Hierarchical Modeling of Complicated Systems

C. David Levermore
Department of Mathematics and
Institute for Physical Science and Technology
University of Maryland, College Park, MD
lvrmr@math.umd.edu

presented 9 December 2014
IPAM Lake Arrowhead Conference
8-12 December 2014
Lake Arrowhead, CA
Complicated systems, whether mathematical, physical, or social, are best understood when viewed through the lens of a hierarchy of models. This idea will be explored through examples drawn from fluid dynamics.

- Models can range from the microscopic to the macroscopic.

- Numerical approximations of models are also viewed as models.

- Mathematical questions about the connection between models are as central as those about individual models.
1. Hierarchies: Models, Algorithms, and Data
2. Model Reduction: Linear Example
3. Classical Particle Systems
4. Coarsening Particle Systems
5. Mori-Zwanzig Framework
6. Historical Interlude
7. Markov Approximation
8. Closing Remarks
No complicated physical system can be understood through simulations based on a single model. This is because:

1. any model that contains “full physics” will be far too large to be useful;

2. no useful model can be derived solely from fundamental physical laws;

3. each model is unable to resolve scales below which it fails to describe or include relevant processes.

Complicated systems must be studied with a hierarchy of models whose members capture several levels of description and several sets of physical processes. The algorithms used to solve these models and the associated input and output data must also be viewed hierarchically.
More precisely, a simulation is typically characterized by:

1. *Description*: the primitive variables of the underlying model, and their numerical representation;

2. *Physics*: the physical processes included in the underlying model, and the approximations by which they are modeled;

3. *Algorithms*: the methods by which the model is approximately solved;

4. *Spatial-Temporal Resolution*: the space and time scales resolved by the simulation, which are limited by the physics in the model.

Each of these should be viewed hierarchically.
A Hierarchy of Descriptions of Classical Fluids

Particles: \(\{(v_i(t), x_i(t))\}_{i=1}^{N} \) where \(v_i \in \mathbb{R}^3 \) and \(x_i \in \mathbb{R}^3 \).

Liouville: \(F(V, X, t) = \text{Ex} \left(\prod_{i=1}^{N} \delta(V_i - v_i(t))\delta(X_i - x_i(t)) \right) \) over \(\mathbb{R}^{6N} \).

Kinetic: \(f(v, x, t) = \text{Ex} \left(\frac{m}{N} \sum_{i=1}^{N} \delta(v - v_i(t))\delta(x - x_i(t)) \right) \) over \(\mathbb{R}^6 \).

Moments: \(\rho_k(x, t) = \int v^{\otimes k} f(v, x, t) \, dv \).

Fluid Variables: \(\rho(x, t), u(x, t), \theta(x, t) \).

Averaged Fluid: \(\bar{\rho}(x, t), \bar{u}(x, t), \bar{\theta}(x, t), \ldots \).
A Hierarchy of Fluid Models with some Algorithms

Particles: Ordinary Differential Equations, Liouville Equation
(Molecular Dynamics, Monte Carlo)

Kinetic: Boltzmann or Fokker-Planck-Landau Equation
(FEM, FVM, FDM, AMR, explicit, implicit, semi-implicit, or accelerated)

Moment: Grad, Gaussian, or Regularized Moment Systems
(FXM, AMR, explicit or semi-implicit)

Fluid: Euler, Navier-Stokes, or Dispersive Navier-Stokes Systems
(FXM, AMR, spectral, semi-implicit or implicit, multi-grid)

Averaged Fluid: Reynolds or Favre Averaged Systems
(FXM, AMR, spectral, semi-implicit or implicit, multi-grid)
2. Model Reduction: Linear Example

Model reduction builds a smaller model from a larger one. We now explore this process for a linear example. Why?

Linearized fluid equations reduced to equations for low Fourier modes.

Linearized kinetic equations reduced to systems of moment equations.

Liouville equations reduced to kinetic equations.

Liouville equations reduced to Liouville equations for smaller systems.

