Local vs. Nonlocal Diffusions — A Tale of Two Laplacians

Jinqiao Duan

Dept of Applied Mathematics Illinois Institute of Technology Chicago

duan@iit.edu

Outline

Einstein & Wiener: The Local diffusion

Einstein & Wiener: The Local diffusion

- Lévy: A nonlocal diffusion
- **Effects of Nonlocal Laplacian**
- **Summary**

Normal distribution

Normal distribution (or Gaussian distribution):

 $X \sim \mathcal{N}(0,1)$

Probability density function for a Gaussian random variable

Non-Normal distribution

There is only one normal distribution.

All others: Non-normal (i.e., anomalous) distributions

Normal vs. non-normal distributions

Gaussian vs. non-Gaussian random variables

Light vs. heavy tails

Local vs. nonlocal diffusions?

Local vs. nonlocal Laplacians?

Brownian motion: Einstein's theory

Brownian motion: Particles randomly moves in a liquid

Einstein 1905: Macroscopic theory (probability density p for particles)

Assumptions:

Einstein & Wiener: The Local diffusion

Particles spreading area grows linearly in time (i.e., variance grows linearly in time)

Particle paths on non-overlapping time intervals are independent

L. C. Evans: An Intro to Stochastic Diff Eqns, 2013

Brownian motion: Einstein's theory

A particle randomly walks on 1D lattice: Space step Δx , time step Δt , location (m, n)

$$p(m, n+1) = \frac{1}{2}[p(m-1, n) + p(m+1, n)]$$

Rewrite:

$$p(m, n+1) - p(m, n) = \frac{1}{2}[p(m-1, n) - 2p(m, n) + p(m+1, n)]$$

Assumption: Particles spreading area growing linearly in time

$$\frac{(\Delta x)^2}{\Delta t} = D$$

$$\frac{p(m, n+1) - p(m, n)}{\Delta t} = \frac{D}{2} \frac{p(m-1, n) - 2p(m, n) + p(m+1, n)}{(\Delta x)^2}$$

Letting $\Delta x \to 0$ and $\Delta t \to 0$: $p_t = \frac{D}{2}p_{xx}$

Diffusion equation (Fokker-Planck eqn for Brownian motion):

$$p_t = \frac{D}{2}p_{xx}$$

Local Laplacian: $\Delta = \partial_{xx}$

For $p(x, 0) = \delta(0)$ and D = 1:

$$p(x,t) = \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^2}{2t}}$$

Estimate: $0 < p(x, t) \le \frac{1}{\sqrt{2\pi}} t^{-\frac{1}{2}}$

Diffusion!

Particle paths: Normal distribution $\mathcal{N}(0, t)$ **Guess**: Brownian motion $B_t \sim \mathcal{N}(0, t)$

Related works around the time

Macroscopic equations for microscopic motions

Bachelier 1900

Smoluchowski 1906

G. I. Taylor 1921

Uhlenbeck-Ornstein 1930

Brownian motion B_t : Wiener's theory

Wiener's theory 1923: Microscopic theory (Paths of a particle)

- Independent increments: $B_{t_2} B_{t_1}$ and $B_{t_3} B_{t_2}$ independent
- Stationary increments with $B_t B_s \sim \mathcal{N}(0, t s)$
- Continuous sample paths (but nowhere differentiable in time)

Remarks:

 $B_t \sim \mathcal{N}(0, t)$

 $Var(B_t) = t$

Variance linear in time; spreading area linear in time

Karatzas and S. E. Shreve,

Brownian Motion and Stochastic Calculus

White noise

White noise: $\frac{dB_t}{dt}$

Generalized time derivative

Brownian particles in a moving liquid with velocity "b"

