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Einstein & Wiener: The Local diffusion

Normal distribution

Normal distribution (or Gaussian distribution):
X ~ N(0,1)
Probability density function for a Gaussian random variable
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Einstein & Wiener: The Local diffusion

Non-Normal distribution

There is only one normal distribution.

All others: Non-normal (i.e., anomalous) distributions

0.6

f(x)

=06, p=-0.25

10



Einstein & Wiener: The Local diffusion

Normal vs. non-normal distributions
Gaussian vs. non-Gaussian random variables
Light vs. heavy tails

Local vs. nonlocal diffusions ?

Local vs. nonlocal Laplacians ?



Einstein & Wiener: The Local diffusion

Brownian motion: Einstein’s theory

Brownian motion: Particles randomly moves in a liquid

Einstein 1905: Macroscopic theory (probability density p for
particles)

Assumptions
Particles spreading area grows linearly in time
(i.e., variance grows linearly in time)

Particle paths on non-overlapping time intervals are
independent

L. C. Evans: An Intro to Stochastic Diff Eqns, 2013



Einstein & Wiener: The Local diffusion

Brownian motion: Einstein’s theory

A particle randomly walks on 1D lattice: Space step Ax, time
step At, location (m, n)

p(m,n+1) = %[p(m —1,n)+p(m+1,n)]

Rewrite:

1
p(m> n+ 1) - p(mv n) = E[p(m - 17 n) - 2p(m, n) + p(m + 17 n)]
Assumption: Particles spreading area growing linearly in time

(Ax)? _

D
At

p(mn+1)—p(m,n) Dp(m-1,n)—2p(m,n)+p(m+1,n)
At 2 (AX)2

Letting AX — 0 and At — 0: p; = %pxx



Einstein & Wiener: The Local diffusion

Diffusion equation (Fokker-Planck egn for Brownian motion):

D
Pt = prx
Local Laplacian: A = 0y
For p(x,0) =6(0) and D = 1:
<
plx.1) = 27Tte !

Estimate : 0 < p(x,t) < -2

Diffusion!

1 ¢
V2r

Particle paths: Normal distribution A/(0,t)
Guess : Brownian motion B; ~ A/(0,t)



Einstein & Wiener: The Local diffusion

Related works around the time

Macroscopic equations for microscopic motions
Bachelier 1900

Smoluchowski 1906

G. I. Taylor 1921

Uhlenbeck-Ornstein 1930



Einstein & Wiener: The Local diffusion

Brownian motion B;: Wiener’s theory

Wiener’s theory 1923: Microscopic theory (Paths of a particle)
@ Independent increments: By, — By, and By, — By,
independent
@ Stationary increments with B; — Bs ~ A/(0,t — s)
@ Continuous sample paths (but nowhere differentiable in
time)

Remarks:

Bt ~ NV(0,1)

Var(B;) =t

Variance linear in time; spreading area linear in time

|. Karatzas and S. E. Shreve,
Brownian Motion and Stochastic Calculus



Einstein & Wiener: The Local diffusion

White noise

White noise: 2

Generalized time derivative



Einstein & Wiener: The Local diffusion

Brownian particles in a moving liquid with velocity * b"

Brownian motion with an ambient or underlying velocity field

Hbll

& — b4 &g

dX; = b dt + dB

Xt = bt + By ~ N(bt, 1)
For p(x,0) =4¢(0) and D = 1:

_ (x=b)?
e 2t

1
p(X,t) = \/2—711

This satisfies: Diffusion-Advection equation

D
—Pxx — bpx

Pt:2

b: Drift, or convection
Fokker-Planck egn for Brownian motion with a drift “b"



Einstein & Wiener: The Local diffusion

For Brownian motion with a constant drift “b"
dX; = b dt + dB,

the Fokker-Planck eqn is:

D
pt = prx - bpx

Guess: For Brownian motion with a state-dependent drift “b",
the Fokker-Planck egn is:

D
pt = prx — (bp)x



Einstein & Wiener: The Local diffusion
Related works

Fokker 1914
Planck 1918
Smoluchowski 1915

Kolmogorov forward equation 1931



Einstein & Wiener: The Local diffusion

So, local Laplacian A:
Macroscopic description of Brownian particles

In fact, it is also the generator for Brownian motion



Einstein & Wiener: The Local diffusion

Generator for Brownian motion B

Brownian motion starting at x: X; = x + B

Generator : Time derivative of ‘mean observation of a
stochastic process’

Af(X) = dt‘t OEf(xt)

It is a linear operator.
Connecting stochastics with deterministics .