Same with forward Kolmogorov equations for stochastic systems.
Consider the linear system

\[
\frac{d}{dt} \begin{pmatrix} U_1 \\ U_2 \end{pmatrix} + \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} U_1 \\ U_2 \end{pmatrix} = \begin{pmatrix} B_1(t) \\ B_2(t) \end{pmatrix}, \quad \begin{pmatrix} U_1(0) \\ U_2(0) \end{pmatrix} = \begin{pmatrix} U_{1\infty} \\ U_{2\infty} \end{pmatrix},
\]

where the problem is non-accretive in the sense that

\[
A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \geq 0, \quad \text{i.e.} \ U^T A U \geq 0 \text{ for every } U = \begin{pmatrix} U_1 \\ U_2 \end{pmatrix}.
\]

Let \(U_1(t) \in \mathbb{R}^n \) and \(U \in \mathbb{R}^N \) where \(n \ll N \).

We want to find a reduced system for \(U_1(t) \) that accurately describes its evolution in \(\mathbb{R}^n \).
By formally solving the second equation for $U_2(t)$ we find that

$$U_2(t) = e^{-tA_{22}}U_2^{in} + \int_0^t e^{-(t-t')A_{22}}(B_2(t') - A_{21}U_1(t')) \, dt'.$$

Upon placing this result into the first equation we obtain

$$\frac{dU_1}{dt} + A_{11}U_1 - \int_0^t A_{12}e^{-(t-t')A_{22}}A_{21}U_1(t') \, dt'$$

$$= B_1(t) - \int_0^t A_{12}e^{-(t-t')A_{22}}B_2(t') \, dt' - A_{12}e^{-tA_{22}}U_2^{in},$$

$$U_1(0) = U_1^{in}.$$

This is a good starting point for deriving reduced models.
We will seek reduced dynamics that are local in time. This can be done if we assume that $A_{22} > 0$ and that A_{22} is large with respect to the rates at which B_1 and B_2 vary.

In that case we can neglect the term containing U_{22}^{in} and use the Laplace approximation (Taylor expanding $U_1(t')$ and $B_2(t')$ about t and neglecting all terms containing $e^{-tA_{22}}$) to expand the memory terms as

$$
\int_0^t e^{-(t-t')A_{22}} A_{21} U_1(t') \, dt' = A_{22}^{-1} A_{21} U_1 - A_{22}^{-2} A_{21} \frac{dU_1}{dt} + \cdots,
$$

$$
\int_0^t e^{-(t-t')A_{22}} B_2(t') \, dt' = A_{22}^{-1} B_2(t) - A_{22}^{-2} \frac{dB_2}{dt}(t) + \cdots.
$$

These expansions will not be carried out further because second time derivatives enter.
By making different balancings, we can derive different reduced models that approximate U_1 by the solution u of an equation in the form

$$g\frac{du}{dt} + au = b(t), \quad u(0) = u^{\text{in}},$$

We will introduce three classes of approximation.

The \textit{Galerkin approximation} is $U_1 = u$ and $U_2 = 0$ where

$$g = I, \quad a = A_{11},$$
$$b(t) = B_1(t), \quad u^{\text{in}} = U_1^{\text{in}}.$$

This approximation corresponds to dropping the memory and U_2^{in} terms. It is always non-accretive because $A \geq 0$ implies that $a = A_{11} \geq 0$.
The **relaxation approximation** when B_1 and B_2 are comparable is $U_1 = u$ and $U_2 = -A_{22}^{-1}A_{21}u$ where

$$
g = I, \quad a = A_{11} - A_{12}A_{22}^{-1}A_{21}, \quad u^{in} = U_1^{in}.\$$

When B_2 is larger than B_1 the relaxation approximation becomes $U_1 = u$ and $U_2 = A_{22}^{-1}B_2(t) - A_{22}^{-1}A_{21}u$ where

$$
g = I, \quad a = A_{11} - A_{12}A_{22}^{-1}A_{21}, \quad u^{in} = U_1^{in}.\$$