Brownian motion with an ambient or underlying velocity field

$$\frac{dX_t}{dt} = b + \frac{dB_t}{dt}$$
 or

$$dX_t = b dt + dB_t$$

$$X_t = b t + B_t \sim \mathcal{N}(bt, t)$$

For $p(x, 0) = \delta(0)$ and D = 1:

$$p(x,t) = \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x-bt)^2}{2t}}$$

This satisfies: Diffusion-Advection equation

$$p_t = \frac{D}{2}p_{xx} - bp_x$$

b: Drift, or convection

Fokker-Planck eqn for Brownian motion with a drift "b"

For Brownian motion with a constant drift "b"

$$dX_t = b dt + dB_t$$

the Fokker-Planck eqn is:

$$p_t = \frac{D}{2}p_{xx} - bp_x$$

Guess: For Brownian motion with a state-dependent drift "b", the Fokker-Planck eqn is:

$$p_t = \frac{D}{2}p_{xx} - (bp)_x$$

Related works

Fokker 1914

Planck 1918

Smoluchowski 1915

Kolmogorov forward equation 1931

So, local Laplacian Δ : Macroscopic description of Brownian particles

In fact, it is also the **generator** for Brownian motion

Summary

Generator for Brownian motion B_t

Brownian motion starting at x: $X_t = x + B_t$

Generator: Time derivative of 'mean observation of a stochastic process'

$$Af(x) \triangleq \frac{d}{dt}|_{t=0}\mathbb{E}f(X_t)$$

It is a linear operator.

Connecting stochastics with deterministics.

Generator A carries info about process X_t

Generator for Brownian motion: Local Laplacian!

$$\Delta = \partial_{xx}$$

Let us verifying this

For
$$X_t = x + B_t$$
,
$$\mathbb{E} f(X_t) = \frac{1}{\sqrt{2\pi t}} \int f(y) e^{-\frac{(y-x)^2}{2t}} dy$$
$$= \frac{1}{\sqrt{2\pi}} \int f(x+z\sqrt{t}) e^{-\frac{z^2}{2}} dz,$$

where we have changed variables via $z = \frac{y-x}{\sqrt{t}}$.

$$\begin{split} \frac{\mathbb{E}f(X_t) - f(x)}{t} &= \frac{1}{\sqrt{2\pi}} \int \frac{z\sqrt{t}f'(x) + \frac{1}{2}z^2tf''(x + \theta z\sqrt{t})}{t} e^{-\frac{z^2}{2}}dz \\ &= \frac{1}{\sqrt{2\pi}} \frac{f'(x)}{t} \int z e^{-\frac{z^2}{2}}dz \\ &+ \frac{1}{2} \frac{1}{\sqrt{2\pi}} \int z^2f''(x + \theta z\sqrt{t}) e^{-\frac{z^2}{2}}dz \\ &= 0 + \frac{1}{2} \frac{1}{\sqrt{2\pi}} \int z^2f''(x + \theta z\sqrt{t}) e^{-\frac{z^2}{2}}dz. \end{split}$$

Finally: the generator A is local Laplacian —

$$Af(x) = \frac{d}{dt}|_{t=0}\mathbb{E}f(X_t) = \lim_{t\downarrow 0} \frac{\mathbb{E}f(X_t) - f(x)}{t}$$
$$= \frac{1}{2}f''(x),$$

So, local Laplacian Δ :

Macroscopic description of Brownian motion **Generator** for Brownian motion

Same in the context of Fokker-Planck egns

How about the **nonlocal Laplacian**: $(-\Delta)^{\frac{\alpha}{2}}$, $0 < \alpha < 2$?

