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Computational Methods for Structure Prediction and
Solid/Liquid Interfaces for Energy Materials

Richard G. Hennig, Cornell University

How can we predict the formation of novel compounds,
their structure, composition, and stability?
How can we include solvation effects for surfaces?

* Prediction of compound formation and phase diagrams o |
from quantum mechanics and genetic algorithms o o o
- 164415 #., code for structure prediction
- Application to materials for energy applications Li-S1 and Li-S
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e Solvation included in DFT and QMC through external potential ° Li fracton

- Application to semiconducting and metallic nanocrystals
- Desorption of ligands in polar solvents

Nature 451, 445 (2008), PRB 87, 184114 (2013), Phys. Rev. B 87, 184114 (2013),
J. Phys.: Condens. Matt. 25, 495401 (2013),
ACS Nano 6, 2118 (2012), JACS 133,3131 (2011), Phys. Rev. B 85,201102 (R) (2012)
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The Energy Landscape
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Minimum Free Energy Principle

Computational structure prediction based on optimization

e Stable structure = Lowest free energy |
« Minimize the (free) cnergy gﬁw ...............................................................................................................................................................
e Stability against competing phases 2 oosf ]
Energy methods -l _
ol
Interpolative |
(Semi-)empirical methods " .. Fract'ion, Y .

Extrapolative and predictive
First-principles or ab-initio methods

* Density-functional theory offers balance of speed and accuracy
* Pseudopotentials and plane-wave basis (VASP)
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General Features of the Energy Landscape

Bell-Evans—Polanyi principle
* Highly exothermic chemical reactions have low activation energies

e Low-energy basins are expected to occur near other low-energy basins
e These regions are referred to as ‘funnels’

Conformational Space
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General Features of the Energy Landscape

Probability distribution of energies of local minima
e Basins with lower-energy minima have larger hyper-volumes
e Related to similar elastic constants, vibrational frequencies for different structures

* Power law probability . .

distribution of these Y
hyper-volumes l%
e Order 1n the arrangement w
: : . 107+
of basins of different sizes
e Smaller basins filling :
gaps between larger ones T o0 bzugutov liquids
< ]
- ~ - Amorphous silicon
10—15_
_ Binary Lennard-Jones
-1 -0.99 -0.98 -0.97 -0.96 -0.95 -0.94 -0.93
Massen & Doyle, Phys. Rev. E 75,037101 (2007) —E /Emin
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Illustration of Energy Landscape

e 1D and 2D cuts through 3N-dimensional configuration space
* Not a good representation of the distribution of basins in 3N dimensions

A
Energy
. o >
Configuration coordinate
3N dimensional
B
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Illustration of Energy Landscape

e 1D and 2D cuts through 3N-dimensional configuration space
* Not a good representation of the distribution of basins in 3N dimensions

e Similarities between Apollonian sphere packings and energy landscapes

Doye & Massen Phys. Rev. E 71,016128 (2005)
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Symmetry and Structural Motifs

The Rule of Parsimony: “The Number of
essentially different kinds of constituents in a
crystal tends to be small.” (Linus Pauling 1929)

Correlation between energy and symmetry
e Low (and high) energy minima tend to correspond to symmetrical structures
 High symmetry of low-energy minima supported by the ubiquity of crystals

Example: 55-atom Lennard-Jones clusters (D. Wales "98)

Lowest energy
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Frequency of Space Group Symmetries

For small organic molecules
e /5% of about 30,000 compounds occur in only five space groups
* 29 space groups only have one entry and 35 space groups none at all

SpaceGroup P2i/c P1 P212:21 P2, C2/c
Frequency 36% 14% 12% 7% 7%

Inorganic systems show different space group frequencies
* 67% of about 100,000 compounds occur in only 24 space groups

Space Group  Pnma P2i/c Fm3m Fd3m
Frequency 7.4% 7.2% 5.6% 5.1%
Examples Fes;C, CaTiOs V4,0 Cu C, CuxMg

e Note: bcc 1s not one of the top 24 space groups

Some space groups are much more common than others in crystals
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Specific Features of the Energy Landscape