Both of these relaxation approximations are always non-accretive because $A \geq 0$ implies that $a = A_{11} - A_{12}A_{22}^{-1}A_{21} \geq 0$. These approximations are the same when $B_2 = 0$. When B_1 is constant and $B_2 = 0$ then the stationary solution of the first one is exact. When B_1 and B_2 are constants then the stationary solution of the last one is exact.
The *quasi-relaxation approximation* when B_1 and B_2 are comparable is $U_1 = u$ and $U_2 = A_{22}^{-1}B_2(t) - A_{22}^{-1}A_{21}u + A_{22}^{-2}A_{21}\frac{du}{dt}$ where

$$
g = I + A_{12}A_{22}^{-2}A_{21}, \quad a = A_{11} - A_{12}A_{22}^{-1}A_{21},
$$

$$
b(t) = B_1(t) - A_{12}A_{22}^{-1}B_2(t), \quad u^{\text{in}} = U_1^{\text{in}}.
$$

When B_2 is larger than B_1 the quasi-relaxation approximation becomes $U_1 = u$ and $U_2 = A_{22}^{-1}B_2(t) - A_{22}^{-1}A_{21}u + A_{22}^{-2}A_{21}\frac{du}{dt}$ where

$$
g = I + A_{12}A_{22}^{-2}A_{21}, \quad a = A_{11} - A_{12}A_{22}^{-1}A_{21},
$$

$$
b(t) = B_1(t) - A_{12}A_{22}^{-1}B_2(t) + A_{12}A_{22}^{-2}\frac{dB_2}{dt}(t), \quad u^{\text{in}} = U_1^{\text{in}}.
$$

Both of these quasi-relaxation approximations *may not be non-accretive*. They will be non-accretive if $A^2 \geq 0$ (for example, if $A^T = A \geq 0$), which implies that $g = I + A_{12}A_{22}^{-2}A_{21} > 0$. These approximations are the same when B_2 is constant. When B_1 and B_2 are constants then their stationary solutions are exact.
A Laplace Transform View

When $B_2 = 0$ the Laplace transform solution of the original equation is

$$
\begin{pmatrix}
\tilde{U}_1(s) \\
\tilde{U}_2(s)
\end{pmatrix} = \begin{pmatrix}
A_{11} + sI & A_{21} \\
A_{12} & A_{22} + sI
\end{pmatrix}^{-1} \begin{pmatrix}
U_1^{\text{in}} + \tilde{B}_1(s) \\
0
\end{pmatrix},
$$

from which we obtain the exact solution

$$
\tilde{U}_1(s) = \left((A_{11} + sI) - A_{12}(A_{22} + sI)^{-1}A_{21} \right)^{-1} \left(U_1^{\text{in}} + \tilde{B}_1(s) \right).
$$

The Laplace transform solution of the reduced equation is

$$
\tilde{u}(s) = (a + sg)^{-1} \left(gu^{\text{in}} + \tilde{b}(s) \right).
$$

This will match the exact solution at $s = \infty$ to leading order if $u^{\text{in}} = U_1^{\text{in}}$. The idea is to pick a, g, and $\tilde{b}(s)$ to make $\tilde{u}(s)$ a “good” approximation of $\tilde{U}_1(s)$. Of course, there is more than one notion of “good.”
The **Galerkin approximation** picks

\[a = A_{11}, \quad g = I, \quad \tilde{b}(s) = \tilde{B}_1(s). \]

This does not match the exact solution near \(s = 0 \).

The **relaxation approximation** picks

\[a = A_{11} - A_{12}A_{22}^{-1}A_{21}, \quad g = I, \quad \tilde{b}(s) = \tilde{B}_1(s). \]

This matches the exact solution near \(s = 0 \) to leading order.

The **quasi-relaxation approximation** picks

\[a = A_{11} - A_{12}A_{22}^{-1}A_{21}, \quad g = I + A_{12}A_{22}^{-2}A_{21}, \quad \tilde{b}(s) = \tilde{B}_1(s). \]

This matches the \(\tilde{B}_1(s) \) component of the exact solution near \(s = 0 \) through order \(s^1 \), but does not match the \(U_1^{\text{in}} \) component near \(s = 0 \).
Remark. These are the only such temporally-local, first-order reductions!