Nonlocal Laplacian: Macroscopic description of Lévy motion

Nonlocal Laplacian: $(-\Delta)^{\frac{\alpha}{2}}$, $0 < \alpha < 2$:

Macroscopic description or generator for symmetric α -stable motion L_t^{α}

Central Limit Theorem

Einstein & Wiener: The Local diffusion

 X_1, X_2, \dots, X_n are independent, identically distributed (iid) random variables (i.e., 'measurements') and then "averaging":

Central Limit Theorem

A stable random variable X comes from "averaging the measurements":

$$\lim_{n\to\infty}\frac{X_1+\cdots+X_n-b_n}{a_n}=X\quad\text{in distribution}$$

for some constants a_n, b_n ($a_n \neq 0$)

Notation: $X \sim S_{\alpha}$, $0 < \alpha \le 2$

 α -stable random variable

 α : Non-Gaussianity index

A special case: $\alpha = 2$

Well-known normal random variable emerges when $\alpha = 2$ $\mathbb{E}X_i = \mu$, $Var(X_i) = \sigma^2$

Lévy: A nonlocal diffusion

Central limit theorem: A normal random variable comes from "averaging the measurements"

$$\lim_{n\to\infty}\frac{X_1+\cdots+X_n-n\mu}{\sigma\sqrt{n}}=X\sim\mathcal{N}(0,1)\quad\text{in distribution}$$

Namely,

$$\lim_{n\to\infty} \mathbb{P}\left(\frac{X_1+\cdots+X_n-n\mu}{\sigma\sqrt{n}}\leq x\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-x^2/2} dx$$

Gaussian vs. Non-Gaussian random variables

Gaussian: Normal random variable $X \sim \mathcal{N}(0,1)$ Probability density function $f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$

$$\mathbb{P}(X \le x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$$

Non-Gaussian: α -stable random variable $X \sim S_{\alpha}, \ 0 < \alpha < 2$ Probability density function $f_{\alpha}(x)$

$$\mathbb{P}(X \leq x) = \int_{-\infty}^{x} \frac{f_{\alpha}(x)}{f_{\alpha}(x)} dx$$

Prob density function for a Gaussian random variable

$$X \sim \mathcal{N}(0,1)$$

Figure: "Bell curve": Exponential decay, light tail

Prob density function for a non-Gaussian, α -stable random variable

Lévy: A nonlocal diffusion

 $X \sim S_{\alpha}$

Figure: Polynomial power decay, heavy tail

Some references:

P. E. Protter: Stochastic Integration and Diff Equations, 1990

D. Applebaum: Lévy Processes and Stochastic Calculus, 2009

Lévy Motion L_t^{α}

Definition:Lévy motion L_t^{α} with $0 < \alpha \le 2$:

- (1) Stationary increments $L_t^{\alpha} L_s^{\alpha} \sim S_{\alpha}(|t-s|^{\frac{1}{\alpha}},0,0)$
- (2) Independent increments
- (3) Stochastically continuous sample paths (continuous in probability):

$$\mathbb{P}(|L_t - L_s| > \delta) \to 0$$
, as $t \to s$, for all $\delta > 0$

Note: Paths are stochastically continuous (i.e., right continuous with left limit; countable jumps): $L^{\alpha}_t \to L^{\alpha}_s$ in probability as $t \to s$

Countable jumps in time!

Lévy-Khintchine Theorem: Countable jumps in time:

Jump measure: a Borel measure

$$u_{lpha}(\mathit{dy}) = C_{lpha} rac{\mathit{dy}}{|\mathsf{y}|^{1+lpha}}, \, \mathrm{for} \, \, 0 < lpha < 2$$

$$u_{\alpha}(a,b) = C_{\alpha} \int_{a}^{b} \frac{dy}{|y|^{1+\alpha}}$$
:

Mean number of jumps of "size" (a, b) per unit time!