Chemical considerations

 Know a great deal about the chemistry of the systems we study

 Know which atomic types prefer to bond to one another

e Approximate bond lengths

e Likely coordination numbers of the atoms

Resulting empirical rules
* Hume-Rothery rules
e [.aves rules for intermetallics

 Pettifor structure maps
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e Pauling rules for ionic materials .
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» FeAs,oP8,62

+ Cu,cF4,225

CuTi,tP2,123
CuAu,tP2,123
ZnS,cF8,216
NiAs,hP4,194
FeB-b,0P8,62

Til,058,63

. CsCl,cP2,221
- NaCl,cF8,225
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Crystal Structure Prediction is Hard: NP-Hard

NATURE VOL. 335 15 SEPTEMBER 1988 N EWS AND Vl E\NS 201

Crystals from first principles  John Maddox (1988)

A new calculation of the polymorphs of silica appears to have broken new ground in deriving crystal
structure from chemical composition. But X-ray crystallographers need not worry — yet.

ONE of the continuing scandals in the
physical sciences is that it remains in
general impossible to predict the structure
of even the simplest crystalline solids from
a knowledge of their chemical composi-
tion. Who, for example, would guess that
graphite, not diamond, is the thermo-
dynamically stable allotrope of carbon at
ordinary temperature and pressure?
Solids such as crystalline water (ice) are
still thought to lie beyond mortals’ ken.
Yet one would have thought that, by
now, it should be possible to equip a suffi-
ciently large computer with a sufficiently
large program, type in the formula of the
chemical and obtain, as output, the atomic
coordinates of the atoms in a unit cell.

St 2 Cornell University
| )5} College of Engineering
Materials Science and Engineering

e Determining the global minimum of an energy
landscape 1s an NP-hard problem

 NP-hard: Non-deterministic polynomial-time hard

“If a problem is NP-hard, no one in their right
mind should believe it can be solved in
polynomial time” (Jeff Erickson, CS UIUC)

* For other NP-hard problems, see G. Viglietta:
“Gaming 1s a hard job, but someone has to do it!”

arXiv:1201.4995v3 (2012)
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Materials Discovery by Genetic Algorithms

The (64452, Code for Structure Prediction

Will Tipton, Ben Revard, Stewart Wenner, Andy Sanchez, Richard G. Hennig
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Evolutionary Structure Search

Genetic algorithm

l Set children to parents

Use promotion and
—| variations to create
offspring

Create initial parent | Create empty child
generation generation

Convergence
achieved?

Enough structures?

T —

Structure relaxation and energy evaluation
using external code

Choice of genetic operators is important

» Selection @ @ 0| 0 0 O ® 0 o
O O O e e o Q QO O
» Crossover O O O ® 0 o ® 0 o
. @ @ 0,0 0 0 .19 00O
e Mutation ® 0 o O O O ® 0 o
OOOOOO Q.Q.Q. QO O O
® O O
®@ ¢ O © O O QO O O
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Genetic Algorithm For Structure and
Phase Prediction — (64415,

Features
* Predict ground states, metastable states and phase diagrams
* Search for crystal structures, molecular crystals, molecules and clusters

DFT Semiempirical Empirical
VASP, Gaussian, JDFT MOPAC LAMMPS, GULP, OHMMS
Composition-Space Search ; . . ..
* Convex hull of energy vs. composition "3 o .
* Use formation energy as objective function ™~ e 3 3 f : ;
* Grand canonical search for all phases );b " . . . ’ ; :
in multi-component phase diagram E ¢ v ¢

Freely available
* Website: http://gasp.mse.cornell.edu/

e Examples, tutorials and manual
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Efficiency of Genetic Algorithm

Efficiency compared to random search
 Random search

requires 2-3x 90th percentile . ————"  _—————
more structure 235 \\ 7 =TT = :
relaxations =]
e Genetic
algorithm 5 2.34] ]
learns from S
previous z
structures R 2337 _
r'j —— Random search
53k l,’ — GASP (standard parameterization) |
. . | . | . |
0 500 1000 1500 2000

Objective function evaluations
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Successes of Structure Search