Remark. We generally must approximate A_{22}^{-1} as well.

Remark. Quasi-relaxation approximations applied to an acoustic system formally yield reduced models with “α-model” like features because $g > I$. Because $A^T = -A$, the justification of these approximations is unclear.

Remark. The Laplace view suggests seeking reductions in the form

$$\frac{d}{dt} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} + \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} b_1(t) \\ b_2(t) \end{pmatrix}, \quad \begin{pmatrix} u_1(0) \\ u_2(0) \end{pmatrix} = \begin{pmatrix} u_{1\text{in}} \\ u_{2\text{in}} \end{pmatrix},$$

where $u_1(t) \in \mathbb{R}^n$ and $u_2(t) \in \mathbb{R}^m$ with $m \ll N$ and

$$a_{11} = A_{11}, \quad b_1(t) = B_1(t),$$

$$a_{12}(a_{22} + sI)^{-1}a_{21} \approx A_{12}(A_{22} + sI)^{-1}A_{21}.$$
3. Classical Particle Systems

A system of N classical particles is governed by an equation of the form

$$\frac{dX}{dt} = V(X),$$

where X denotes a point in the N-particle phase space and $V(X)$ is the vector-field that governs the particle dynamics. For example, if the particles are governed by a Hamiltonian system

$$\frac{dp_i}{dt} = -\frac{\partial H}{\partial q_i}, \quad \frac{dq_i}{dt} = \frac{\partial H}{\partial p_i}, \quad \text{for } i = 1, \cdots, N,$$

where $H(p_1, q_1, \cdots, p_N, q_N)$, then $X = (p_1, q_1, \cdots, p_N, q_N)$ and

$$V(X) = \left(-\frac{\partial H}{\partial q_1}, \frac{\partial H}{\partial p_1}, \cdots, -\frac{\partial H}{\partial q_N}, \frac{\partial H}{\partial p_N} \right).$$
Most particle systems have more particles than we can afford to simulate. Moreover, most particle systems exhibit chaotic dynamics. This means that it would be impossible to track its orbits accurately for all but short times even if we could afford to simulate the system. However, often we do not want to track orbits accurately. Rather, we want to track robust phenomena that arise from the collective behavior of many particles. By robust phenomena, we mean phenomena that will arise in most members of an ensemble of solutions. Therefore it is natural to consider probability densities $F(X, t)$ over the N-particle phase space. These are governed by the Liouville equation (Gibbs 1902 based on Liouville 1838)

$$ \partial_t F + \nabla_X \cdot \left(V(X) F \right) = 0. $$

The idea is to simulate a smaller particle system that exhibits the same robust phenomena as captured by an approximation to $F(X, t)$. We call the smaller system a **coarsening** of the original system.
4. Coarsening Particle Systems

We coarsen the N-particle system into an n-particle system through an aggregation mapping $a(X)$. We think of N as the number of particles in the physical system we are modeling and n as the number of particles in a simulation of that system. If we set $x = a(X)$ and let $\partial a(X)$ denote the Jacobian of $a(X)$ then by the chain rule

$$\frac{dx}{dt} = \partial a(X) V(X).$$

This is not a closed system for x. We will use the Liouville equation to derive a closed system for x. The first step is to build an approximate evolution equation for the reduced probability density $f(x,t)$ defined by

$$f(x,t) = \int \delta(x - a(X)) F(X,t) \, dX.$$

The second step is to identify an evolution for x that corresponds to this evolution equation for $f(x,t)$.
Evolution of the Reduced Density

We see from the Liouville equation and the definition of $f(x, t)$ that the evolution of $f(x, t)$ is governed by

$$\partial_t f(x, t) + \int \delta(x - a(X)) \nabla_X \cdot \left(V(X) F(X, t)\right) dX = 0.$$

Because for any vector-valued $U(X)$ we have the divergence identity

$$\int \delta(x - a(X)) \nabla_X \cdot U(X) dX = \nabla_x \cdot \int \delta(x - a(X)) \partial_a(X) U(X) dX,$$

we can express the evolution equation for $f(x, t)$ in the divergence form

$$\partial_t f(x, t) + \nabla_x \cdot \int \delta(x - a(X)) \partial_a(X) V(X) F(X, t) dX = 0.$$