Generator A carries info about process X

Generator for Brownian motion: Local Laplacian!
A= 8xx



Einstein & Wiener: The Local diffusion
Let us verifying this

For X; = x + B,

1 _=x)?
Ef(Xt) = ﬁ/f(y)e o dy
1 22
= — [f(x+zVt)e zdz,
\/27r/ ( )

where we have changed variables via z = %



Einstein & Wiener: The Local diffusion

Ef (Xt) — f(x)

t
1 /z\/ff’(x)+%22tf”(x+ezﬁ) 2
= e z2dz
Vonr t
1 f’(x)/ 2
= ———*[ze 2dz
V2r t
;1L zzf”(x+92\/f)e_§dz
2\/2rx
~ o4 L zzf”(x+92\/f)e‘§dz
2\/2rx '

Finally: the generator A is local Laplacian —

Af(x) = %\tzoEf(xt):%w

= 2100)



Einstein & Wiener: The Local diffusion

So, local Laplacian A:
Macroscopic description  of Brownian motion
Generator for Brownian motion

Same in the context of Fokker-Planck eqns

How about the nonlocal Laplacian : (—A)2, 0 <a <27?



Lévy: A nonlocal diffusion

Nonlocal Laplacian: Macroscopic description of Lévy motio

Nonlocal Laplacian : (-A)2, 0 < a < 2:

Macroscopic description or generator  for symmetric
a—stable motion L{



Lévy: A nonlocal diffusion

Central Limit Theorem

X1,Xo, -+, X are independent, identically distributed (iid)
random variables (i.e., ‘measurements’) and then “averaging":

Central Limit Theorem
A stable random variable X comes from “averaging the

measurements":
X .+ Xy—b T
lim 21T T2 = 0n o distribution
n—o00 dn

for some constants an, b, (an # 0)

Notation: X ~S,, 0<a <2

«a—stable random variable
a: Non-Gaussianity index



Lévy: A nonlocal diffusion

A special case: o =2

Well-known normal random variable emerges when o =2
EX; = pu, Var(X;) = o2

Central limit theorem: A normal random variable comes from
“averaging the measurements"

Xyt +Xp—n
lim
n—o0 O'\/ﬁ

Namely,

£ — X ~N(0,1) in distribution

fim pXL Xm0

1 X —X2/2
X)= — e dx
n—oo O‘\/ﬁ - ) \/27‘[‘ \/;OO



Lévy: A nonlocal diffusion

Gaussian vs. Non-Gaussian random variables

Gaussian: Normal random variable X ~ A/(0, 1)
Probability density function ~ f(x) = % e x*/2

PX <x)=[*_-~ e —X?/2 gy

Non-Gaussian: a—stable random variable X ~ S, 0 < a < 2
Probability density function  f,(x)

P(X <x) = [*_fa(x) dx



Lévy: A nonlocal diffusion

Prob density function for a Gaussian random variable

X ~ N(0,1)
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Figure : “Bell curve": Exponential decay, light tail



Lévy: A nonlocal diffusion

Prob density function for a non-Gaussian, a—Sstable random

variable
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Figure : Polynomial power decay, heavy tail



Lévy: A nonlocal diffusion
Some references:

P. E. Protter: Stochastic Integration and Diff Equations
1990

D. Applebaum: Lévy Processes and Stochastic Calculus
2009



Lévy: A nonlocal diffusion
Lévy Motion L

Definition: Lévy motion L with 0 < o < 2:

(1) Stationary increments L{* — Lg ~ S, (|t — s|§,0, 0)

(2) Independent increments

(3) Stochastically continuous sample paths (continuous in
probability):

P(|L; — Ls| >0) — 0,ast — s, forall6 >0

Note: Paths are stochastically continuous (i.e., right
continuous with left limit; countable jumps): L — LS in
probability ast — s

Countable jumps in time!



Lévy: A nonlocal diffusion

Lévy-Khintchine Theorem:
Countable jumps in time:

Jump measure a Borel measure
ve(dy) = a\y\“”’ for0<a<?2

b
va(a,b) =Cq [, |y|dly+a:
Mean number of jumps of “size" (a,b) per unit time!