Lithium-Beryllium
e Immiscible at ambient conditions

e 4 compounds forming under pressure
Nature 451, 445 (2008)

Europium under pressure

e Prediction of crystal structure of
superconducting Europium

Phys. Rev. B 83, 104106 (2011)

Accuracy of empirical potentials

e Use genetic algorithm to verify
accuracy of empirical energy models
Phys. Rev. B 85,214121 (2012)
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Prediction of Compound Formation

Li-Si and Li-S: Promising Battery Electrode Materials

Will Tipton, Clive Bealing, Michael Blonsky, Kiran Matthew, Richard G. Hennig
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Li-lon Batteries

Current materials do not meet
demand for high-performance batteries
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Dunn et al. , Science 334,928 (2011)
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Anode Cathode Anode Capacity [mAh/g]
LiCs L1Co0O2 If LieSi charge capacity exceeds LicC
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<370 mAh/g | 120-150 mAh/g S¢ capactty . ’
why don’t we use Si-anodes?
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Li-S1 Battery Anodes

of w8 | \P

* Charge-discharge cycles 1s accompanied by immense volume changes (300%)
and resulting mechanical stresses

e Experimental solution: S1 nanowires and nanotubes
e Park et al.: Charge capacity of 3247 mAh/g
 ¢-S1 becomes a-LixS1 during lithiation and remains so

. . . Park et al. Nano
after delithiation Lett 9. 3844 (2009)

How is the energy density affected by amorphization of structures?
Could small unit cell metastable crystal structures play a role?

W

Cornell University IPAM - Batteries and Fuel Cells
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Energy methods

Interpolative
(Semi-)empirical methods

Extrapolative and predictive
First-principles or ab-initio methods

* Density-functional theory offers
balance of speed and accuracy

* Pseudopotentials and
plane-wave basis (VASP)

 Amorphous structures from
melt/quench approach

Cornell University
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Li-Si1 Structure Search
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Li-Si1 Structure Search

Materials Science and Engineering
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The LisSi; and Li~7Siz Phases

Experimental refinement No. 166,R-3m,a=439 A, c=1792 A
S1 2(c) 0 0 0.067

. L1.7813 same structure as LlsSlz phe.lse Li 2(c) 0 0 0.353
* High vacancy concentration on L1 1(b) Li 2(c) 0 0 021
0 0

* About 1 vacancy per 3 unit cells in L17S13 Li 1(b) 1/2
Atom Lage SOF X Y z
Vacancies Si bc 1.00 0 0 0.06433(6)
* Very low formation energy explains high Lit  6c 1.00(2) 0 0 0.3522(5)
concentration at room temperature Liz  6c 0.95(2) 0 0 0.2082(5)
Li3 3b |0.80(4} 0 O 1/2

Refinement: v. Schnering, Z. Metallkde. 71, 357 (1980)

15 10 49 meV

UNJ
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The LisSi; and Li~7Siz Phases

No.166,R-3m,a=439 A, c=17.92 A

Experimental refinement
Si2(c) 0 0 0.067

* L17S13 same structure as L1sS12 phase

. , , Li 2(c) 0 0 0.353
» High vacancy concentration on L1 1(b) Li2e) 0 0 091
* About 1 vacancy per 3 unit cells in L1813 i1ty 0 0 12
. <Y z
Vacancies Unusual large vacancy concentration expected "
. . . oy } 0 0.064339(6
e Very low fori to results in extremely high Li mobility | o 0.350206)
concentration at room temperature Liz-bc 0.55(2770 0 0.2082(5)
o R s e [osom] 0 0 2

Refinement: v. Schnering, Z. Metallkde. 71, 357 (1980)
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Voltage Dependence of Li-Si Anodes

Good agreement of predicted voltages with titration

Similar voltages for metastable structures
and for amorphous structures

R

Predicted fast lithiation

Predicted adiabatic
U] — N Nt " lithiation at 0K -
g N | «-.-—Predicted adiabatic
:% 03l / | lithiation at 690K |
— 7| Adiabatic i |
< lithiation
= 021
o 01F Cqulombic
titration Phys. Rev. B 87,
| | | . | . | o 184114 (2013).
OO | 2 3 4 5
X IIl LIX Sl Coulombic Titration: Wen et al. J. Sol. State Chem. 37,271 (1981)
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Voltage Dependence of Li-Si Anodes