Notice that this form does not require $\partial_a(X)$ to exist everywhere. In order to close this equation we must express $F(X, t)$ in terms of $f(x, t)$.
We will construct an expression for $F(X, t)$ in terms of $f(x, t)$ with the aid of a reference density. Let $G(X)$ be a positive probability density that satisfies the stationary Liouville equation

$$\nabla_X \cdot \left(V(X) G(X) \right) = 0.$$

For example, if $V(X)$ is Hamiltonian then $G(X)$ might be a Gibbs density

$$G(X) = \frac{1}{Z(\beta)} \exp\left(-\beta H(X)\right), \quad Z(\beta) = \int \exp\left(-\beta H(X)\right) dX,$$

where β can be obtained from the initial data by setting

$$\frac{1}{Z(\beta)} \int H(X) \exp\left(-\beta H(X)\right) dX = \int H(X) F(X, 0) dX.$$

Here we are assuming that all other conserved quantities are initially zero. In that case the reference density is the thermal equilibrium associated with the initial probability density $F(X, 0)$. There are other choices of β.
If we minimize the relative entropy

$$\int F \log \left(\frac{F}{G} \right) \, dX,$$

subject to the constraint

$$\int \delta(x - a(X)) \, F \, dX = f(x, t),$$

then we obtain (steps are skipped) the so-called entropy-based closure

$$F(X, t) = G(X) \frac{f(a(X), t)}{g(a(X))},$$

where $g(x)$ is the positive probability density given by

$$g(x) = \int \delta(x - a(X)) \, G(X) \, dX.$$
This implies that
\[
\int \delta \left(x - a(X) \right) \partial a(X) V(X) F(X, t) \, dX \\
= \int \delta \left(x - a(X) \right) \partial a(X) V(X) G(X) \, dX \frac{f(x, t)}{g(x)},
\]
which implies the evolution equation for \(f(x, t) \) has the form
\[
\partial_t f + \nabla_x \cdot \left(v(x) f \right) = 0,
\]
where \(v(x) \) is the reduced vector-field given by
\[
v(x) = \frac{1}{g(x)} \int \delta \left(x - a(X) \right) \partial a(X) V(X) G(X) \, dX.
\]
The coarsened \(n \)-particle system is therefore governed by
\[
\frac{dx}{dt} = v(x).
\]
Moreover, it can be checked that \(g(x) \) satisfies \(\nabla_x \cdot \left(v(x) g(x) \right) = 0. \)
Remark. This closure depends largely upon the reference density $G(X)$. The same closure is obtained by minimizing any functional of the form
\[\int G(X) \eta \left(\frac{F(X,t)}{G(X)} \right) \, dX, \]
subject to the constraint
\[\int \delta(x - a(X)) \, F(X,t) \, dX = f(x,t), \]
where $\eta(z)$ is continuously differentiable and strictly convex over \mathbb{R}_+ with $\eta(1) = \eta'(1) = 0$. For example, for any $p \in \mathbb{R}$ we could have chosen
\[\eta(z) = \begin{cases}
 \frac{z^p - 1 - p(z - 1)}{p(p - 1)} & \text{for } p \neq 0, 1, \\
 z - 1 - \log(z) & \text{for } p = 0, \\
 z \log(z) - z + 1 & \text{for } p = 1.
\end{cases} \]
The case $p = 1$ is equivalent to the entropy functional we used originally.
Suppose the N-particle dynamics has the Hamiltonian form

$$\frac{dX}{dt} = J(X) \nabla_X H(X),$$

where the skew-symmetric matrix $J(X)$ gives the symplectic structure and $H(X)$ is the Hamiltonian. Then the coarsened system associated with the Gibbs density will have the Hamiltonian form

$$\frac{dx}{dt} = j(x) \nabla_x h(x),$$

where the skew-symmetric matrix $j(x)$ gives the symplectic structure and the Hamiltonian $h(x)$ is determined from the relation

$$\exp(-\beta h(x)) = \int \delta(x - a(X)) \exp(-\beta H(X)) \, dX,$$

provided the mapping $a(X)$ satisfies $\partial a(X) J(X) = j(a(X)) \partial a(X)^{-\top}$.
Remark. This Hamiltonian example can be extended easily to the more general Lie-Poisson setting. Because most classical N-particle systems fall into the Hamiltonian setting, we do not give this extension here.

