows 

show that the dissipation rate   
   becomes independent of the fluid viscosity 



Dissipation of energy in the inviscid limit 

       E energy,  Z enstrophy, 
fluid kinematic viscosity 
        flow vorticity. 

Possible vorticity distributions: 







3. 

Numerical 
experiments 



Volume penalization method to compute NS 

•  For efficiency and simplicity, we would like to stick to a 
spectral solver in periodic, cartesian coordinates. 

•  as a counterpart, we need to add an additional term in 
the equations to approximate the effect of the 
boundaries, 

•  the geometry is encoded in a mask function      ,  

€ 

∂tu+ (u ⋅ ∇)u = −∇p +
1
Re

Δu− 1
η
χ0u

∇ ⋅u = 0, u(0,x) = v

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
(PNS) 

solution 

€ 

uRe,η
E. Arquis and J.P.Caltagirone,CRAS, 1984  M. F. and K. Schneider, PRL, 95, 2005  



K. Schneider and M. F., 
Phys. Rev. Lett., 95, 

244502 (2005) 

Dealiased  
pseudo-spectral 

In space 
and 3rd order 
Runge-Kutta 

In time 

DNS 
Resolution 
N=10242 

31.  Wall-bounded 2D turbulent flow 

0 +ωmax -ωmax 



N=10242 

Re=2.103 

N=20482 

Re=7.103 

N=40962 

Re=2.104 

N=81922 

Re=105 



Resolution 
N=81922 

Nguyen van yen, 
M. F. and 

 Schneider, 
2010 

Time evolution 
of vorticity  
at the wall 

computed on 
IBM Blue-Gene, 

IDRIS, 2010 
(100 Tflops) 

Flow interaction with the wall 



 32.   Dipole crashing onto a wall 

+ωmax -ωmax 
0 



Dipole crashing onto a wall at Re=8000 

DNS 
Resolution 
N=81922 



Dipole crashing onto a wall at Re=8000 

DNS 
Resolution 
N=81922 



Energy evolution 
Time evolution of energy 

 Evolution of energy dissipation rate 

DNS 
Resolution 
N=81922    Euler ν=0 Navier-Stokes  

          ν>0 

Time evolution of energy 



Energy dissipation 
Energy dissipated  

when the dipole crashes onto the wall  
at increasing Reynolds numbers  

ΔE 

Re 

t=0-0.5 

t=0-0.35 
t=0.35-0.5 

Early time : 

Later time: 



Dissipative structures 

•  Our experiments with the dipole crashing onto  a 
wall suggest that the flow remains dissipative  

    in the inviscid limit, 
•  it is tempting to relate these structures  
   to energy dissipation,  
•  the kinetic energy density                obeys: 

€ 

e =
u 2

2

€ 

∂te + u ⋅ ∇(e + p) = νΔe −ν ∇u 2

Local dissipation rate 



Resolution 
N=163842 

DNS of dipole crashing onto a wall 

t=0.4 t=0.3 t=0.5 

Nguyen van yen, M. F.  
and Schneider, 
PRL, 106(18) 



Dipole-wall collision at Re=8000 
DNS 

Resolution 
N=81922 

Nguyen van yen, M. F.  
and Schneider, 
PRL, 106(18) 

 Production of  
vortices where  
boundary layer  
    detaches 



Nguyen van yen, M. F. 
and Schneider, 
PRL, 106(18) 

Dissipative structures 

Detached vortex 

Attached vorticity layer 

Re=1000 Re=8000 
Re-1 

Re-1/2 

energy 
dissipation 
rate 

energy 
dissipation 



Snapshot of the local dissipation rate 

    The strongest values of 
the energy dissipation 
rate is observed inside 
the main vortex that 
detached from the 
boundary layer,  

    rather than inside the 
boundary layer itself. 

Local dissipation rate 
for the dipole-wall collision  

at t= 0.5 



R. Nguyen van yen, M. F.  
and K. Schneider, 

PRL, 106(18) 

Production of dissipative structures 

Detached vortex 
High dissipation rate 

Low dissipation rate 



R. Nguyen van yen, M. F. and K. Schneider, 2011 



33.   Quadrupole in a channel flow 

Initial vorticity field 

min max 



Prandtl equations 

where        is the pressure calculated from 
  which is the vorticity given by Euler equation    

. 

yP = y / ν1/2 



Prandtl solver 
•  Artificial boundary condition:                        at   
•  Spatial discretization: Fourier in      
    and compact finite differences of 5th order in  
•  Time discretization: low storage third order Runge-Kutta in 