Good agreement of predicted voltages with titration

Similar voltages for metastable structures
and for amorphous structures

05 | ' ! ' ! L t— | ————
Predicted fast htt Amorphous structures slightly reduce operating

o ‘/Prle.g voltage near end of discharge cycle
E/ [ e B VAR ! ltj Metastable structures have similar energy and local
+ P -_—%_-4 A NEE SRR Lol structures as amorphous structures
.é 03[ _ . Useful for study of lithiation Kinetics
— Adiabatic
X lithiation
= 021
=
3 2
O o
~oqh Coulombic

titration Phys. Rev. B 87,
. . . o 184114 (2013).
OO 1 2 3 4 5
X in Ll Sl Coulombic Titration: Wen et al. J. Sol. State Chem. 37,271 (1981)
X
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Li-S Structure Search

L1 monosulfide reported by Thomas and Jones in 1929
GASP finds potentially metastable Li2S; structure

Cathode potential
vs. Li/Li*
V=204V

o
—5—

S
n

Formation Energy (eV/atom)
=

13, 02 04 06 08
Composition

A Cornell University IPAM - Batteries and Fuel Cells
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current
collector E » -
_).__./

Graphene LI
structure

Al

current

=3 Qwo collector
Solvent LIMO, layer

molecule

structure

Dunn et al. , Science 334,928 (2011)

Anode Cathode
Li1Cs L1Co0O»,
<370 mAh/g |[120-150 mAh/g

.S

ﬁié%% Cornell University

o @ . .
A lgg) ] College of Engineering
Materials Science and Engineering

Anode Cathode
Li4.4Si Li2S
Charge capacity 4,200 mAh/g 1,670 mAh/g
Potential vs. Li/Li1* 04V 20V
Charge capacity 913 mAh/g
Energy density 1.5 Wh/g

Current commercial Li-ion batteries:
3.6 V, 70 mAh/g and 230 mWh/g

(includes electrolyte and case)

Lot’s of room for improvement
for future Li-ion batteries

Data from http://www.panasonic.com/industrial/batteries-oem/oem/lithium-ion.aspx
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Ab initio methods for solid/liquid interfaces

Katie Schwarz, Kiran Matthew, Ravishankar Sundararaman,
Kendra Letchworth-Weaver, Tomas Arias, Richard G. Hennig
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Importance of Solvent Effects

&7
N

S —@\2

D B>

Motivation

* Energetics of chemical processes differ in vacuum and solution
* Importance of solvent effects 1n catalysis and electrochemistry

* Applications to energy technologies:
Fuel cells and batteries

* Example:

- Nucleophilic substitution (Sn2) reaction L F"(‘l'micba?d
L adsorbate

Cl- + CH3Cl — CH;Cl + CI- -

- Hydration effects lower transfer rate T LA ed™ g
by 20 orders of magnitude Pt (110) surface

‘ Solvation effects important for applications to energy technologies '
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Why an Implicit Solvation Model?

Motivation

* Explicit solvation calculations require many electrons and
multiple nuclear configurations of the solvent

) . . IPAM - Batteries and Fuel Cells
COllege of Englneerlng —g—rhennl @ Cornell ’edu November 4-8, 2013 « Los Angeles, CA
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Joint Density Functional Theory

* Variational Principle of JDFT! - A is an exact free energy functional
minimized by the fluid density N, and electron density n

Aln, (Nay| = Auk|[n] + Qg1 Naj] + AA[n, 1N}
—_ Y——
Electrons Liquid Coupling
90 . © e
IS ®

* The liquid and coupling terms are microscopically improvable
* Flexible, the model works with any electron basis set and can be used for
surfaces and molecules

I'S. Petrosyan, J.F. Briere, D. Roundy, and T. Arias, Phys. Rev B. 75, 205105 (2007)