Remark. This example illustrates how statistical information can enter the coarsened system. In this case it enters through β, which appears in the formula for the coarsened Hamiltonian $h(x)$ at the bottom of the last page. Here β is essentially reciprocal temperature. This coarsening is similar to the quantum statistical potential (QSP) approach in the quantum setting.

Remark. A quantum analog of the foregoing classical formalism can be carried out in the Heisenberg density matrix setting. It is less clear how an analogous formalism might be carried out in the Wigner equation setting.
We can improve the foregoing closure within the so-called Mori-Zwanzig framework, developed by S. Nakajima in 1958, by R. Zwanzig in 1960, and by H. Mori in 1961. We begin by decomposing $F(X,t)$ as

$$ F(X,t) = G(X) \frac{f(a(X), t)}{g(a(X))} + \tilde{F}(X,t). $$

Here $\tilde{F}(X,t)$ is the deviation of $F(X,t)$ from the entropy-based closure. The evolution equation for $f(x,t)$ then has the form

$$ \partial_t f + \nabla_x \cdot (v(x)f) + \nabla_x \cdot \int \delta(x - a(X)) \partial a(X) V(X) \tilde{F}(X,t) \, dX = 0, $$

where $v(x)$ is obtained from the entropy-based closure, which is recovered by setting $\tilde{F}(X,t) = 0$. The idea is to solve the evolution equation for $\tilde{F}(X,t)$ in terms of $f(x,t)$ in order to eliminate $\tilde{F}(X,t)$ from this equation.
The evolution equation for the deviation $\tilde{F}(X,t)$ is
\[\partial_t \tilde{F} + \tilde{P} \nabla_X \cdot (V(X)\tilde{F}) = -\tilde{P} G(X)V(X) \cdot \nabla_X \left(\frac{f(a(X), t)}{g(a(X))} \right), \]
where $\tilde{P} = I - P$ and P is the projection operator that acts formally on any function $W(X)$ as
\[PW(X) = \frac{G(X)}{g(a(X))} \int \delta(a(X) - a(X')) W(X') \, dX'. \]
The right-hand side of the evolution equation for $\tilde{F}(X,t)$ can be written as
\[\tilde{R}(X,t) = -G(X) \left(\partial a(X) V(X) - v(a(X)) \right) \cdot \nabla_x \left(\frac{f(a(X), t)}{g(a(X))} \right). \]
This shows that the evolution of $\tilde{F}(X,t)$ is driven both by the gradient of the ratio of $f(x,t)$ to its equilibrium $g(x)$ and by the difference between the coarsened vector-field $v(a(X))$ and $\partial a(X)V(X)$.
We can formally solve the evolution equation for $\tilde{F}(X, t)$ as

$$\tilde{F}(t) = \exp(-t\tilde{\mathcal{A}})\tilde{F}^{\text{in}} + \int_0^t \exp(-(t - t')\tilde{\mathcal{A}})\tilde{R}(t')\, dt',$$

where we have suppressed the dependence on X in all terms, \tilde{F}^{in} is the initial-data for $\tilde{F}(t)$, and the operator $\tilde{\mathcal{A}}$ is defined by

$$\tilde{\mathcal{A}}W = \tilde{\mathcal{P}}\nabla_X \cdot (V(X)\tilde{\mathcal{P}}W).$$