•  Neumann boundary condition for vorticity:                     
                                                              at  
                           where       is the pressure calculated from 

•  To close the system we impose  
                                                at 
                           which is consistent with the rapid decay of  



Euler solver 



Navier-Stokes solver 
Fourier/compact finite differences (5th order)  

  Nx = 1024 
  Ny = 385 - 449 

-  Similar to the one for the Prandtl equations, except that 
non-uniform grids are used in the y direction.  
- Two linear integral constraints are applied on vorticity to satisfy the  
no-slip boundary conditions in y.  
- Integrating factor for the viscous term and 3rd order Runge-Kutta  
- for the advection term. 



Computational grid 

B.L. 

Before t=54 After t=54 when B.L. detachs 
from the wall 



Euler Prandtl couplées  Navier-Stokes 



Prandtl’s singularity 

L. L. van Dommelen  
and S. F. Shen., 1980 
J. Comp. Phys., 38(2) 



Prandtl solution’s blow-up 

Evolution of vorticity max Evolution of analyticity strip 



What happens after the singularity? 

Vorticity max Enstrophy 

We observe Prandtl’s scaling in Re1/2 before tD~ 55.8 
                 and Kato’s scaling in Re after 

t= 57 
~Re  

t=53 
~Re1/2  

t= 57 
~Re  t=53 

~Re1/2 



Vorticity along the wall at t=50 

Euler-Prandtl solution 
          compared to 
Navier-Stokes solution    



Vorticity along the wall at t=54 



Vorticity along the wall at t=55 



Vorticity along the wall at t=57>tD 

    Production of vortices 
where boudary layers detach 

    Higher Re, 
more vortices 
   produced 



Vorticity along the wall at t=55.3 

ω=0 



Vorticity along the wall at t=57.5 

ω=0 



Conclusion 

The production of dissipative structures  
is the key feature of boundary layer (BL) detachment  
at vanishing viscosity limit of incompressible flows. 

The viscous Prandtl solution becomes singular at tD 
That corresponds to the instant when BL detaches. 

The viscous Navier-Stokes solution converges uniformly  
to the inviscid Euler solution for t<tD,  
and ceases to converge for t>tD. 

The detachment process involves spatial scales 
 in different directions, and not only parallel to the wall,  
that are as fine as Re-1. 



Conclusion 

The Navier-Stokes boundary layer detachment dynamics  
are very different from the dynamics of the finite time singularity  
developing in Prandtl’s equation with: 

R. Nguyen van yen, M. F. and  
K. Schneider, 2011 

Phys. Rev. Lett., 106(18), 184502 

R. Nguyen van yen, M. Waidman, R. Klein, 
M.F. and K. Schneider, 2014 

Preprint 

-   non locality in the parallel direction, 
-   formation of small scales scaling at least as Re-1,  
   in different directions  and not only in the direction  
  parallel to the wall, 
-   pressure plays an essential role 
   in the detachment process. 



Open questions 

-  Would Navier-Stokes solution looses smoothness after tD?  
- Would it converges to a weak singular dissipative solution of  
 Euler's equation analog to dissipative shocks in Burgers solution? 
- How can such a weak solution be approximated numerically?  

J. Leray, 1934 
Sur le mouvement d’un fluide visqueux, 

Acta Mathematica, 63 
C. de Lellis and L. Székzlyhidi, 2010 

Archives Rational Mechanics and  Analysis, 
195(1), 221-260 

Numerical results suggest that a new asymptotic description  
of the flow beyond the breakdown of the Prandtl regime is possible.  
        Studying it might help to answer the following questions: 

   This might lead to a new resolution of d’Alembert’s paradox  
in terms of the production of weak singular dissipative structures 
due to the interaction of fully-developed turbulent flows with walls. 



‘As long as we are not able to 
predict the drag on a sphere or 
the pressure drop in a pipe from 
continuous, incompressible and 
Newtonian assumptions without 
any other complications, namely 
from first principles, we would 
not have made it!’ 

Turbulence Workshop 
UC Santa Barbara 

1997 
Hans Liepmann 

(1914-2009)  

On turbulence 



‘As far as the laws of 
mathematics refer to 
reality, they are not 
certain, as far as they 
are certain, they do 
not refer to reality’. 

‘Geometry and experience’, 
Conference given in Berlin 

at the Prussian  
Academy of Sciences 
on January 27th 1921 

Albert Einstein 
(1879-1955)  

On mathematics and reality 
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