2 Cornell University
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Joint Density Functional Theory

* Combine terms related to the solvation into a single term

Afn. (Na}] = Asicln] + Qua[{Na}] + Adn, (V)]

solute electron average solvent
. B Electrons Asolv
density site density

* Variational derivative with respect to the exact electron density n
0A . 5AHK + Aenv
on on
yields the usual Euler-Lagrange equation for the 1solated electronic system
with an additional external potential

Vion [, (N, )] = oot I U]

on N,

* Thermodynamic state of the system is given by self-consistent solution
for which the electron density yields back the same potential

(==~ Cornell University

IPAM - Batteries and Fuel Cells
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Simple Approximation for Aeny

Linear dielectric continuum model

* Fluid and coupling modeled by
dielectric continuum

e Dielectric constant determined
by local electron density n(r)

¢ SWltCh@S SIIlOOthly fI‘OIIl VaCllllIIl S}calied'E-Iec.t(oﬁCDénsl.ty .
value at high density to value of
liquid at low electron density

* Potential determined by
modified Poisson equation

V.e(r)Vo = —4nn(r)

Distance (Bohr)

3y Cornell University
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Linear Dielectric Continuum Model

e Similar to Fattebert and Gygi,
Int. J. Quantum Chem., 93, 139 (2003)

 Hard Sphere approximation by
Amovilli, Filipp1 and Flores

and others
J. Chem. Phys. 129, 244106 (2008),

J. Phys. Chem. B 110(51) (2006)

Advantages of our model
1) Microscopically improvable:

Part of larger theoretical framework

2) Ab initio: Cavity forms itself
from the electron density

3) Flexible: Model works with any
electron basis set and can be used for surfaces and molecules

3y Cornell University
College of Engineering
Materials Science and Engineering
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Linear Dielectric Continuum Model

Agorv|n] = min

Approximations
{Na} (

=0

5 [ (0= Na)

N—— ——

<_

g [{Na | +AA[n, {Na}])

v-zSTn)v>1 - (

‘/solv[n] — _¢Hartree | ¢ | 0(10_2) ~ ¢bound

Cavitation and dispersion

Aoy :T/dr\VS|

£ Tﬁé\%@% Cornell University
‘;;5 College of Engineering
Qo Materials Science and Engineering

&D

Negative
bound charge

Positive
bound charge
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Implementation into VASP

VASP Solvation Module

VASP Solvation Energy (eV)

Iterative solution of modified vacpiiili .

Poisson equation Solid)/Liquid interfacestorDE ERIER A

M;.'Jyu O™ MOl ECtT eSS Ty St O Aees

v . € (r) v ¢ — 47-‘- n (r) RSN Manual Download Development  Publications

VASPsol

We implemented an implicit solvation mode! that describes the effect of electrostatics, cavitation, and dispersion on the
interaction between a solute and solvent into the plane-wave DFT code VASP, Our implementation provides a computationally
efficient means to calculate the effects of solvation on molecules and crystal surfaces as well as reaction barriers, The
strength of our solvation model implementation is its capability to handle large periodic systems such as metal and

semiconductor surfaces and its interoperability with standard ultrasoft pseudopotential and projector-augmented wave
0 2 potential libraries, The software is freely available as a patch to the original VASP code,
. | | | | | |

Developers: Kiran Mathew and Richard G. Hennig

‘ PA v » Collaborators: Ravishankar Sundararaman, Kendra Letchworth-Weaver, Tomas A, Arias

thane|
o USPP ethare :
0.0 DME Sopane Freely available at

—0.1

0.1

methanol - http://vaspsol.mse.cornell.edu
—0.2 - ethanol @&-Gacetone -
propanol

—0.3 (o) —

—oal water | Good agreement with experimental

0 . | | | . . solvation energies of small molecules
—05 —-04 —-03 -02 -01 00 01 0.2

Expt. Solvation Energy (eV)

http://arxiv.org/abs/1310.4242
Cornell University
College of Engineering rhennig@cornell.edu
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Application to Nanocrystal Facets

Metallic nanocrystals Semiconducting nanocrystals

130 Al
1 vacuum, € = 1.0 Pt 1 vacuum, € = 1.0 PbS

- [1 toluene, e = 2.38 . 35 F 1 toluene, € = 2.38 .
B acetonitrile, e = 37.5 B acetonitrile, € = 37.5
@ water, e = 80.0 - 30 F E= water, € = 80.0 _

p—
DO
ot

—_
DO
-

02

02

[
—
()
I
]

25 b :

20

Surface energy (meV/A)
— —_
-] —_
ot -
I I
] ]
Surface energy (meV/A)

15 |

100 - .