If the operator $\exp(-t\tilde{\mathcal{A}})$ is represented by a kernel $S(X, X', t)$ then $\tilde{F}(X, t)$ can be expressed as

$$\tilde{F}(X, t) = \int S(X, X', t)\tilde{F}^{\text{in}}(X')\, dX'$$

$$+ \int_0^t \int S(X, X', t - t')\tilde{R}(X', t')\, dX'\, dt'.$$

The Mori-Zwanzig evolution equation for $f(x, t)$ is obtained by placing this expression for $\tilde{F}(X, t)$ into the equation for $\partial_t f(x, t)$ given two slides ago.
When the foregoing expression for $\tilde{F}(X, t)$ is placed into the equation for $\partial_t f(x, t)$ given three slides ago while using the fact that
\[
\int \delta(x - a(X)) \partial a(X) V(X) \tilde{F}(X, t) \, dX
= \int \delta(x - a(X)) \left(\partial a(X) V(X) - v(x) \right) \tilde{F}(X, t) \, dX,
\]
the equation for $\partial_t f(x, t)$ becomes
\[
\partial_t f + \nabla_x \cdot \left(v(x) f \right)
+ \nabla_x \cdot \int \int \delta(x - a(X)) \left(\partial a(X) V(X) - v(x) \right)
S(X, X', t) \tilde{F}_{\text{in}}(X') \, dX' \, dX
+ \nabla_x \cdot \int \int_0^t \int \delta(x - a(X)) \left(\partial a(X) V(X) - v(x) \right)
S(X, X', t - t') \tilde{R}(X', t') \, dX' \, dt' \, dX,
\]
where $\tilde{R}(X, t)$ was given in terms of $f(x, t)$ two slides ago.
Remark. This Mori-Zwanzig evolution equation is different than the one developed by them because we use a reference probability density $G(X)$. They used a uniform reference measure, which corresponds to taking the infinite temperature limit with the Gibbs density. We recover their equation by setting $G(X) = 1$ and requiring $a(X)$ to satisfy

$$
g(x) = \int \delta(x - a(X)) \, dX < \infty \quad \text{for every } x.
$$

Baldwin Robertson introduced nonuniform reference states in 1966.

Remark. The Mori-Zwanzig evolution equation makes no approximations. It is formally equivalent to the original problem through the appearance of the kernel $S(X, X', t)$ in the two new terms. These are memory terms. The first has memory of the initial-data $\bar{F}^{\text{in}}(X)$, while the second has memory of $f(x, t')$ over times t' in $(0, t)$. The Mori-Zwanzig framework suggests we should approximate the actions of $S(X, X', t)$ in these terms.
6. Historical Interlude

The strategy introduced by Maxwell in 1866 to derive gas dynamics from the Boltzmann equation (which he derived in the same paper) is:

1. decompose the phase-space density into the sum of a near equilibrium plus a deviation;
2. write a coupled system of evolution equations for each component;
3. approximately solve the deviation equation for the deviation in terms of the near equilibrium;
4. place the result into the evolution equation for the near equilibrium, thereby closing it.

Maxwell used one-particle phase space and a nonlinear kinetic equation. Nakajima, Zwanzig, Mori, and Robertson used N-particle phase space and a linear evolution equation. They did quantum mechanical versions.
7. Markov Approximation

We now assume that the dynamics represented by $S(X, X', t)$ forgets its past fast enough that we can use the so-called Markov approximation

$$\tilde{F}(X, t) = \int K(X, X') \tilde{R}(X', t) \, dX',$$

where the kernel $K(X, X')$ acts on a sufficiently large class of $\tilde{R}(X)$ as

$$\int K(X, X') \tilde{R}(X') \, dX' = \lim_{t \to \infty} \int_0^t \int S(X, X', t - t') \tilde{R}(X') \, dX' \, dt'$$

$$= \lim_{t \to \infty} \int_0^t \int S(X, X', t') \tilde{R}(X') \, dX' \, dt'.$$

The class of $\tilde{R}(X)$ for which this limit has to be established must include the form of $\tilde{R}(X, t)$ that appears on the right-hand side of the evolution equation for $\tilde{F}(X, t)$. This limit cannot be computed generally.
If the Markov approximation for $\tilde{F}(X, t)$ is placed into the equation for $\partial_t f(x, t)$ then that equation becomes

$$
\partial_t f + \nabla_x \cdot (v(x)f) = \nabla_x \cdot \left[\int k(x, x')g(x')\nabla_{x'} \left(\frac{f(x', t)}{g(x')} \right) \, dx' \right],
$$

where the matrix-valued kernel $k(x, x')$ is given by

$$
k(x, x')g(x') = \iint \delta(x - a(X)) \left(\partial a(X)V(X) - v(x) \right) K(X, X') G(X') \left(\partial a(X')V(X') - v(x') \right)^\top \delta(x' - a(X')) \, dX \, dX'.
$$

