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Methods developed extend immediately to boundary-layer flows %
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Benchmark PDE system: channel flow

State equation (Navier-Stokes): |Eq = N(q.f = u(x,mjt))’ f=P,
quation (Navier-Stokes): |Eq (q.f)| q (p(x,m’t)

(I O _ (—(u-V)u—Vp+VvAu+iP,

= 3D system requires discretization on O(10°) to O(107) gridpoints.
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= Linearization about mean flow U decouples each {ky,k;} mode.

Linearization (Orr-Sommerfeld/Squire): |Eq = Aq/|,

2>

e Boundary control: ¢(x,z,¢) (blowing/suction = u = —¢n on walls).
e Distributed disturbance forcing: y(x,y,z,¢) added to RHS of PDE.
e Measurements: y(x,z,¢) (skin friction and pressure on walls).



First 25 evecs of Orr-Sommerfeld/Squire at {kx,kz} = {1,0}, Reg = 1429 %
[B, Progress in Aerospace Sciences, 2001] AR,
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Real and imaginary parts of the w component of the least-stable eigenvectors (solid), and
real and imaginary parts of the corresponding v components (dashed)



First 25 evecs of Orr-Sommerfeld/Squire at {kx,kz} = {0,2}, Reg = 1429
[B, Progress in Aerospace Sciences, 2001]
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Real part of the w component of the least-stable eigenvectors (solid), and
200 times the imaginary part of the corresponding v components (dashed).



Definition of 2-norm of transfer function

7622 L [T |r6w)|fdo= = [ tace[TH (0)T ()] do
2T ) — 2T ) —

— %/_0:02612 T(i0)] do,

e The square of the transfer function 2-norm is the total energy of the
output z(r) of the system when the input w(7) contains a sequence of
unit impulses in each component.

e The square of the transfer function 2-norm is also the expected mean
energy of the output, £{z" (r)z(¢)}, when the system is excited with a

zero mean white random process w(¢) with unit spectral density.



Definition of infinity-norm of transfer function @

x'(t) = Ax(t) +Bw(t) Z(s) =T (s)W(s),
z(1) = Cx(t) + Dw(t) T(s)=C(sI—A)"'B+D.
IT($)| 2 sup [T(i0)2= sup Omax|T(i®)],
0<mw<eo 0<m<oo

e In the frequency domain, the transfer function co-norm is the maximum
over all frequencies of the gain of the corresponding Bode plot.
e In the time domain, the infinity norm quantifies the response of the
system to the “most disturbing” input w, that is,
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Isosurfaces of transfer fn norms of Reg = 1429 Orr-Sommerfeld/Squire %
[B, Progress in Aerospace Sciences, 2001] AR,
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Isosurfaces of transfer fn 2 norms
[B, Progress in Aerospace Sciences, 2001]
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A brief introduction to control theory %

The transfer fn 2-norm and infinity norm measure physically relevant quantities.
H_2 control minimizes the transfer function 2-norm.
H_inf control minimizes the transfer function infinity norm.

Model predictive control (MPC) minimizes a relevant cost function via iterative
state and adjoint analysis and gradient-based optimization.

In the following 4 pages, we briefly introduce MPC, H_2, and H_inf state-
feedback control theory.

An introduction to estimation theory was given in my previous talk at IPAM
(recording available at IPAM website).






(Background: 1/4)
Adjoint analysis for gradient-based optimization

State equation:

Eq=N(q.f,0,v) on 0<t<T
q=9q at r=0

with: q = state, f= external force, ¢ = control, = disturbance.

Perturbation equation:

£q =Byd' 1By on 0<t<T Small perturbations ¢’ to control ¢ &
{ ) 0 v } = small perturbations ' to disturbance
q=0 at 1=0 cause small perturbation q’ to state q.

Lq = <EE —A> q’ is the linearization of the state eqn about the trajectory q(o, V).

Cost function (minimize w.r.t. ¢ and maximize w.r.t. y):

_lT* 24 * /_T*,z*,_ y
]—2/0 (a"Qa+ 20" 0 vy y)dt| = J—/O(quHcM) V) dr.




(Background: 2/4)

Statement of adjoint identity. Define inner product (r,q’) = [ r*q/ dt. Then:

(r,Lq’) = (L'r,q) +b

with: r = adjoint, L*r=<—E*%—A*)r, b=r

=0

Definition of adjoint equation. Adjoint field easy to compute, though A = A(q).

L'r=0q on 0<t<T —E'r=A"'r+0q on 0<r<T
&
r=0 at r=T r=0 at r=T

Extraction of gradients. Combining equations, we have:
T T
(r,By0’ + Byv') = (0q,q') = /0 q*0q'dr = /O r*(By0’ + Byy') dt.

7= [ (o) o+ (i) W] ae [T [(Z) 0+ (2) ]

29 79 .

As ¢’ and \/ are arbitrary, |the gradient is:

= B(’l‘)r + 020,




(Background: 3/4)
Riccati analysis for coordinated feedback control %

Characterization of saddle point. The control ¢ which minimizes 7
and the disturbance y which maximizes J are given by

29 97 I VR
7 I R A

Combined matrix form. Combining the perturbation and adjoint egns
at the saddle point determined above, assuming £ = I, gives:

control and disturbance at saddle point

A\

1 |

—0 _A* r

y,
Perturbation equation — [q ] _
r

Adjoint equation —

Solution Ansatz. Relate perturbation q' = q'(¢) and adjoint r = r(¢):

r=Xq'| where X =X(1).