Brownian motion B_t : A **Gaussian** process (Brownian noise: $\frac{dB_t}{dt}$)

Lévy motion L_t^{α} : A **non-Gaussian** process (Lévy noise: $\frac{dL_t^{\alpha}}{dt}$)

Heavy tail for $0 < \alpha < 2$: Power law

$$\mathbb{P}(|L_t^{\alpha}|>u)\sim\frac{1}{u^{\alpha}}$$

Light tail for $\alpha = 2$: Exponential law

$$\mathbb{P}(|B_t| > u) \sim \frac{\mathrm{e}^{-u^2/2}}{\sqrt{2\pi}u}$$

Generator for Lévy Motion: a Nonlocal operator

Lévy-Khintchine Theorem:

Specifies Fourier transform (i.e., characteristic function) of L_t^{α} :

$$g(k, \alpha)$$

Thus: $L_t^{\alpha} = \mathbb{F}^{-1}g(k,\alpha)$

$$Au = \frac{d}{dt}|_{t=0} \mathbb{E}u(x + L_t^{\alpha})$$

$$= \int_{\mathbb{R}^n \setminus \{0\}} [u(x + y) - u(x)] \nu_{\alpha}(dy)$$

$$\triangleq -K_{\alpha} (-\Delta)^{\frac{\alpha}{2}}$$

 $u_{\alpha}(dy) = C_{\alpha} \frac{dy}{|y|^{n+\alpha}}$: Jump measure for L_t^{α} C_{α} , K_{α} : Positive constants depending on n, α Nonlocal Laplacian: $(-\Delta)^{\frac{\alpha}{2}}$

Generator for Lévy Motion: a Nonlocal operator

Justify the notation for $(-\Delta)^{\frac{\alpha}{2}}$:

$$\int_{\mathbb{R}^n\setminus\{0\}} [u(x+y)-u(x)] \ \nu_{\alpha}(\mathrm{d}y) \triangleq -\mathcal{K}_{\alpha} \ (-\Delta)^{\frac{\alpha}{2}}$$

$$\mathbb{F}(\text{left hand side}) = |k|^{\alpha} \mathbb{F}(u)$$

Clearly, this notation is inspired by the fact that

$$\mathbb{F}(-\Delta u(x)) = |k|^2 \mathbb{F}(u)$$

Applebaum: Lévy Processes and Stochastic Calculus

Nonlocal diffusion equation (Fokker-Planck eqn for Lévy motion):

$$p_t = -K_{\alpha} (-\Delta)^{\frac{\alpha}{2}} p$$

Nonlocal Laplacian: $(-\Delta)^{\frac{\alpha}{2}}$

It is the **Generator** for Lévy motion

Two Laplacians

Local Laplacian: △

Nonlocal Laplacian: $(-\Delta)^{\frac{\alpha}{2}}$, for $0 < \alpha < 2$

Macroscopic manifestation of corresponding microscopic descriptions:

Brownian motion and α -stable Lévy motion

Brownian motion vs. α -stable Lévy motion

Brownian Motion ($\alpha = 2$)	α -stable Levy Motion (0 < α < 2)
Gaussian process	Non-Gaussian process
Independent increments	Independent increments
Stationary increments	Stationary increments
Continuous sample paths	Stoch continuous paths ("jumps")
Light tail	Heavy tail
Jump measure: 0	Jump measure: $ u_{lpha}$

Fokker-Planck eqn for system with Brownian motion

For a stochastic system with Brownian motion:

$$dX_t = b(X_t)dt + dB_t, X_0 = x$$

Fokker-Planck eqn for probability density evolution p(x, t):

$$p_t = \Delta p - \nabla \cdot (b(x)p)$$

When the vector field (drift) b(x) is divergence-free:

$$p_t = \Delta p - b(x) \cdot \nabla p$$

Fokker-Planck eqn for system with Lévy motion

For a stochastic system with Lévy motion:

$$dX_t = b(X_t)dt + dL_t^{\alpha}, X_0 = x$$

Fokker-Planck eqn for probability density evolution p(x, t):

$$p_t = -K_{\alpha} (-\Delta)^{\frac{\alpha}{2}} p - \nabla \cdot (b(x)p)$$

When the vector field (drift) b(x) is divergence-free:

$$p_t = -K_{\alpha} (-\Delta)^{\frac{\alpha}{2}} p - b(x) \cdot \nabla p$$

for $0 < \alpha < 2$

Fokker-Planck egn: Nonlinear, as well as nonlocal

When the vector field b depends on the distribution of system state, then we have a nonlinear, nonlocal PDE:

$$p_t = \Delta p - \nabla \cdot (\tilde{b}(p)p)$$

$$ho_t = -\mathcal{K}_{\alpha} \; (-\Delta)^{rac{lpha}{2}}
ho -
abla \cdot (ilde{b}(
ho)
ho)$$

for $0 < \alpha < 2$

Wellposedness & regularity of solutions? Useful for designing numerical schemes.

Effects of Nonlocal Laplacian

Effects of Nonlocal Laplacian $(-\Delta)^{\frac{\alpha}{2}}$:

- in some partial differential equations?
- in some dynamical phenomena?

Effects of Nonlocal Laplacian

Eigenvalues of Two Laplacians on bounded domain

Local Laplacian: △

One-dim, zero Dirichlet BC: $\lambda_n \sim -n^2$

Nonlocal Laplacian: $-(-\Delta)^{\frac{\alpha}{2}}$, for $0 < \alpha < 2$

One-dim, zero external Dirichlet BC: $\lambda_n \sim -(n - \frac{2-\alpha}{4})^{\alpha} + O(\frac{1}{n})$

Kwasnicki 2010

Reducing the "diffusion power" by the "amount" 2 $-\alpha$!

Effects of Nonlocal Laplacian in the Burgers eqn:

$$u_t = -uu_x - (-\Delta)^{\frac{\alpha}{2}}u$$

Kiselev, Nazarov & Shterenberg 2008

Under periodic boundary condition:

Einstein & Wiener: The Local diffusion

Blowup in finite time for $0 < \alpha < 1$, but global solution for 1 < α < 2.

Biler, Funaki & Woyczynski 1998

In the whole space: Global solution for 1.5 $< \alpha <$ 2 in $H^1(R)$

Question:

Motion of particles under the influence of Lévy motion:

$$dX_t = b(X_t)dt + dL_t^{\alpha}, X_0 = x$$

• **Examine** quantities that carry dynamical information:

Escape probability

Likelihood of transition between different dynamical regimes!

Escape probability: Carrying dynamical information

Einstein & Wiener: The Local diffusion

- Contaminant transport: likelihood for contaminant to reach a specific region
- Climate: likelihood for temperature to be within a range
- Tumor cell density: likelihood for tumor density to decrease (becoming cancer-free)

How to quantify escape probability?

Escape probability from a domain D

Consider a SDE

$$dX_t = b(X_t)dt + dL_t^{\alpha}, \quad X_0 = x \in D$$

Escape probability p(x):

Likelihood that a "particle \mathbf{x} " first escapes D and lands in U

Figure: Domain D, with a target domain U in D^c

A surprising connection between escape probability and harmonic functions!

What is a harmonic function?

Einstein & Wiener: The Local diffusion

Recall: What is a harmonic function?

It is a solution of the Laplace equation:

$$\Delta h(x) = 0$$

But Δ is the generator of Brownian motion B_t

So we say:

h(x) is a harmonic function with respect to Brownian motion

An analogy:

Harmonic function with respect to Lévy motion L_t^{α} :

Lévy: A nonlocal diffusion

$$(-\Delta)^{\frac{\alpha}{2}}h(x)=0$$

where $(-\Delta)^{\frac{\alpha}{2}}$ is the generator of L_t^{α}

Note: Feedback of Probability Theory to Analysis!

Einstein & Wiener: The Local diffusion

Consider a stochastic system

$$dX_t = b(X_t)dt + dL_t^{\alpha}$$

Generator for solution process X_t :

$$A_{\alpha}h(x) = b(x) \cdot \nabla h(x) - K_{\alpha} (-\Delta)^{\frac{\alpha}{2}}h(x)$$

Harmonic function with respect to X_t : $A_{\alpha}h(x) = 0$

Nonlocal deterministic partial differential equation

What is the connection between escape probability & harmonic functions?