Lévy: A nonlocal diffusion

Brownian motion B;: A Gaussian process

(Brownian noise: % )

Lévy motion L{: A non-Gaussian process
L& . AL
(Lévy noise: - )



Lévy: A nonlocal diffusion

Heavy tail for 0 < o < 2: Power law

1
P(LE| > u) ~
Light tail for « = 2: Exponential law
—u?/2

e
]P)(‘Bt‘ > U) ~ \/ZU




Lévy: A nonlocal diffusion

Generator for Lévy Motion: a Nonlocal operator

Lévy-Khintchine Theorem:
Specifies Fourier transform (i.e., characteristic function) of L*:

g(k,a)
Thus: L& =F1g(k,a)

Au = S oBu(x +L7)

_ / [U(X +y) — u(x)] va(dy)
RM\{0}

2 K, (—A)?

vo(dy) = Ca‘y?%: Jump measure for L
Ca, K, : Positive constants depending on n, o
Nonlocal Laplacian: (—A)2



Lévy: A nonlocal diffusion

Generator for Lévy Motion: a Nonlocal operator

Justify the notation for (—A)?z:

/ [u(x +y) —ux)] va(dy) & —K, (—A)2
RM {0}

F(left hand side) = |k|*F(u)
Clearly, this notation is inspired by the fact that

F(—Au(x)) = [k[?F(u)

Applebaum: Lévy Processes and Stochastic Calculus



Lévy: A nonlocal diffusion

Nonlocal diffusion equation (Fokker-Planck eqgn for Lévy
motion):
pr = =Ko (=4)2p

Nonlocal Laplacian : (—A)2

It is the Generator for Lévy motion



Lévy: A nonlocal diffusion

Two Laplacians

Local Laplacian : A
Nonlocal Laplacian : (—A)2, for0 < a <2

Macroscopic manifestation of corresponding microscopic
descriptions:
Brownian motion and a—stable Lévy motion



Lévy: A nonlocal diffusion

Brownian motion vs. «—stable Lévy motion

Brownian Motion (o = 2) || aw—stable Levy Motion (0 < o < 2)

Gaussian process Non-Gaussian process
Independent increments Independent increments
Stationary increments Stationary increments

Continuous sample paths || Stoch continuous paths (“jumps")

Light tail Heavy tail

Jump measure: 0 Jump measure: v,




Lévy: A nonlocal diffusion

Fokker-Planck egn for system with Brownian motion

For a stochastic system with Brownian motion:

dXt = b(Xt)dt + dBt, XO =X
Fokker-Planck eqn for probability density evolution p(x,t):

pt=Ap — V- (b(x)p)
When the vector field (drift) b(x) is divergence-free:

pt = Ap —b(x)-Vp



Lévy: A nonlocal diffusion

Fokker-Planck egn for system with Lévy motion

For a stochastic system with Lévy motion:

dX; = b(Xt)dt + dL{l, Xo =X
Fokker-Planck eqn for probability density evolution p(x,t):

Pt = —Ka (~A)2p = V- (b(x)p)
When the vector field (drift) b(x) is divergence-free:

pt = —Ka (—A)2p —b(x) - Vp

for0<a<?2



Lévy: A nonlocal diffusion

Fokker-Planck egn: Nonlinear, as well as nonlocal

When the vector field b depends on the distribution of system
state, then we have a nonlinear, nonlocal PDE:

pt = Ap — V- (b(p)p)

pt = —Ka (—A)2Zp — V- (b(p)p)
forO<a<?2

Wellposedness & regularity of solutions? Useful for designing
numerical schemes.



Effects of Nonlocal Laplacian

Effects of Nonlocal Laplacian (—A)?:
e in some partial differential equations?

¢ in some dynamical phenomena?



Effects of Nonlocal Laplacian

Eigenvalues of Two Laplacians on bounded domain

Local Laplacian : A
One-dim, zero Dirichlet BC: A\ ~ —n?

Nonlocal Laplacian : —(-A)2, for0 < a <2

One-dim, zero external Dirichlet BC: Ay ~ —(n — 232)* + O(%)
Kwasnicki 2010

Reducing the “diffusion power" by the “amount” 2 — o !



Effects of Nonlocal Laplacian

Effects of Nonlocal Laplacian in the Burgers eqn:

U = —Uuy — (—A)2u

Kiselev, Nazarov & Shterenberg 2008

Under periodic boundary condition:

Blowup in finite time for 0 < « < 1, but global solution for
1<a<?2.

Biler, Funaki & Woyczynski 1998
In the whole space: Global solution for 1.5 < a < 2 in H}(R)



Effects of Nonlocal Laplacian

Question:

Motion of particles under the influence of Lévy motion:
dX; = b(Xy)dt + dL{*, Xg =X

e Examine quantities that carry dynamical information:
Escape probability

Likelihood of transition between different dynamical regimes!