90 l

(111) (100) (110) O (100) (110)

10

Significantly higher surface energies for
metallic nanoparticles than semiconducting ones.

Larger effect of solvation for
semiconducting nanoparticles due to polar nature of bonding.

Cornell University

| College of Engineering rhennig@cornell.edu

Materials Science and Engineering
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Control of Ligand Adsorption
through Polar Solvents

Hilda Mera, Clive Bealing, Richard G. Hennig

= \%\ Cornell University .
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Importance of Lead-Salt Nanocrystals

* Promising candidates for photovoltaics 912‘2_
. . . 4 go- Zn0O
e Electronic and optical properties T
. 3
tunable through size B 481 |
> -50- ’
e [arge exciton radius in PbSe of 46 nm 2 LERE L s
5.4 0
= Energy gap tunable 1.4 -04 eV 2 56
58-
PbSe NC Bandgap (eV) R AT AP AN I A AR S A
?. — .1.'4. 1;2 v 1 0.8 PbSe NC size (nm)
gOS' & | — —
7'@-’:04‘ ‘
® 5 . .
5 e Extension of solar energy conversion
>03 " . .
£ L to near-infrared region
=0 E . L.
: , e Efficiency of excitonic solar cells of 3.4%
8-0.1 1 Device On _> Device Off
O —an . a.
00 il . Nano Lett. 9, 3749 (2009)
t 2 3 4 5 6 7
PbSe NC size (nm)
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Importance of Lead-Salt Nanocrystals

e Size and shape tunable in synthesis (A) XS

e Nanocrystals stabilized by ligands like oleic acid y.'.""-’z"'z,':g R

e Ligand loss of PbS nanocrystals .‘-,.’*.’o.'.’u‘:‘,"" S
= Transformation from fcc to bcc superlattice ORIk
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JACS, 133, 3131 (2011)

Importance of control of size, shape and D 0 %e®e9%52,008
composition of individual nanocrystal, |
and tunability of nanocrystal assembly
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Nanocrystal Shape

e Shape of nanocrystal core determined by size of {100} and {111} facets

i : larger {I 11} facets %
(001
e Facet sizes related to surface energies oun A Wullf plage 7 ' Y plot @
of the facets {hkl} A/ ¥e e
* Equilibrium shape of nanocrystal e \\\ YAY°°‘ >
given by minimum of Gibbs energy . Y

m

_ 5 (110)
min E A; -
i

e Simple geometric construction by Wulft

Equilibrium
shape

(a)

Cornell University IPAM - Batteries and Fuel Cells
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Ligand Binding and Surface Energies

PR
.‘.l",..'.'.: -
NP

.o

* Binding energies obtained through DFT (VASP)
e vdW interactions between ligands neglected

Cornell University
College of Engineering
Materials Science and Engineering

A

DFT binding energy

decreases with
coverage

Minimum in
surface energy at
3 to 4 OA-/nm?

rhennig@cornell.edu
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Predicted Nanocrystal Shapes

Wulff construction and equilibrium ligand coverage

e Ratio of the surface energies Vi11/Y100 determines the equilibrium shape

* [sotherms for equilibrium coverage of facets show that
Shape can be tuned through ligand concentration during synthesis

(o>

Cube 8

(o

" Truncated ™
Cube -

=N

W

Y111/7100

(S

. Truncated
X “._ Octahedron

—
.\

Coverage of {111} Surface [OA nm~?]

1 2 3 4 5
Coverage of {100} Surface [OA nm~?]