To be the generator of a Markov process, this equation should preserve the nonnegativity of its solutions and dissipate all functionals of the form

$$
\int g(x) \eta\left(\frac{f(x, t)}{g(x)} \right) \, dx, \quad \text{where } \eta(z) \text{ is strictly convex over } \mathbb{R}_+.
$$
Whenever these properties hold we can try to identify a Markov process for which the equation for $f(x, t)$ is the forward Kolmogorov equation. For example, these properties hold when $s(x, x') = s(x', x) \geq 0$, where

$$s(x, x') = -\nabla_{x'} \cdot \left(\nabla_x \cdot k(x, x') g(x') \right)^T.$$

In that case the evolution equation for $f(x, t)$ takes the form

$$\partial_t f + \nabla_x \cdot (v(x) f) = \int s(x, x') \left(\frac{f(x', t)}{g(x')} - \frac{f(x, t)}{g(x)} \right) \, dx'.$$

This is the forward Kolmogorov equation for the Markov process

$$\frac{dx}{dt} = v(x) + \frac{dz(t)}{dt},$$

where $z(t)$ is the *jump process* associated with scattering kernel $s(x, x')$. This coarsened dynamics has characteristics of a Monte Carlo simulation.
Whenever these properties do not hold we can try to replace $k(x, x')$ with an approximation for which they do hold. For example, if $k(x, x')$ is peaked along the diagonal $x' = x$ then we can make the approximation

$$k(x, x') \approx d(x) \delta(x - x').$$

where $d(x)$ is the (nonnegative definite) matrix-valued function given by

$$d(x) g(x) = \int k(x, x') g(x') \, dx'.$$

The resulting evolution equation then becomes

$$\partial_t f + \nabla_x \cdot (v(x) f) = \nabla_x \cdot \left[d(x) g(x) \nabla_x \left(\frac{f}{g(x)} \right) \right].$$

This is the forward Kolmogorov equation for the Markov process

$$\frac{dx}{dt} = v(x) + \nabla_x \cdot d(x) + d(x) \nabla_x \log(g(x)) + \sqrt{2d(x)} \frac{dw(t)}{dt},$$

where $w(t)$ is a vector of Wiener processes. This is a **diffusion process**.
In the Hamiltonian case this coarsened dynamics becomes

\[
\frac{dx}{dt} = j(x) \nabla_x h(x) + \nabla_x \cdot d(x) - \beta d(x) \nabla_x h(x) + \sqrt{2d(x)} \frac{dw(t)}{dt}.
\]

More generally, we might be able to split the kernel \(k(x, x')\) into two parts, one that gives rise to a jump process and one that gives rise to a diffusion process. For example, in the Hamiltonian case \(p\) might be governed by a jump process while \(q\) might be governed by a diffusion process.

Remark. The evolution equation for \(f(x, t)\) should be supplemented by an initial condition. The simplest such condition is

\[
f(x, 0) = \int \delta(x - a(X)) F^{\text{in}}(X) \, dX,
\]

where \(F^{\text{in}}(X)\) is the initial-data for \(F(X, t)\). This initial condition specifies nonnegative initial-data for every nonnegative \(F^{\text{in}}(X)\).
Remark. The reference density $G(X)$ was taken to be stationary in the above discussion. Much of what was done goes through if the reference density is slowly varying. For example, it could be a slowly modulated Gibbs density as in the Green-Kubo formalism.

Remark. A similar formalism can be carried out to coarsen a system of N damped stochastic particles to a system of n damped stochastic particles. In that case the Markov approximation is easier to justify. This idea was explored in a one-dimensional setting in the dissertation of J.T. Halbert.

Thank You!