Escape probability p(x):

Einstein & Wiener: The Local diffusion

Likelihood that a "particle x" first escapes D and lands in U

Exit time: $\tau_{D^c}(x)$ is the first time for X_t to escape D

Figure: Domain D, with a target domain U in D^c

Connection: Escape probability & harmonic function

$$dX_t = b(X_t)dt + dL_t^{\alpha}, \quad X_0 = x \in D$$

For

$$\varphi(\mathbf{x}) = \begin{cases}
1, & \mathbf{x} \in \mathbf{U}, \\
0, & \mathbf{x} \in \mathbf{D}^c \setminus \mathbf{U},
\end{cases}$$

$$\mathbb{E}[\varphi(\mathbf{X}_{\tau_{D^c}(\mathbf{x})})] = \int_{\{\omega: \mathbf{X}_{\tau_{D^c}} \in \mathbf{U}\}} \varphi(\mathbf{X}_{\tau_{D^c}}) d\mathbb{P}(\omega)$$

$$+ \int_{\{\omega: \mathbf{X}_{\tau_{D^c}} \in \mathbf{D}^c \setminus \mathbf{U}\}} \varphi(\mathbf{X}_{\tau_{D^c}}) d\mathbb{P}(\omega)$$

$$= \mathbb{P}\{\omega: \mathbf{X}_{\tau_{D^c}} \in \mathbf{U}\}$$

$$= \mathbf{p}(\mathbf{x})$$

But, left hand side is a harmonic function with respect to X_t Liao 1989

Escape probability from a domain D

$$dX_t = b(X_t)dt + dL_t^{\alpha}, \quad X_0 = x \in D$$

Escape probability p(x): Likelihood that a "particle \mathbf{x} " first escapes D and lands in U

Theorem

Escape probability p is solution of Balayage-Dirichlet problem

$$\left\{ \begin{array}{l} A_{\alpha} p = 0, \\ \rho|_{\it U} = 1, \\ \rho|_{\it D^c\setminus \it U} = 0, \end{array} \right.$$

with
$$A_{\alpha} = b(x) \cdot \nabla - K_{\alpha}(-\Delta)^{\frac{\alpha}{2}}$$
.

Qiao-Kan-Duan 2013

$$\Delta p = 0$$
, escape from $D = (-2, 2)$ to $U = (2, +\infty)$:

Einstein & Wiener: The Local diffusion

Figure: Escape probability: The case of Brownian motion

Escape probability to the right: under Lévy motion, no drift

$$(-\Delta)^{\frac{\alpha}{2}}p=0$$
, escape from $D=(-2,2)$ to $U=(2,+\infty)$:

Figure: Escape probability: The case of Lévy motion

Impact of local & nonlocal diffusions

Under Brownian fluctuations (i.e., local diffusion):

— Escape probability p(x) is linear in location

Under Lévy fluctuations (i.e., nonlocal diffusion):

— Escape probability p(x) is nonlinear in location

When velocity field (drift) is present:

Escape probability under interactions between nonlinearity and fluctuations

Gao-Duan-Li-Song 2014

Fokker-Planck eqn:

Numerical simulations

Wang-Duan-Li-Lou 2014

Wellposedness under realistic conditions? Behavior of solutions? Impact of nonlocal Laplacian?

Summary

$$\Delta$$
 and $(-\Delta)^{\frac{\alpha}{2}}$

Microscopic origins of two Laplacians:
 Macroscopic descriptions of Brownian & Lévy motions

Comparing Local & Nonlocal Diffusions:

Escape probability: Quantifying particle dynamics under non-Gaussian fluctuations

Fokker-Planck eqn: Quantifying probability density evolution