Effects of Nonlocal Laplacian

Escape probability: Carrying dynamical information

@ Contaminant transport:  likelihood for contaminant to
reach a specific region

@ Climate: likelihood for temperature to be within a range

@ Tumor cell density: likelihood for tumor density to
decrease (becoming cancer-free)

How to quantify escape probability?



Effects of Nonlocal Laplacian

Escape probability from a domain D

Consider a SDE
dX; = b(X;)dt +dL{*, Xo=x€D

Escape probability p(x) :
Likelihood that a “particle x" first escapes D and lands in U

\

@

Figure : Domain D, with a target domain U in D°®



Effects of Nonlocal Laplacian

A surprising connection between escape probability and
harmonic functions!

What is a harmonic function?



Effects of Nonlocal Laplacian

Recall: What is a harmonic function?

It is a solution of the Laplace equation:
Ah(x) =0

But A is the generator of Brownian motion By

So we say:
h(x) is a harmonic function with respect to Brownian motion



Effects of Nonlocal Laplacian
An analogy:

Harmonic function with respect to Lévy motion L{":

(—=A)zh(x) =0

where (—A)?2 is the generator of LY

Note: Feedback of Probability Theory to Analysis!



Effects of Nonlocal Laplacian

A further analogy:

Consider a stochastic system
dX; = b(X;)dt + dLf
Generator for solution process X;:
Ash(x) =b(x) - Vh(x) — K, (—A)Zh(x)

Harmonic function with respect to X;: A,h(x) =0

Nonlocal deterministic partial differential equation



Effects of Nonlocal Laplacian

What is the connection between escape probability &
harmonic functions?



Effects of Nonlocal Laplacian

Escape probability from a domain D

Escape probability p(x) :
Likelihood that a “particle x" first escapes D and lands in U

Exit time: 7pc(x) is the first time for X; to escape D

\

@

Figure : Domain D, with a target domain U in D¢



Effects of Nonlocal Laplacian

Connection: Escape probability & harmonic function

dX; = b(Xt)dt + dL?, Xo=x€D

For

(x) = 1, xeU,

=0, xeDt\U,

Elp(Xos )] = / (X )AP(w)
{Xope €U}

+f (Ko )AP(w)
{w: X7y ED\U}

P{w : X5, € U}
= p(x)

But, left hand side is a harmonic function with respect to X;
Liao 1989



Effects of Nonlocal Laplacian

Escape probability from a domain D

dX; = b(X{)dt + dL®, Xo=Xx € D

Escape probability p(x) : Likelihood that a “particle x" first
escapes D and lands in U

Theorem
Escape probability p is solution of Balayage-Dirichlet problem

A.p =0,
p|U - 17

Plpevu =0,

with A, = b(x) - V — Ko (—A)2.

Qiao-Kan-Duan 2013



Effects of Nonlocal Laplacian

Escape probability to the right: under Brownian motion, no d rift

Ap =0, escape fromD = (—2,2) to U = (2, +o0):
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Figure : Escape probability: The case of Brownian motion



Effects of Nonlocal Laplacian

Escape probability to the right: under Lévy motion, no drift

(—A)zp = 0, escape from D = (—2,2) to U = (2, +-00):
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Figure : Escape probability: The case of Lévy motion



Effects of Nonlocal Laplacian

Impact of local & nonlocal diffusions

Under Brownian fluctuations (i.e., local diffusion):
— Escape probability p(x) is linear in location

Under Lévy fluctuations (i.e., nonlocal diffusion):
— Escape probability p(x) is nonlinear in location



Effects of Nonlocal Laplacian

When velocity field (drift) is present:

Escape probability under interactions between nonlinearity
and fluctuations

Gao-Duan-Li-Song 2014



Effects of Nonlocal Laplacian

Fokker-Planck egn :

Numerical simulations
Wang-Duan-Li-Lou 2014

Wellposedness under realistic conditions?
Behavior of solutions?
Impact of nonlocal Laplacian?



Summary
Summary

A and (—A)

N|R

@ Microscopic origins of two Laplacians:

Macroscopic descriptions of Brownian & Lévy motions

@ Comparing Local & Nonlocal Diffusions:

Escape probability: Quantifying particle dynamics under
non-Gaussian fluctuations

Fokker-Planck eqgn: Quantifying probability density
evolution
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