.
wriiie
11111111

Octahedron &
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Lietal. Cryst. Eng. Comm. 12, 1127 (2010)

e Changing the amount of oleic acid and
oleyamine with the same reaction time 1 min

Cube 8

g 53\
14+ v2)/V3
\: (+ 2);\/3 X Cuboctahedron
~ V3/24
’ 22
1/v3+
e Truncated
\ Octahedron
Co;,erago
2~ < ¢
m~3 @pt® Octahedron &)
Cornell University
) ) . IPAM - Batteries and Fuel Cells
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Nanocrystal Assembly

Aging of nanocrystals changes ligand coverage
e Ligands binding weaker on {100} than {111}
e Reduced coverage of {100} when aging in ligand poor condition

* Resulting change 1n “effective shape™ from nearly spherical to
preferred interactions in {111} direction

e Change 1n assembly
= Transformation from fcc to bce

ACS Nano 6, 2118 (2012)

. IPAM - Batteries and Fuel Cells
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Ligand Desorption

Solvent treatment can desorb ligands
from nanocrystal surfaces

e Desorption of oleic acid ligands from

PbSe surfaces after treatment with
dimethyltormamide (DMF, epmr = 37)

* Hypothesis:
Polar solvent reduces
ligand binding energy

Dimethylformamide

L UNp
7
of
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Solvent Effect on Ligand Binding

0.40 Lead Acetate (Fig. 4a) 0.50 (
¢ Lead Acetate (Fig. 4a 100} PbSe-DMF
§A 0.30 b) Dithiolane-180 deg. = 0.40 ¢ © . §110§ PbSe.DMF
d:, -g ‘ ® Hydrazine-180 deg. th :'g 030 & {111} PbSe-DMF
w S 0.20 S ® <
k= “o 020 |
O 9 .
e 0.10 ed
o % == 010 §
S~ 000 + c 2
m : 0 0.00 +
_010 | | | | | | | _010 I I | | | I I
1 10 19 28 37 46 55 64 1 10 19 28 37 46 55 64
(100) PbSe Dielectric Constant, € Dielectric Constant, €

* Increasing electrostatic screening due to solvent reduces the energy of
1solated surface, solvated ligand molecules and ligands adsorbed on surface

e Observe Reduction 1n ligand adsorption energy with permittivity €
* High epmr = 37 reduces adsorption by 75%, sufficient for desorption
e Preferential desorption of ligands on specific facets possible

. IPAM - Batteries and Fuel Cells
rhennl @ COrnell 'edu November 4-8, 2013 « Los Angeles, CA




Complexity of
Nanocrystal/Ligand/Solvent Systems

Anisotropic ligand coverage
nanocrystals leads affects assembly

T11/7100

Shape control of nanocrystals core by
modification of ligand coverage

o 100} PbSe-DMF
> 040 ¢ ) . E110§Pbs::DMF
E'g 0.30 i‘\ + {111} PbSe-DMF
" 020
53 01 \-\\\.: Desorption of ligands by solvent screening
o . ®
0.10 .

10 19 28 37 46 55 64
Dielectric Constant, €

Design of nanocrystal shape, assembly and functionalization

\ Cornell University .
1) J] College of Engineering rhennig@cornell.edu D atieres and puel Cells

Materials Science and Engineering




Computational Methods for Structure Prediction and
Solid/Liquid Interfaces for Energy Materials

Richard G. Hennig, Cornell University

Data mining for novel
2D materials

| Formic acid , \

=W\, adsorbate

; > - S / R {-"

Pt (110) surface
Ab 1nitio methods for
16
solid/liquid interfaces s
http://vaspsol.mse.cornell.edu Mo Se
7g.4 pla;insum tell;.rzlum
0.4 W Pt | Te
e Experimental structures | 1 183.84 195.08 127.60
0. P + GA structures
“ v A Amorphous structures
021~ "} v Fagtlithiation
o | il
- ™ R 1 . :
5oL R * Genetic algorithm for
S AR . ..
01 R RTINS structure predictions
" Adiabatic lithiation S, "‘ceﬁ,’;;"‘i{“ ‘i*‘j )
021 pydicted adidbaie S 10T http://gasp.mse.cornell.edu
lithiation
0o 02 04 06 08 1
Li fraction .
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