(Background: 4/4)

Riccati equation. Inserting solution ansatz into the combined matrix
form to eliminate r and combining rows to eliminate ¢’ gives:

X =AX+XA+X (L ByBy— hByBy) X+ 0| d

As this equation is valid for all ¢, it follows that:

X = A"X+XA+X (L ByBy — hBeBy) X +0|

Due to the terminal conditions onr, we must have X =0 at r=T|.

Note solutions of this matrix equation satisfy X* = X.
Note also that, by the characterization of the saddle point, we have

1 |
Y= ?prr and |0 = Kq where K = _g_ZBak)X :

This is the finite-horizon 7L, control solution, and may be solved for
linear time-varying (LTV) systems or marched to steady state.




Relaminarization of fully-developed Reg = 1429 channel-flow turbulence %
via adjoint-based MPC [B, Moin, & Temam, JFM 2001] =
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Simplification of feedback control problem via Fourier transform %

3D 0.S./Squire control/estimation problems solved in Fourier space, where
decoupling simplifies to several 1D problems. [B & Liu, JFM, 1998]

Result inverse transformed to physical space, yields localized convolution
kernels. [related work: Bamieh, Paganini, & Dahleh, TAC, 2002]

Procedure highly sensitive to nuances of numerical discretization.
Spurious eigenvalues must be addressed. [Huang & Sloan 1993, JCP 111]



Kernels relating v & w fluctuations to blowing/suction control ¢
[Hogberg, B, Henningson, JFM 2003a]

Visualized are the positive (green) and negative (yellow) iso-surfaces with iso-values
of + 5% of the maximum amplitude for each kernel illustrated.



Kernels relating v & w fluctuations to blowing/suction control ¢
[Hogberg, B, Henningson, JFM 2003a]
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Relaminarization of fully-developed turbulence via linear feedback %
[Hogberg, B, Henningson, JFM 2003b] S
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Relaminarization of fully-developed channel-flow turbulence at Reg = 1429.



Kernels relating t,, t;, & p measurements to v, w forcing of estimator @
[Hoepffner, Chevalier, B, Henningson, JFM 2005] b
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Visualized are the positive (dark) and negative (light) iso-surfaces with iso-values
of + 5% of the maximum amplitude for each kernel illustrated.



Photograph of MEMS tile suitable for decentralized control
(Chih-Ming Ho et al. (UCLA) and Yu-Chong Tai et al. (Caltech))
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Implementation
[B, PAS, 2001] Experimental
apparatus
actuator inputs , sensor measurements
on tile {i, j} only on tile {i, j} only

Localized physical-space compensation:

estimation of state above tile {i, /},
computation of control on tile {i, j}

Decentralized logic circuit
replicated on each tile

Communication with neighboring tiles about
nearby sensor measurements and state estimates



Evolution of small disturbance to state (left) and estimate (right) %
[Hoepffner, Chevalier, B, Henningson, JFM 2005] A

Flow Estimator
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Positive (light) and negative (dark) iso-surfaces of the streamwise component of velocity.
Iso-values at + 10% of the maximum streamwise velocity of the flow during interval shown.



Evolution of small disturbance to state (left) and estimate (right) %
[Hoepffner, Chevalier, B, Henningson, JFM 2005] A

Flow Estimator
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Positive (light) and negative (dark) iso-surfaces of the streamwise component of velocity.
Iso-values at + 10% of the maximum streamwise velocity of the flow during interval shown.



Evolution of small disturbance to state (left) and estimate (right) %
[Hoepffner, Chevalier, B, Henningson, JFM 2005] A

Flow Estimator
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Positive (light) and negative (dark) iso-surfaces of the streamwise component of velocity.
Iso-values at + 10% of the maximum streamwise velocity of the flow during interval shown.



Properties of feedback convolution kernels %

Kernels are independent of the box size in which they were computed, so long as
the computational box is sufficiently large.
-> Nonphysical assumption of spatial periodicity is relaxed.

Kernels are well-resolved with grid resolutions appropriate for the simulation of
the physical system of interest. -> Grid independent.

Kernels eventually decay exponentially, and may be truncated to any desired
degree of precision.

-> Truncated kernels are spatially compact with finite support. Implementable!

Kernel structure is physically tenable, but not imposed a priori:

-> Control convolution kernels angle away from the actuator upstream.
-> Estimation convolution kernels extend well downstream of sensor.



Open questions %

Appropriate regularization in cost function for control problem, and disturbance
modeling in estimation problem, are essential to obtain meaningful results (i.e.,
smooth enough to obtain “convergence upon grid refinement”)!

Q: How much “smoothing” is needed? What is its precise effect?



Achieving convergence in controller %

Taking J as linear combination of TKE and 2-norm of control failed to achieve
convergence upon grid refinement (nonsmooth kernel, strong high-frequency
components - not even in L2?)

Taking J as linear combination of TKE and 2-norm of time-derivative of control
succeeded in achieving convergence upon grid refinement (smooth kernel,
nicely decaying high-frequency components).

Why?? Trace theorem is one hint.

By the NSE, one time derivative = two space derivatives. So, is taking J as
linear combination of TKE and 2-norm of gradient of velocity field sufficent??



Achieving convergence in estimator (transitional flow) %

Taking Q=I, model of covariance doesn’t converge upon grid refinement

to some smooth function. Hoepftner, Chevalier, B, & Henningson thus
proposed taking Q as a discretization of some smooth yet ad hoc diagonally-
dominant shape functions, with ad hoc weighting between various {kyx,Kkz}.




Achieving convergence in estimator (turbulent flow) %

Taking full NSE as LNSE+f, compute the statistics of f from a turbulent database.
Use those covariance statistics Q to compute feedback kernels for the estimator.
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